xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision 2b1b838ea8e5437ef06a29818d16e9efdfaf0037)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/kexec.h>
57 #include <linux/numa.h>
58 #include <linux/pgtable.h>
59 #include <linux/overflow.h>
60 #include <linux/stackprotector.h>
61 #include <linux/cpuhotplug.h>
62 #include <linux/mc146818rtc.h>
63 
64 #include <asm/acpi.h>
65 #include <asm/cacheinfo.h>
66 #include <asm/desc.h>
67 #include <asm/nmi.h>
68 #include <asm/irq.h>
69 #include <asm/realmode.h>
70 #include <asm/cpu.h>
71 #include <asm/numa.h>
72 #include <asm/tlbflush.h>
73 #include <asm/mtrr.h>
74 #include <asm/mwait.h>
75 #include <asm/apic.h>
76 #include <asm/io_apic.h>
77 #include <asm/fpu/api.h>
78 #include <asm/setup.h>
79 #include <asm/uv/uv.h>
80 #include <asm/microcode.h>
81 #include <asm/i8259.h>
82 #include <asm/misc.h>
83 #include <asm/qspinlock.h>
84 #include <asm/intel-family.h>
85 #include <asm/cpu_device_id.h>
86 #include <asm/spec-ctrl.h>
87 #include <asm/hw_irq.h>
88 #include <asm/stackprotector.h>
89 #include <asm/sev.h>
90 
91 /* representing HT siblings of each logical CPU */
92 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
93 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
94 
95 /* representing HT and core siblings of each logical CPU */
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
97 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
98 
99 /* representing HT, core, and die siblings of each logical CPU */
100 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
101 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
102 
103 /* Per CPU bogomips and other parameters */
104 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
105 EXPORT_PER_CPU_SYMBOL(cpu_info);
106 
107 /* CPUs which are the primary SMT threads */
108 struct cpumask __cpu_primary_thread_mask __read_mostly;
109 
110 /* Representing CPUs for which sibling maps can be computed */
111 static cpumask_var_t cpu_sibling_setup_mask;
112 
113 struct mwait_cpu_dead {
114 	unsigned int	control;
115 	unsigned int	status;
116 };
117 
118 #define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
119 #define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
120 
121 /*
122  * Cache line aligned data for mwait_play_dead(). Separate on purpose so
123  * that it's unlikely to be touched by other CPUs.
124  */
125 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
126 
127 /* Logical package management. We might want to allocate that dynamically */
128 unsigned int __max_logical_packages __read_mostly;
129 EXPORT_SYMBOL(__max_logical_packages);
130 static unsigned int logical_packages __read_mostly;
131 static unsigned int logical_die __read_mostly;
132 
133 /* Maximum number of SMT threads on any online core */
134 int __read_mostly __max_smt_threads = 1;
135 
136 /* Flag to indicate if a complete sched domain rebuild is required */
137 bool x86_topology_update;
138 
139 int arch_update_cpu_topology(void)
140 {
141 	int retval = x86_topology_update;
142 
143 	x86_topology_update = false;
144 	return retval;
145 }
146 
147 static unsigned int smpboot_warm_reset_vector_count;
148 
149 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
150 {
151 	unsigned long flags;
152 
153 	spin_lock_irqsave(&rtc_lock, flags);
154 	if (!smpboot_warm_reset_vector_count++) {
155 		CMOS_WRITE(0xa, 0xf);
156 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
157 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
158 	}
159 	spin_unlock_irqrestore(&rtc_lock, flags);
160 }
161 
162 static inline void smpboot_restore_warm_reset_vector(void)
163 {
164 	unsigned long flags;
165 
166 	/*
167 	 * Paranoid:  Set warm reset code and vector here back
168 	 * to default values.
169 	 */
170 	spin_lock_irqsave(&rtc_lock, flags);
171 	if (!--smpboot_warm_reset_vector_count) {
172 		CMOS_WRITE(0, 0xf);
173 		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
174 	}
175 	spin_unlock_irqrestore(&rtc_lock, flags);
176 
177 }
178 
179 /* Run the next set of setup steps for the upcoming CPU */
180 static void ap_starting(void)
181 {
182 	int cpuid = smp_processor_id();
183 
184 	/* Mop up eventual mwait_play_dead() wreckage */
185 	this_cpu_write(mwait_cpu_dead.status, 0);
186 	this_cpu_write(mwait_cpu_dead.control, 0);
187 
188 	/*
189 	 * If woken up by an INIT in an 82489DX configuration the alive
190 	 * synchronization guarantees that the CPU does not reach this
191 	 * point before an INIT_deassert IPI reaches the local APIC, so it
192 	 * is now safe to touch the local APIC.
193 	 *
194 	 * Set up this CPU, first the APIC, which is probably redundant on
195 	 * most boards.
196 	 */
197 	apic_ap_setup();
198 
199 	/* Save the processor parameters. */
200 	smp_store_cpu_info(cpuid);
201 
202 	/*
203 	 * The topology information must be up to date before
204 	 * notify_cpu_starting().
205 	 */
206 	set_cpu_sibling_map(cpuid);
207 
208 	ap_init_aperfmperf();
209 
210 	pr_debug("Stack at about %p\n", &cpuid);
211 
212 	wmb();
213 
214 	/*
215 	 * This runs the AP through all the cpuhp states to its target
216 	 * state CPUHP_ONLINE.
217 	 */
218 	notify_cpu_starting(cpuid);
219 }
220 
221 static void ap_calibrate_delay(void)
222 {
223 	/*
224 	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
225 	 * smp_store_cpu_info() stored a value that is close but not as
226 	 * accurate as the value just calculated.
227 	 *
228 	 * As this is invoked after the TSC synchronization check,
229 	 * calibrate_delay_is_known() will skip the calibration routine
230 	 * when TSC is synchronized across sockets.
231 	 */
232 	calibrate_delay();
233 	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
234 }
235 
236 /*
237  * Activate a secondary processor.
238  */
239 static void notrace start_secondary(void *unused)
240 {
241 	/*
242 	 * Don't put *anything* except direct CPU state initialization
243 	 * before cpu_init(), SMP booting is too fragile that we want to
244 	 * limit the things done here to the most necessary things.
245 	 */
246 	cr4_init();
247 
248 	/*
249 	 * 32-bit specific. 64-bit reaches this code with the correct page
250 	 * table established. Yet another historical divergence.
