1 /* 2 * x86 SMP booting functions 3 * 4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk> 5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 6 * Copyright 2001 Andi Kleen, SuSE Labs. 7 * 8 * Much of the core SMP work is based on previous work by Thomas Radke, to 9 * whom a great many thanks are extended. 10 * 11 * Thanks to Intel for making available several different Pentium, 12 * Pentium Pro and Pentium-II/Xeon MP machines. 13 * Original development of Linux SMP code supported by Caldera. 14 * 15 * This code is released under the GNU General Public License version 2 or 16 * later. 17 * 18 * Fixes 19 * Felix Koop : NR_CPUS used properly 20 * Jose Renau : Handle single CPU case. 21 * Alan Cox : By repeated request 8) - Total BogoMIPS report. 22 * Greg Wright : Fix for kernel stacks panic. 23 * Erich Boleyn : MP v1.4 and additional changes. 24 * Matthias Sattler : Changes for 2.1 kernel map. 25 * Michel Lespinasse : Changes for 2.1 kernel map. 26 * Michael Chastain : Change trampoline.S to gnu as. 27 * Alan Cox : Dumb bug: 'B' step PPro's are fine 28 * Ingo Molnar : Added APIC timers, based on code 29 * from Jose Renau 30 * Ingo Molnar : various cleanups and rewrites 31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. 32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs 33 * Andi Kleen : Changed for SMP boot into long mode. 34 * Martin J. Bligh : Added support for multi-quad systems 35 * Dave Jones : Report invalid combinations of Athlon CPUs. 36 * Rusty Russell : Hacked into shape for new "hotplug" boot process. 37 * Andi Kleen : Converted to new state machine. 38 * Ashok Raj : CPU hotplug support 39 * Glauber Costa : i386 and x86_64 integration 40 */ 41 42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 43 44 #include <linux/init.h> 45 #include <linux/smp.h> 46 #include <linux/export.h> 47 #include <linux/sched.h> 48 #include <linux/sched/topology.h> 49 #include <linux/percpu.h> 50 #include <linux/bootmem.h> 51 #include <linux/err.h> 52 #include <linux/nmi.h> 53 #include <linux/tboot.h> 54 #include <linux/stackprotector.h> 55 #include <linux/gfp.h> 56 #include <linux/cpuidle.h> 57 58 #include <asm/acpi.h> 59 #include <asm/desc.h> 60 #include <asm/nmi.h> 61 #include <asm/irq.h> 62 #include <asm/realmode.h> 63 #include <asm/cpu.h> 64 #include <asm/numa.h> 65 #include <asm/pgtable.h> 66 #include <asm/tlbflush.h> 67 #include <asm/mtrr.h> 68 #include <asm/mwait.h> 69 #include <asm/apic.h> 70 #include <asm/io_apic.h> 71 #include <asm/fpu/internal.h> 72 #include <asm/setup.h> 73 #include <asm/uv/uv.h> 74 #include <linux/mc146818rtc.h> 75 #include <asm/i8259.h> 76 #include <asm/realmode.h> 77 #include <asm/misc.h> 78 79 /* Number of siblings per CPU package */ 80 int smp_num_siblings = 1; 81 EXPORT_SYMBOL(smp_num_siblings); 82 83 /* Last level cache ID of each logical CPU */ 84 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID; 85 86 /* representing HT siblings of each logical CPU */ 87 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); 88 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); 89 90 /* representing HT and core siblings of each logical CPU */ 91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); 92 EXPORT_PER_CPU_SYMBOL(cpu_core_map); 93 94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); 95 96 /* Per CPU bogomips and other parameters */ 97 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 98 EXPORT_PER_CPU_SYMBOL(cpu_info); 99 100 /* Logical package management. We might want to allocate that dynamically */ 101 static int *physical_to_logical_pkg __read_mostly; 102 static unsigned long *physical_package_map __read_mostly;; 103 static unsigned int max_physical_pkg_id __read_mostly; 104 unsigned int __max_logical_packages __read_mostly; 105 EXPORT_SYMBOL(__max_logical_packages); 106 static unsigned int logical_packages __read_mostly; 107 108 /* Maximum number of SMT threads on any online core */ 109 int __max_smt_threads __read_mostly; 110 111 /* Flag to indicate if a complete sched domain rebuild is required */ 112 bool x86_topology_update; 113 114 int arch_update_cpu_topology(void) 115 { 116 int retval = x86_topology_update; 117 118 x86_topology_update = false; 119 return retval; 120 } 121 122 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip) 123 { 124 unsigned long flags; 125 126 spin_lock_irqsave(&rtc_lock, flags); 127 CMOS_WRITE(0xa, 0xf); 128 spin_unlock_irqrestore(&rtc_lock, flags); 129 local_flush_tlb(); 130 pr_debug("1.\n"); 131 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = 132 start_eip >> 4; 133 pr_debug("2.\n"); 134 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 135 start_eip & 0xf; 136 pr_debug("3.