251 	 */
252 	if (IS_ENABLED(CONFIG_X86_32)) {
253 		/* switch away from the initial page table */
254 		load_cr3(swapper_pg_dir);
255 		__flush_tlb_all();
256 	}
257 
258 	cpu_init_exception_handling();
259 
260 	/*
261 	 * 32-bit systems load the microcode from the ASM startup code for
262 	 * historical reasons.
263 	 *
264 	 * On 64-bit systems load it before reaching the AP alive
265 	 * synchronization point below so it is not part of the full per
266 	 * CPU serialized bringup part when "parallel" bringup is enabled.
267 	 *
268 	 * That's even safe when hyperthreading is enabled in the CPU as
269 	 * the core code starts the primary threads first and leaves the
270 	 * secondary threads waiting for SIPI. Loading microcode on
271 	 * physical cores concurrently is a safe operation.
272 	 *
273 	 * This covers both the Intel specific issue that concurrent
274 	 * microcode loading on SMT siblings must be prohibited and the
275 	 * vendor independent issue`that microcode loading which changes
276 	 * CPUID, MSRs etc. must be strictly serialized to maintain
277 	 * software state correctness.
278 	 */
279 	if (IS_ENABLED(CONFIG_X86_64))
280 		load_ucode_ap();
281 
282 	/*
283 	 * Synchronization point with the hotplug core. Sets this CPUs
284 	 * synchronization state to ALIVE and spin-waits for the control CPU to
285 	 * release this CPU for further bringup.
286 	 */
287 	cpuhp_ap_sync_alive();
288 
289 	cpu_init();
290 	fpu__init_cpu();
291 	rcu_cpu_starting(raw_smp_processor_id());
292 	x86_cpuinit.early_percpu_clock_init();
293 
294 	ap_starting();
295 
296 	/* Check TSC synchronization with the control CPU. */
297 	check_tsc_sync_target();
298 
299 	/*
300 	 * Calibrate the delay loop after the TSC synchronization check.
301 	 * This allows to skip the calibration when TSC is synchronized
302 	 * across sockets.
303 	 */
304 	ap_calibrate_delay();
305 
306 	speculative_store_bypass_ht_init();
307 
308 	/*
309 	 * Lock vector_lock, set CPU online and bring the vector
310 	 * allocator online. Online must be set with vector_lock held
311 	 * to prevent a concurrent irq setup/teardown from seeing a
312 	 * half valid vector space.
313 	 */
314 	lock_vector_lock();
315 	set_cpu_online(smp_processor_id(), true);
316 	lapic_online();
317 	unlock_vector_lock();
318 	x86_platform.nmi_init();
319 
320 	/* enable local interrupts */
321 	local_irq_enable();
322 
323 	x86_cpuinit.setup_percpu_clockev();
324 
325 	wmb();
326 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
327 }
328 
329 /**
330  * topology_smt_supported - Check whether SMT is supported by the CPUs
331  */
332 bool topology_smt_supported(void)
333 {
334 	return smp_num_siblings > 1;
335 }
336 
337 /**
338  * topology_phys_to_logical_pkg - Map a physical package id to a logical
339  * @phys_pkg:	The physical package id to map
340  *
341  * Returns logical package id or -1 if not found
342  */
343 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
344 {
345 	int cpu;
346 
347 	for_each_possible_cpu(cpu) {
348 		struct cpuinfo_x86 *c = &cpu_data(cpu);
349 
350 		if (c->initialized && c->phys_proc_id == phys_pkg)
351 			return c->logical_proc_id;
352 	}
353 	return -1;
354 }
355 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
356 
357 /**
358  * topology_phys_to_logical_die - Map a physical die id to logical
359  * @die_id:	The physical die id to map
360  * @cur_cpu:	The CPU for which the mapping is done
361  *
362  * Returns logical die id or -1 if not found
363  */
364 static int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
365 {
366 	int cpu, proc_id = cpu_data(cur_cpu).phys_proc_id;
367 
368 	for_each_possible_cpu(cpu) {
369 		struct cpuinfo_x86 *c = &cpu_data(cpu);
370 
371 		if (c->initialized && c->cpu_die_id == die_id &&
372 		    c->phys_proc_id == proc_id)
373 			return c->logical_die_id;
374 	}
375 	return -1;
376 }
377 
378 /**
379  * topology_update_package_map - Update the physical to logical package map
380  * @pkg:	The physical package id as retrieved via CPUID
381  * @cpu:	The cpu for which this is updated
382  */
383 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
384 {
385 	int new;
386 
387 	/* Already available somewhere? */
388 	new = topology_phys_to_logical_pkg(pkg);
389 	if (new >= 0)
390 		goto found;
391 
392 	new = logical_packages++;
393 	if (new != pkg) {
394 		pr_info("CPU %u Converting physical %u to logical package %u\n",
395 			cpu, pkg, new);
396 	}
397 found:
398 	cpu_data(cpu).logical_proc_id = new;
399 	return 0;
400 }
401 /**
402  * topology_update_die_map - Update the physical to logical die map
403  * @die:	The die id as retrieved via CPUID
404  * @cpu:	The cpu for which this is updated
405  */
406 int topology_update_die_map(unsigned int die, unsigned int cpu)
407 {
408 	int new;
409 
410 	/* Already available somewhere? */
411 	new = topology_phys_to_logical_die(die, cpu);
412 	if (new >= 0)
413 		goto found;
414 
415 	new = logical_die++;
416 	if (new != die) {
417 		pr_info("CPU %u Converting physical %u to logical die %u\n",
418 			cpu, die, new);
419 	}
420 found:
421 	cpu_data(cpu).logical_die_id = new;
422 	return 0;
423 }
424 
425 void __init smp_store_boot_cpu_info(void)
426 {
427 	int id = 0; /* CPU 0 */
428 	struct cpuinfo_x86 *c = &cpu_data(id);
429 
430 	*c = boot_cpu_data;
431 	c->cpu_index = id;
432 	topology_update_package_map(c->phys_proc_id, id);
433 	topology_update_die_map(c->cpu_die_id, id);
434 	c->initialized = true;
435 }
436 
437 /*
438  * The bootstrap kernel entry code has set these up. Save them for
439  * a given CPU
440  */
441 void smp_store_cpu_info(int id)
442 {
443 	struct cpuinfo_x86 *c = &cpu_data(id);
444 
445 	/* Copy boot_cpu_data only on the first bringup */
446 	if (!c->initialized)
447 		*c = boot_cpu_data;
448 	c->cpu_index = id;
449 	/*
450 	 * During boot time, CPU0 has this setup already. Save the info when
451 	 * bringing up an AP.
452 	 */
453 	identify_secondary_cpu(c);
454 	c->initialized = true;
455 }
456 
457 static bool
458 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
459 {
460 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
461 
462 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
463 }
464 
465 static bool
466 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
467 {
468 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
469 
470 	return !WARN_ONCE(!topology_same_node(c, o),
471 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
472 		"[node: %d != %d]. Ignoring dependency.\n",
473 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
474 }
475 
476 #define link_mask(mfunc, c1, c2)					\
477 do {									\
478 	cpumask_set_cpu((c1), mfunc(c2));				\
479 	cpumask_set_cpu((c2), mfunc(c1));				\
480 } while (0)
481 
482 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
483 {
484 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
485 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
486 
487 		if (c->phys_proc_id == o->phys_proc_id &&
488 		    c->cpu_die_id == o->cpu_die_id &&
489 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
490 			if (c->cpu_core_id == o->cpu_core_id)
491 				return topology_sane(c, o, "smt");
492 
493 			if ((c->cu_id != 0xff) &&
494 			    (o->cu_id != 0xff) &&
495 			    (c->cu_id == o->cu_id))
496 				return topology_sane(c, o, "smt");
497 		}
498 
499 	} else if (c->phys_proc_id == o->phys_proc_id &&
500 		   c->cpu_die_id == o->cpu_die_id &&
501 		   c->cpu_core_id == o->cpu_core_id) {
502 		return topology_sane(c, o, "smt");
503 	}
504 
505 	return false;
506 }
507 
508 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
509 {
510 	if (c->phys_proc_id == o->phys_proc_id &&
511 	    c->cpu_die_id == o->cpu_die_id)
512 		return true;
513 	return false;
514 }
515 
516 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
517 {
518 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
519 
520 	/* If the arch didn't set up l2c_id, fall back to SMT */
521 	if (per_cpu(cpu_l2c_id, cpu1) == BAD_APICID)
522 		return match_smt(c, o);
523 
524 	/* Do not match if L2 cache id does not match: */
525 	if (per_cpu(cpu_l2c_id, cpu1) != per_cpu(cpu_l2c_id, cpu2))
526 		return false;
527 
528 	return topology_sane(c, o, "l2c");
529 }
530 
531 /*
532  * Unlike the other levels, we do not enforce keeping a
533  * multicore group inside a NUMA node.  If this happens, we will
534  * discard the MC level of the topology later.
535  */
536 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
537 {
538 	if (c->phys_proc_id == o->phys_proc_id)
539 		return true;
540 	return false;
541 }
542 
543 /*
544  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
545  *
546  * Any Intel CPU that has multiple nodes per package and does not
547  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
548  *
549  * When in SNC mode, these CPUs enumerate an LLC that is shared
550  * by multiple NUMA nodes. The LLC is shared for off-package data
551  * access but private to the NUMA node (half of the package) for
552  * on-package access. CPUID (the source of the information about
553  * the LLC) can only enumerate the cache as shared or unshared,
554  * but not this particular configuration.
555  */
556 
557 static const struct x86_cpu_id intel_cod_cpu[] = {
558 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
559 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
560 	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
561 	{}
562 };
563 
564 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
565 {
566 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
567 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
568 	bool intel_snc = id && id->driver_data;
569 
570 	/* Do not match if we do not have a valid APICID for cpu: */
571 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
572 		return false;
573 
574 	/* Do not match if LLC id does not match: */
575 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
576 		return false;
577 
578 	/*
579 	 * Allow the SNC topology without warning. Return of false
580 	 * means 'c' does not share the LLC of 'o'. This will be
581 	 * reflected to userspace.
582 	 */
583 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
584 		return false;
585 
586 	return topology_sane(c, o, "llc");
587 }
588 
589 
590 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_CLUSTER) || defined(CONFIG_SCHED_MC)
591 static inline int x86_sched_itmt_flags(void)
592 {
593 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
594 }
595 
596 #ifdef CONFIG_SCHED_MC
597 static int x86_core_flags(void)
598 {
599 	return cpu_core_flags() | x86_sched_itmt_flags();
600 }
601 #endif
602 #ifdef CONFIG_SCHED_SMT
603 static int x86_smt_flags(void)
604 {
605 	return cpu_smt_flags();
606 }
607 #endif
608 #ifdef CONFIG_SCHED_CLUSTER
609 static int x86_cluster_flags(void)
610 {
611 	return cpu_cluster_flags() | x86_sched_itmt_flags();
612 }
613 #endif
614 #endif
615 
616 /*
617  * Set if a package/die has multiple NUMA nodes inside.
618  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
619  * Sub-NUMA Clustering have this.
620  */
621 static bool x86_has_numa_in_package;
622 
623 static struct sched_domain_topology_level x86_topology[6];
624 
625 static void __init build_sched_topology(void)
626 {
627 	int i = 0;
628 
629 #ifdef CONFIG_SCHED_SMT
630 	x86_topology[i++] = (struct sched_domain_topology_level){
631 		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
632 	};
633 #endif
634 #ifdef CONFIG_SCHED_CLUSTER
635 	/*
636 	 * For now, skip the cluster domain on Hybrid.
637 	 */
638 	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
639 		x86_topology[i++] = (struct sched_domain_topology_level){
640 			cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
641 		};
642 	}
643 #endif
644 #ifdef CONFIG_SCHED_MC
645 	x86_topology[i++] = (struct sched_domain_topology_level){
646 		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
647 	};
648 #endif
649 	/*
650 	 * When there is NUMA topology inside the package skip the DIE domain
651 	 * since the NUMA domains will auto-magically create the right spanning
652 	 * domains based on the SLIT.
653 	 */
654 	if (!x86_has_numa_in_package) {
655 		x86_topology[i++] = (struct sched_domain_topology_level){
656 			cpu_cpu_mask, SD_INIT_NAME(DIE)
657 		};
658 	}
659 
660 	/*
661 	 * There must be one trailing NULL entry left.