\n"); 137 } 138 139 static inline void smpboot_restore_warm_reset_vector(void) 140 { 141 unsigned long flags; 142 143 /* 144 * Install writable page 0 entry to set BIOS data area. 145 */ 146 local_flush_tlb(); 147 148 /* 149 * Paranoid: Set warm reset code and vector here back 150 * to default values. 151 */ 152 spin_lock_irqsave(&rtc_lock, flags); 153 CMOS_WRITE(0, 0xf); 154 spin_unlock_irqrestore(&rtc_lock, flags); 155 156 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0; 157 } 158 159 /* 160 * Report back to the Boot Processor during boot time or to the caller processor 161 * during CPU online. 162 */ 163 static void smp_callin(void) 164 { 165 int cpuid, phys_id; 166 167 /* 168 * If waken up by an INIT in an 82489DX configuration 169 * cpu_callout_mask guarantees we don't get here before 170 * an INIT_deassert IPI reaches our local APIC, so it is 171 * now safe to touch our local APIC. 172 */ 173 cpuid = smp_processor_id(); 174 175 /* 176 * (This works even if the APIC is not enabled.) 177 */ 178 phys_id = read_apic_id(); 179 180 /* 181 * the boot CPU has finished the init stage and is spinning 182 * on callin_map until we finish. We are free to set up this 183 * CPU, first the APIC. (this is probably redundant on most 184 * boards) 185 */ 186 apic_ap_setup(); 187 188 /* 189 * Save our processor parameters. Note: this information 190 * is needed for clock calibration. 191 */ 192 smp_store_cpu_info(cpuid); 193 194 /* 195 * Get our bogomips. 196 * Update loops_per_jiffy in cpu_data. Previous call to 197 * smp_store_cpu_info() stored a value that is close but not as 198 * accurate as the value just calculated. 199 */ 200 calibrate_delay(); 201 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy; 202 pr_debug("Stack at about %p\n", &cpuid); 203 204 /* 205 * This must be done before setting cpu_online_mask 206 * or calling notify_cpu_starting. 207 */ 208 set_cpu_sibling_map(raw_smp_processor_id()); 209 wmb(); 210 211 notify_cpu_starting(cpuid); 212 213 /* 214 * Allow the master to continue. 215 */ 216 cpumask_set_cpu(cpuid, cpu_callin_mask); 217 } 218 219 static int cpu0_logical_apicid; 220 static int enable_start_cpu0; 221 /* 222 * Activate a secondary processor. 223 */ 224 static void notrace start_secondary(void *unused) 225 { 226 /* 227 * Don't put *anything* before cpu_init(), SMP booting is too 228 * fragile that we want to limit the things done here to the 229 * most necessary things. 230 */ 231 cpu_init(); 232 x86_cpuinit.early_percpu_clock_init(); 233 preempt_disable(); 234 smp_callin(); 235 236 enable_start_cpu0 = 0; 237 238 #ifdef CONFIG_X86_32 239 /* switch away from the initial page table */ 240 load_cr3(swapper_pg_dir); 241 __flush_tlb_all(); 242 #endif 243 244 /* otherwise gcc will move up smp_processor_id before the cpu_init */ 245 barrier(); 246 /* 247 * Check TSC synchronization with the BP: 248 */ 249 check_tsc_sync_target(); 250 251 /* 252 * Lock vector_lock and initialize the vectors on this cpu 253 * before setting the cpu online. We must set it online with 254 * vector_lock held to prevent a concurrent setup/teardown 255 * from seeing a half valid vector space. 256 */ 257 lock_vector_lock(); 258 setup_vector_irq(smp_processor_id()); 259 set_cpu_online(smp_processor_id(), true); 260 unlock_vector_lock(); 261 cpu_set_state_online(smp_processor_id()); 262 x86_platform.nmi_init(); 263 264 /* enable local interrupts */ 265 local_irq_enable(); 266 267 /* to prevent fake stack check failure in clock setup */ 268 boot_init_stack_canary(); 269 270 x86_cpuinit.setup_percpu_clockev(); 271 272 wmb(); 273 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 274 } 275 276 /** 277 * topology_update_package_map - Update the physical to logical package map 278 * @pkg: The physical package id as retrieved via CPUID 279 * @cpu: The cpu for which this is updated 280 */ 281 int topology_update_package_map(unsigned int pkg, unsigned int cpu) 282 { 283 unsigned int new; 284 285 /* Called from early boot ? */ 286 if (!physical_package_map) 287 return 0; 288 289 if (pkg >= max_physical_pkg_id) 290 return -EINVAL; 291 292 /* Set the logical package id */ 293 if (test_and_set_bit(pkg, physical_package_map)) 294 goto found; 295 296 if (logical_packages >= __max_logical_packages) { 297 pr_warn("Package %u of CPU %u exceeds BIOS package data %u.