662 	 */
663 	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
664 
665 	set_sched_topology(x86_topology);
666 }
667 
668 void set_cpu_sibling_map(int cpu)
669 {
670 	bool has_smt = smp_num_siblings > 1;
671 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
672 	struct cpuinfo_x86 *c = &cpu_data(cpu);
673 	struct cpuinfo_x86 *o;
674 	int i, threads;
675 
676 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
677 
678 	if (!has_mp) {
679 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
680 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
681 		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
682 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
683 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
684 		c->booted_cores = 1;
685 		return;
686 	}
687 
688 	for_each_cpu(i, cpu_sibling_setup_mask) {
689 		o = &cpu_data(i);
690 
691 		if (match_pkg(c, o) && !topology_same_node(c, o))
692 			x86_has_numa_in_package = true;
693 
694 		if ((i == cpu) || (has_smt && match_smt(c, o)))
695 			link_mask(topology_sibling_cpumask, cpu, i);
696 
697 		if ((i == cpu) || (has_mp && match_llc(c, o)))
698 			link_mask(cpu_llc_shared_mask, cpu, i);
699 
700 		if ((i == cpu) || (has_mp && match_l2c(c, o)))
701 			link_mask(cpu_l2c_shared_mask, cpu, i);
702 
703 		if ((i == cpu) || (has_mp && match_die(c, o)))
704 			link_mask(topology_die_cpumask, cpu, i);
705 	}
706 
707 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
708 	if (threads > __max_smt_threads)
709 		__max_smt_threads = threads;
710 
711 	for_each_cpu(i, topology_sibling_cpumask(cpu))
712 		cpu_data(i).smt_active = threads > 1;
713 
714 	/*
715 	 * This needs a separate iteration over the cpus because we rely on all
716 	 * topology_sibling_cpumask links to be set-up.
717 	 */
718 	for_each_cpu(i, cpu_sibling_setup_mask) {
719 		o = &cpu_data(i);
720 
721 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
722 			link_mask(topology_core_cpumask, cpu, i);
723 
724 			/*
725 			 *  Does this new cpu bringup a new core?
726 			 */
727 			if (threads == 1) {
728 				/*
729 				 * for each core in package, increment
730 				 * the booted_cores for this new cpu
731 				 */
732 				if (cpumask_first(
733 				    topology_sibling_cpumask(i)) == i)
734 					c->booted_cores++;
735 				/*
736 				 * increment the core count for all
737 				 * the other cpus in this package
738 				 */
739 				if (i != cpu)
740 					cpu_data(i).booted_cores++;
741 			} else if (i != cpu && !c->booted_cores)
742 				c->booted_cores = cpu_data(i).booted_cores;
743 		}
744 	}
745 }
746 
747 /* maps the cpu to the sched domain representing multi-core */
748 const struct cpumask *cpu_coregroup_mask(int cpu)
749 {
750 	return cpu_llc_shared_mask(cpu);
751 }
752 
753 const struct cpumask *cpu_clustergroup_mask(int cpu)
754 {
755 	return cpu_l2c_shared_mask(cpu);
756 }
757 
758 static void impress_friends(void)
759 {
760 	int cpu;
761 	unsigned long bogosum = 0;
762 	/*
763 	 * Allow the user to impress friends.
764 	 */
765 	pr_debug("Before bogomips\n");
766 	for_each_online_cpu(cpu)
767 		bogosum += cpu_data(cpu).loops_per_jiffy;
768 
769 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
770 		num_online_cpus(),
771 		bogosum/(500000/HZ),
772 		(bogosum/(5000/HZ))%100);
773 
774 	pr_debug("Before bogocount - setting activated=1\n");
775 }
776 
777 void __inquire_remote_apic(int apicid)
778 {
779 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
780 	const char * const names[] = { "ID", "VERSION", "SPIV" };
781 	int timeout;
782 	u32 status;
783 
784 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
785 
786 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
787 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
788 
789 		/*
790 		 * Wait for idle.
791 		 */
792 		status = safe_apic_wait_icr_idle();
793 		if (status)
794 			pr_cont("a previous APIC delivery may have failed\n");
795 
796 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
797 
798 		timeout = 0;
799 		do {
800 			udelay(100);
801 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
802 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
803 
804 		switch (status) {
805 		case APIC_ICR_RR_VALID:
806 			status = apic_read(APIC_RRR);
807 			pr_cont("%08x\n", status);
808 			break;
809 		default:
810 			pr_cont("failed\n");
811 		}
812 	}
813 }
814 
815 /*
816  * The Multiprocessor Specification 1.4 (1997) example code suggests
817  * that there should be a 10ms delay between the BSP asserting INIT
818  * and de-asserting INIT, when starting a remote processor.
819  * But that slows boot and resume on modern processors, which include
820  * many cores and don't require that delay.
821  *
822  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
823  * Modern processor families are quirked to remove the delay entirely.
824  */
825 #define UDELAY_10MS_DEFAULT 10000
826 
827 static unsigned int init_udelay = UINT_MAX;
828 
829 static int __init cpu_init_udelay(char *str)
830 {
831 	get_option(&str, &init_udelay);
832 
833 	return 0;
834 }
835 early_param("cpu_init_udelay", cpu_init_udelay);
836 
837 static void __init smp_quirk_init_udelay(void)
838 {
839 	/* if cmdline changed it from default, leave it alone */
840 	if (init_udelay != UINT_MAX)
841 		return;
842 
843 	/* if modern processor, use no delay */
844 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
845 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
846 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
847 		init_udelay = 0;
848 		return;
849 	}
850 	/* else, use legacy delay */
851 	init_udelay = UDELAY_10MS_DEFAULT;
852 }
853 
854 /*
855  * Wake up AP by INIT, INIT, STARTUP sequence.
856  */
857 static void send_init_sequence(int phys_apicid)
858 {
859 	int maxlvt = lapic_get_maxlvt();
860 
861 	/* Be paranoid about clearing APIC errors. */
862 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
863 		/* Due to the Pentium erratum 3AP.  */
864 		if (maxlvt > 3)
865 			apic_write(APIC_ESR, 0);
866 		apic_read(APIC_ESR);
867 	}
868 
869 	/* Assert INIT on the target CPU */
870 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
871 	safe_apic_wait_icr_idle();
872 
873 	udelay(init_udelay);
874 
875 	/* Deassert INIT on the target CPU */
876 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
877 	safe_apic_wait_icr_idle();
878 }
879 
880 /*
881  * Wake up AP by INIT, INIT, STARTUP sequence.
882  */
883 static int wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
884 {
885 	unsigned long send_status = 0, accept_status = 0;
886 	int num_starts, j, maxlvt;
887 
888 	preempt_disable();
889 	maxlvt = lapic_get_maxlvt();
890 	send_init_sequence(phys_apicid);
891 
892 	mb();
893 
894 	/*
895 	 * Should we send STARTUP IPIs ?
896 	 *
897 	 * Determine this based on the APIC version.
898 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
899 	 */
900 	if (APIC_INTEGRATED(boot_cpu_apic_version))
901 		num_starts = 2;
902 	else
903 		num_starts = 0;
904 
905 	/*
906 	 * Run STARTUP IPI loop.
907 	 */
908 	pr_debug("#startup loops: %d\n", num_starts);
909 
910 	for (j = 1; j <= num_starts; j++) {
911 		pr_debug("Sending STARTUP #%d\n", j);
912 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
913 			apic_write(APIC_ESR, 0);
914 		apic_read(APIC_ESR);
915 		pr_debug("After apic_write\n");
916 
917 		/*
918 		 * STARTUP IPI
919 		 */
920 
921 		/* Target chip */
922 		/* Boot on the stack */
923 		/* Kick the second */
924 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
925 			       phys_apicid);
926 
927 		/*
928 		 * Give the other CPU some time to accept the IPI.
929 		 */
930 		if (init_udelay == 0)
931 			udelay(10);
932 		else
933 			udelay(300);
934 
935 		pr_debug("Startup point 1\n");
936 
937 		pr_debug("Waiting for send to finish...\n");
938 		send_status = safe_apic_wait_icr_idle();
939 
940 		/*
941 		 * Give the other CPU some time to accept the IPI.
942 		 */
943 		if (init_udelay == 0)
944 			udelay(10);
945 		else
946 			udelay(200);
947 
948 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
949 			apic_write(APIC_ESR, 0);
950 		accept_status = (apic_read(APIC_ESR) & 0xEF);
951 		if (send_status || accept_status)
952 			break;
953 	}
954 	pr_debug("After Startup\n");
955 
956 	if (send_status)
957 		pr_err("APIC never delivered???\n");
958 	if (accept_status)
959 		pr_err("APIC delivery error (%lx)\n", accept_status);
960 
961 	preempt_enable();
962 	return (send_status | accept_status);
963 }
964 
965 /* reduce the number of lines printed when booting a large cpu count system */
966 static void announce_cpu(int cpu, int apicid)
967 {
968 	static int width, node_width, first = 1;
969 	static int current_node = NUMA_NO_NODE;
970 	int node = early_cpu_to_node(cpu);
971 
972 	if (!width)
973 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
974 
975 	if (!node_width)
976 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
977 
978 	if (system_state < SYSTEM_RUNNING) {
979 		if (first)
980 			pr_info("x86: Booting SMP configuration:\n");
981 
982 		if (node != current_node) {
983 			if (current_node > (-1))
984 				pr_cont("\n");
985 			current_node = node;
986 
987 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
988 			       node_width - num_digits(node), " ", node);
989 		}
990 
991 		/* Add padding for the BSP */
992 		if (first)
993 			pr_cont("%*s", width + 1, " ");
994 		first = 0;
995 
996 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
997 	} else
998 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
999 			node, cpu, apicid);
1000 }
1001 
1002 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1003 {
1004 	int ret;
1005 
1006 	/* Just in case we booted with a single CPU. */
1007 	alternatives_enable_smp();
1008 
1009 	per_cpu(pcpu_hot.current_task, cpu) = idle;
1010 	cpu_init_stack_canary(cpu, idle);
1011 
1012 	/* Initialize the interrupt stack(s) */
1013 	ret = irq_init_percpu_irqstack(cpu);
1014 	if (ret)
1015 		return ret;
1016 
1017 #ifdef CONFIG_X86_32
1018 	/* Stack for startup_32 can be just as for start_secondary onwards */
1019 	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
1020 #endif
1021 	return 0;
1022 }
1023 
1024 /*
1025  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1026  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1027  * Returns zero if startup was successfully sent, else error code from
1028  * ->wakeup_secondary_cpu.
1029  */
1030 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
1031 {
1032 	unsigned long start_ip = real_mode_header->trampoline_start;
1033 	int ret;
1034 
1035 #ifdef CONFIG_X86_64
1036 	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
1037 	if (apic->wakeup_secondary_cpu_64)
1038 		start_ip = real_mode_header->trampoline_start64;
1039 #endif
1040 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1041 	initial_code = (unsigned long)start_secondary;
1042 
1043 	if (IS_ENABLED(CONFIG_X86_32)) {
1044 		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1045 		initial_stack  = idle->thread.sp;
1046 	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
1047 		smpboot_control = cpu;
1048 	}
1049 
1050 	/* Enable the espfix hack for this CPU */
1051 	init_espfix_ap(cpu);
1052 
1053 	/* So we see what's up */
1054 	announce_cpu(cpu, apicid);
1055 
1056 	/*
1057 	 * This grunge runs the startup process for
1058 	 * the targeted processor.
1059 	 */
1060 	if (x86_platform.legacy.warm_reset) {
1061 
1062 		pr_debug("Setting warm reset code and vector.\n");
1063 
1064 		smpboot_setup_warm_reset_vector(start_ip);
1065 		/*
1066 		 * Be paranoid about clearing APIC errors.
1067 		*/
1068 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1069 			apic_write(APIC_ESR, 0);
1070 			apic_read(APIC_ESR);
1071 		}
1072 	}
1073 
1074 	smp_mb();
1075 
1076 	/*
1077 	 * Wake up a CPU in difference cases:
1078 	 * - Use a method from the APIC driver if one defined, with wakeup
1079 	 *   straight to 64-bit mode preferred over wakeup to RM.
1080 	 * Otherwise,
1081 	 * - Use an INIT boot APIC message
1082 	 */
1083 	if (apic->wakeup_secondary_cpu_64)
1084 		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
1085 	else if (apic->wakeup_secondary_cpu)
1086 		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
1087 	else
1088 		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
1089 
1090 	/* If the wakeup mechanism failed, cleanup the warm reset vector */
1091 	if (ret)
1092 		arch_cpuhp_cleanup_kick_cpu(cpu);
1093 	return ret;
1094 }
1095 
1096 int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
1097 {
1098 	int apicid = apic->cpu_present_to_apicid(cpu);
1099 	int err;
1100 
1101 	lockdep_assert_irqs_enabled();
1102 
1103 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1104 
1105 	if (apicid == BAD_APICID ||
1106 	    !physid_isset(apicid, phys_cpu_present_map) ||
1107 	    !apic->apic_id_valid(apicid)) {
1108 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1109 		return -EINVAL;
1110 	}
1111 
1112 	/*
1113 	 * Save current MTRR state in case it was changed since early boot
1114 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1115 	 */
1116 	mtrr_save_state();
1117 
1118 	/* the FPU context is blank, nobody can own it */
1119 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1120 
1121 	err = common_cpu_up(cpu, tidle);
1122 	if (err)
1123 		return err;
1124 
1125 	err = do_boot_cpu(apicid, cpu, tidle);
1126 	if (err)
1127 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1128 
1129 	return err;
1130 }
1131 
1132 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
1133 {
1134 	return smp_ops.kick_ap_alive(cpu, tidle);
1135 }
1136 
1137 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
1138 {
1139 	/* Cleanup possible dangling ends... */
1140 	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
1141 		smpboot_restore_warm_reset_vector();
1142 }
1143 
1144 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
1145 {
1146 	if (smp_ops.cleanup_dead_cpu)
1147 		smp_ops.cleanup_dead_cpu(cpu);
1148 
1149 	if (system_state == SYSTEM_RUNNING)
1150 		pr_info("CPU %u is now offline\n", cpu);
1151 }
1152 
1153 void arch_cpuhp_sync_state_poll(void)
1154 {
1155 	if (smp_ops.poll_sync_state)
1156 		smp_ops.poll_sync_state();
1157 }
1158 
1159 /**
1160  * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1161  */
1162 void __init arch_disable_smp_support(void)
1163 {
1164 	disable_ioapic_support();
1165 }
1166 
1167 /*
1168  * Fall back to non SMP mode after errors.
1169  *
1170  * RED-PEN audit/test this more. I bet there is more state messed up here.
1171  */
1172 static __init void disable_smp(void)
1173 {
1174 	pr_info("SMP disabled\n");
1175 
1176 	disable_ioapic_support();
1177 
1178 	init_cpu_present(cpumask_of(0));
1179 	init_cpu_possible(cpumask_of(0));
1180 
1181 	if (smp_found_config)
1182 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1183 	else
1184 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1185 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1186 	cpumask_set_cpu(0, topology_core_cpumask(0));
1187 	cpumask_set_cpu(0, topology_die_cpumask(0));
1188 }
1189 
1190 /*
1191  * Various sanity checks.
1192  */
1193 static void __init smp_sanity_check(void)
1194 {
1195 	preempt_disable();
1196 
1197 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1198 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1199 		unsigned int cpu;
1200 		unsigned nr;
1201 
1202 		pr_warn("More than 8 CPUs detected - skipping them\n"
1203 			"Use CONFIG_X86_BIGSMP\n");
1204 
1205 		nr = 0;
1206 		for_each_present_cpu(cpu) {
1207 			if (nr >= 8)
1208 				set_cpu_present(cpu, false);
1209 			nr++;
1210 		}
1211 
1212 		nr = 0;
1213 		for_each_possible_cpu(cpu) {
1214 			if (nr >= 8)
1215 				set_cpu_possible(cpu, false);
1216 			nr++;
1217 		}
1218 
1219 		set_nr_cpu_ids(8);
1220 	}
1221 #endif
1222 
1223 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1224 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1225 			hard_smp_processor_id());
1226 
1227 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1228 	}
1229 
1230 	/*
1231 	 * Should not be necessary because the MP table should list the boot
1232 	 * CPU too, but we do it for the sake of robustness anyway.
1233 	 */
1234 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1235 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1236 			  boot_cpu_physical_apicid);
1237 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1238 	}
1239 	preempt_enable();
1240 }
1241 
1242 static void __init smp_cpu_index_default(void)
1243 {
1244 	int i;
1245 	struct cpuinfo_x86 *c;
1246 
1247 	for_each_possible_cpu(i) {
1248 		c = &cpu_data(i);
1249 		/* mark all to hotplug */
1250 		c->cpu_index = nr_cpu_ids;
1251 	}
1252 }
1253 
1254 void __init smp_prepare_cpus_common(void)
1255 {
1256 	unsigned int i;
1257 
1258 	smp_cpu_index_default();
1259 
1260 	/*
1261 	 * Setup boot CPU information
1262 	 */
1263 	smp_store_boot_cpu_info(); /* Final full version of the data */
1264 	mb();
1265 
1266 	for_each_possible_cpu(i) {
1267 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1268 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1269 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1270 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1271 		zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1272 	}
1273 
1274 	set_cpu_sibling_map(0);
1275 }
1276 
1277 #ifdef CONFIG_X86_64
1278 /* Establish whether parallel bringup can be supported. */
1279 bool __init arch_cpuhp_init_parallel_bringup(void)
1280 {
1281 	if (!x86_cpuinit.parallel_bringup) {
1282 		pr_info("Parallel CPU startup disabled by the platform\n");
1283 		return false;
1284 	}
1285 
1286 	smpboot_control = STARTUP_READ_APICID;
1287 	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1288 	return true;
1289 }
1290 #endif
1291 
1292 /*
1293  * Prepare for SMP bootup.
1294  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1295  *            for common interface support.
1296  */
1297 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1298 {
1299 	smp_prepare_cpus_common();
1300 
1301 	smp_sanity_check();
1302 
1303 	switch (apic_intr_mode) {
1304 	case APIC_PIC:
1305 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1306 		disable_smp();
1307 		return;
1308 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1309 		disable_smp();
1310 		/* Setup local timer */
1311 		x86_init.timers.setup_percpu_clockev();
1312 		return;
1313 	case APIC_VIRTUAL_WIRE:
1314 	case APIC_SYMMETRIC_IO:
1315 		break;
1316 	}
1317 
1318 	/* Setup local timer */
1319 	x86_init.timers.setup_percpu_clockev();
1320 
1321 	pr_info("CPU0: ");
1322 	print_cpu_info(&cpu_data(0));
1323 
1324 	uv_system_init();
1325 
1326 	smp_quirk_init_udelay();
1327 
1328 	speculative_store_bypass_ht_init();
1329 
1330 	snp_set_wakeup_secondary_cpu();
1331 }
1332 
1333 void arch_thaw_secondary_cpus_begin(void)
1334 {
1335 	set_cache_aps_delayed_init(true);
1336 }
1337 
1338 void arch_thaw_secondary_cpus_end(void)
1339 {
1340 	cache_aps_init();
1341 }
1342 
1343 bool smp_park_other_cpus_in_init(void)
1344 {
1345 	unsigned int cpu, this_cpu = smp_processor_id();
1346 	unsigned int apicid;
1347 
1348 	if (apic->wakeup_secondary_cpu_64 || apic->wakeup_secondary_cpu)
1349 		return false;
1350 
1351 	/*
1352 	 * If this is a crash stop which does not execute on the boot CPU,
1353 	 * then this cannot use the INIT mechanism because INIT to the boot
1354 	 * CPU will reset the machine.
1355 	 */
1356 	if (this_cpu)
1357 		return false;
1358 
1359 	for_each_present_cpu(cpu) {
1360 		if (cpu == this_cpu)
1361 			continue;
1362 		apicid = apic->cpu_present_to_apicid(cpu);
1363 		if (apicid == BAD_APICID)
1364 			continue;
1365 		send_init_sequence(apicid);
1366 	}
1367 	return true;
1368 }
1369 
1370 /*
1371  * Early setup to make printk work.
1372  */
1373 void __init native_smp_prepare_boot_cpu(void)
1374 {
1375 	int me = smp_processor_id();
1376 
1377 	/* SMP handles this from setup_per_cpu_areas() */
1378 	if (!IS_ENABLED(CONFIG_SMP))
1379 		switch_gdt_and_percpu_base(me);
1380 
1381 	native_pv_lock_init();
1382 }
1383 
1384 void __init calculate_max_logical_packages(void)
1385 {
1386 	int ncpus;
1387 
1388 	/*
1389 	 * Today neither Intel nor AMD support heterogeneous systems so
1390 	 * extrapolate the boot cpu's data to all packages.
1391 	 */
1392 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1393 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1394 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1395 }
1396 
1397 void __init native_smp_cpus_done(unsigned int max_cpus)
1398 {
1399 	pr_debug("Boot done\n");
1400 
1401 	calculate_max_logical_packages();
1402 	build_sched_topology();
1403 	nmi_selftest();
1404 	impress_friends();
1405 	cache_aps_init();
1406 }
1407 
1408 static int __initdata setup_possible_cpus = -1;
1409 static int __init _setup_possible_cpus(char *str)
1410 {
1411 	get_option(&str, &setup_possible_cpus);
1412 	return 0;
1413 }
1414 early_param("possible_cpus", _setup_possible_cpus);
1415 
1416 
1417 /*
1418  * cpu_possible_mask should be static, it cannot change as cpu's
1419  * are onlined, or offlined. The reason is per-cpu data-structures
1420  * are allocated by some modules at init time, and don't expect to
1421  * do this dynamically on cpu arrival/departure.
1422  * cpu_present_mask on the other hand can change dynamically.
1423  * In case when cpu_hotplug is not compiled, then we resort to current
1424  * behaviour, which is cpu_possible == cpu_present.
1425  * - Ashok Raj
1426  *
1427  * Three ways to find out the number of additional hotplug CPUs:
1428  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1429  * - The user can overwrite it with possible_cpus=NUM
1430  * - Otherwise don't reserve additional CPUs.
1431  * We do this because additional CPUs waste a lot of memory.
1432  * -AK
1433  */
1434 __init void prefill_possible_map(void)
1435 {
1436 	int i, possible;
1437 
1438 	/* No boot processor was found in mptable or ACPI MADT */
1439 	if (!num_processors) {
1440 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1441 			int apicid = boot_cpu_physical_apicid;
1442 			int cpu = hard_smp_processor_id();
1443 
1444 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1445 
1446 			/* Make sure boot cpu is enumerated */
1447 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1448 			    apic->apic_id_valid(apicid))
1449 				generic_processor_info(apicid, boot_cpu_apic_version);
1450 		}
1451 
1452 		if (!num_processors)
1453 			num_processors = 1;
1454 	}
1455 
1456 	i = setup_max_cpus ?: 1;
1457 	if (setup_possible_cpus == -1) {
1458 		possible = num_processors;
1459 #ifdef CONFIG_HOTPLUG_CPU
1460 		if (setup_max_cpus)
1461 			possible += disabled_cpus;
1462 #else
1463 		if (possible > i)
1464 			possible = i;
1465 #endif
1466 	} else
1467 		possible = setup_possible_cpus;
1468 
1469 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1470 
1471 	/* nr_cpu_ids could be reduced via nr_cpus= */
1472 	if (possible > nr_cpu_ids) {
1473 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1474 			possible, nr_cpu_ids);
1475 		possible = nr_cpu_ids;
1476 	}
1477 
1478 #ifdef CONFIG_HOTPLUG_CPU
1479 	if (!setup_max_cpus)
1480 #endif
1481 	if (possible > i) {
1482 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1483 			possible, setup_max_cpus);
1484 		possible = i;
1485 	}
1486 
1487 	set_nr_cpu_ids(possible);
1488 
1489 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1490 		possible, max_t(int, possible - num_processors, 0));
1491 
1492 	reset_cpu_possible_mask();
1493 
1494 	for (i = 0; i < possible; i++)
1495 		set_cpu_possible(i, true);
1496 }
1497 
1498 /* correctly size the local cpu masks */
1499 void __init setup_cpu_local_masks(void)
1500 {
1501 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1502 }
1503 
1504 #ifdef CONFIG_HOTPLUG_CPU
1505 
1506 /* Recompute SMT state for all CPUs on offline */
1507 static void recompute_smt_state(void)
1508 {
1509 	int max_threads, cpu;
1510 
1511 	max_threads = 0;
1512 	for_each_online_cpu (cpu) {
1513 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1514 
1515 		if (threads > max_threads)
1516 			max_threads = threads;
1517 	}
1518 	__max_smt_threads = max_threads;
1519 }
1520 
1521 static void remove_siblinginfo(int cpu)
1522 {
1523 	int sibling;
1524 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1525 
1526 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1527 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1528 		/*/
1529 		 * last thread sibling in this cpu core going down
1530 		 */
1531 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1532 			cpu_data(sibling).booted_cores--;
1533 	}
1534 
1535 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1536 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1537 
1538 	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1539 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1540 		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1541 			cpu_data(sibling).smt_active = false;
1542 	}
1543 
1544 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1545 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1546 	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1547 		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1548 	cpumask_clear(cpu_llc_shared_mask(cpu));
1549 	cpumask_clear(cpu_l2c_shared_mask(cpu));
1550 	cpumask_clear(topology_sibling_cpumask(cpu));
1551 	cpumask_clear(topology_core_cpumask(cpu));
1552 	cpumask_clear(topology_die_cpumask(cpu));
1553 	c->cpu_core_id = 0;
1554 	c->booted_cores = 0;
1555 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1556 	recompute_smt_state();
1557 }
1558 
1559 static void remove_cpu_from_maps(int cpu)
1560 {
1561 	set_cpu_online(cpu, false);
1562 	numa_remove_cpu(cpu);
1563 }
1564 
1565 void cpu_disable_common(void)
1566 {
1567 	int cpu = smp_processor_id();
1568 
1569 	remove_siblinginfo(cpu);
1570 
1571 	/* It's now safe to remove this processor from the online map */
1572 	lock_vector_lock();
1573 	remove_cpu_from_maps(cpu);
1574 	unlock_vector_lock();
1575 	fixup_irqs();
1576 	lapic_offline();
1577 }
1578 
1579 int native_cpu_disable(void)
1580 {
1581 	int ret;
1582 
1583 	ret = lapic_can_unplug_cpu();
1584 	if (ret)
1585 		return ret;
1586 
1587 	cpu_disable_common();
1588 
1589         /*
1590          * Disable the local APIC. Otherwise IPI broadcasts will reach
1591          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1592          * messages.
1593          *
1594          * Disabling the APIC must happen after cpu_disable_common()
1595          * which invokes fixup_irqs().
1596          *
1597          * Disabling the APIC preserves already set bits in IRR, but
1598          * an interrupt arriving after disabling the local APIC does not
1599          * set the corresponding IRR bit.
1600          *
1601          * fixup_irqs() scans IRR for set bits so it can raise a not
1602          * yet handled interrupt on the new destination CPU via an IPI
1603          * but obviously it can't do so for IRR bits which are not set.
1604          * IOW, interrupts arriving after disabling the local APIC will
1605          * be lost.
1606          */
1607 	apic_soft_disable();
1608 
1609 	return 0;
1610 }
1611 
1612 void play_dead_common(void)
1613 {
1614 	idle_task_exit();
1615 
1616 	cpuhp_ap_report_dead();
1617 	/*
1618 	 * With physical CPU hotplug, we should halt the cpu
1619 	 */
1620 	local_irq_disable();
1621 }
1622 
1623 /*
1624  * We need to flush the caches before going to sleep, lest we have
1625  * dirty data in our caches when we come back up.
1626  */
1627 static inline void mwait_play_dead(void)
1628 {
1629 	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1630 	unsigned int eax, ebx, ecx, edx;
1631 	unsigned int highest_cstate = 0;
1632 	unsigned int highest_subcstate = 0;
1633 	int i;
1634 
1635 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1636 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1637 		return;
1638 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1639 		return;
1640 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1641 		return;
1642 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1643 		return;
1644 
1645 	eax = CPUID_MWAIT_LEAF;
1646 	ecx = 0;
1647 	native_cpuid(&eax, &ebx, &ecx, &edx);
1648 
1649 	/*
1650 	 * eax will be 0 if EDX enumeration is not valid.
1651 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1652 	 */
1653 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1654 		eax = 0;
1655 	} else {
1656 		edx >>= MWAIT_SUBSTATE_SIZE;
1657 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1658 			if (edx & MWAIT_SUBSTATE_MASK) {
1659 				highest_cstate = i;
1660 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1661 			}
1662 		}
1663 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1664 			(highest_subcstate - 1);
1665 	}
1666 
1667 	/* Set up state for the kexec() hack below */
1668 	md->status = CPUDEAD_MWAIT_WAIT;
1669 	md->control = CPUDEAD_MWAIT_WAIT;
1670 
1671 	wbinvd();
1672 
1673 	while (1) {
1674 		/*
1675 		 * The CLFLUSH is a workaround for erratum AAI65 for
1676 		 * the Xeon 7400 series.  It's not clear it is actually
1677 		 * needed, but it should be harmless in either case.
1678 		 * The WBINVD is insufficient due to the spurious-wakeup
1679 		 * case where we return around the loop.
1680 		 */
1681 		mb();
1682 		clflush(md);
1683 		mb();
1684 		__monitor(md, 0, 0);
1685 		mb();
1686 		__mwait(eax, 0);
1687 
1688 		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1689 			/*
1690 			 * Kexec is about to happen. Don't go back into mwait() as
1691 			 * the kexec kernel might overwrite text and data including
1692 			 * page tables and stack. So mwait() would resume when the
1693 			 * monitor cache line is written to and then the CPU goes
1694 			 * south due to overwritten text, page tables and stack.
1695 			 *
1696 			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1697 			 * SMI. They will resume execution at the instruction
1698 			 * following the HLT instruction and run into the problem
1699 			 * which this is trying to prevent.
1700 			 */
1701 			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1702 			while(1)
1703 				native_halt();
1704 		}
1705 	}
1706 }
1707 
1708 /*
1709  * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1710  * mwait_play_dead().
1711  */
1712 void smp_kick_mwait_play_dead(void)
1713 {
1714 	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1715 	struct mwait_cpu_dead *md;
1716 	unsigned int cpu, i;
1717 
1718 	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1719 		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1720 
1721 		/* Does it sit in mwait_play_dead() ? */
1722 		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1723 			continue;
1724 
1725 		/* Wait up to 5ms */
1726 		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1727 			/* Bring it out of mwait */
1728 			WRITE_ONCE(md->control, newstate);
1729 			udelay(5);
1730 		}
1731 
1732 		if (READ_ONCE(md->status) != newstate)
1733 			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1734 	}
1735 }
1736 
1737 void __noreturn hlt_play_dead(void)
1738 {
1739 	if (__this_cpu_read(cpu_info.x86) >= 4)
1740 		wbinvd();
1741 
1742 	while (1)
1743 		native_halt();
1744 }
1745 
1746 void native_play_dead(void)
1747 {
1748 	play_dead_common();
1749 	tboot_shutdown(TB_SHUTDOWN_WFS);
1750 
1751 	mwait_play_dead();
1752 	if (cpuidle_play_dead())
1753 		hlt_play_dead();
1754 }
1755 
1756 #else /* ... !CONFIG_HOTPLUG_CPU */
1757 int native_cpu_disable(void)
1758 {
1759 	return -ENOSYS;
1760 }
1761 
1762 void native_play_dead(void)
1763 {
1764 	BUG();
1765 }
1766 
1767 #endif
1768