\n", 298 logical_packages, cpu, __max_logical_packages); 299 return -ENOSPC; 300 } 301 302 new = logical_packages++; 303 if (new != pkg) { 304 pr_info("CPU %u Converting physical %u to logical package %u\n", 305 cpu, pkg, new); 306 } 307 physical_to_logical_pkg[pkg] = new; 308 309 found: 310 cpu_data(cpu).logical_proc_id = physical_to_logical_pkg[pkg]; 311 return 0; 312 } 313 314 /** 315 * topology_phys_to_logical_pkg - Map a physical package id to a logical 316 * 317 * Returns logical package id or -1 if not found 318 */ 319 int topology_phys_to_logical_pkg(unsigned int phys_pkg) 320 { 321 if (phys_pkg >= max_physical_pkg_id) 322 return -1; 323 return physical_to_logical_pkg[phys_pkg]; 324 } 325 EXPORT_SYMBOL(topology_phys_to_logical_pkg); 326 327 static void __init smp_init_package_map(struct cpuinfo_x86 *c, unsigned int cpu) 328 { 329 unsigned int ncpus; 330 size_t size; 331 332 /* 333 * Today neither Intel nor AMD support heterogenous systems. That 334 * might change in the future.... 335 * 336 * While ideally we'd want '* smp_num_siblings' in the below @ncpus 337 * computation, this won't actually work since some Intel BIOSes 338 * report inconsistent HT data when they disable HT. 339 * 340 * In particular, they reduce the APIC-IDs to only include the cores, 341 * but leave the CPUID topology to say there are (2) siblings. 342 * This means we don't know how many threads there will be until 343 * after the APIC enumeration. 344 * 345 * By not including this we'll sometimes over-estimate the number of 346 * logical packages by the amount of !present siblings, but this is 347 * still better than MAX_LOCAL_APIC. 348 * 349 * We use total_cpus not nr_cpu_ids because nr_cpu_ids can be limited 350 * on the command line leading to a similar issue as the HT disable 351 * problem because the hyperthreads are usually enumerated after the 352 * primary cores. 353 */ 354 ncpus = boot_cpu_data.x86_max_cores; 355 if (!ncpus) { 356 pr_warn("x86_max_cores == zero !?!?"); 357 ncpus = 1; 358 } 359 360 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus); 361 logical_packages = 0; 362 363 /* 364 * Possibly larger than what we need as the number of apic ids per 365 * package can be smaller than the actual used apic ids. 366 */ 367 max_physical_pkg_id = DIV_ROUND_UP(MAX_LOCAL_APIC, ncpus); 368 size = max_physical_pkg_id * sizeof(unsigned int); 369 physical_to_logical_pkg = kmalloc(size, GFP_KERNEL); 370 memset(physical_to_logical_pkg, 0xff, size); 371 size = BITS_TO_LONGS(max_physical_pkg_id) * sizeof(unsigned long); 372 physical_package_map = kzalloc(size, GFP_KERNEL); 373 374 pr_info("Max logical packages: %u\n", __max_logical_packages); 375 376 topology_update_package_map(c->phys_proc_id, cpu); 377 } 378 379 void __init smp_store_boot_cpu_info(void) 380 { 381 int id = 0; /* CPU 0 */ 382 struct cpuinfo_x86 *c = &cpu_data(id); 383 384 *c = boot_cpu_data; 385 c->cpu_index = id; 386 smp_init_package_map(c, id); 387 } 388 389 /* 390 * The bootstrap kernel entry code has set these up. Save them for 391 * a given CPU 392 */ 393 void smp_store_cpu_info(int id) 394 { 395 struct cpuinfo_x86 *c = &cpu_data(id); 396 397 *c = boot_cpu_data; 398 c->cpu_index = id; 399 /* 400 * During boot time, CPU0 has this setup already. Save the info when 401 * bringing up AP or offlined CPU0. 402 */ 403 identify_secondary_cpu(c); 404 } 405 406 static bool 407 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 408 { 409 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 410 411 return (cpu_to_node(cpu1) == cpu_to_node(cpu2)); 412 } 413 414 static bool 415 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name) 416 { 417 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 418 419 return !WARN_ONCE(!topology_same_node(c, o), 420 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! " 421 "[node: %d != %d]. Ignoring dependency.\n", 422 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2)); 423 } 424 425 #define link_mask(mfunc, c1, c2) \ 426 do { \ 427 cpumask_set_cpu((c1), mfunc(c2)); \ 428 cpumask_set_cpu((c2), mfunc(c1)); \ 429 } while (0) 430 431 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 432 { 433 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { 434 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 435 436 if (c->phys_proc_id == o->phys_proc_id && 437 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) { 438 if (c->cpu_core_id == o->cpu_core_id) 439 return topology_sane(c, o, "smt"); 440 441 if ((c->cu_id != 0xff) && 442 (o->cu_id != 0xff) && 443 (c->cu_id == o->cu_id)) 444 return topology_sane(c, o, "smt"); 445 } 446 447 } else if (c->phys_proc_id == o->phys_proc_id && 448 c->cpu_core_id == o->cpu_core_id) { 449 return topology_sane(c, o, "smt"); 450 } 451 452 return false; 453 } 454 455 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 456 { 457 int cpu1 = c->cpu_index, cpu2 = o->cpu_index; 458 459 if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID && 460 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) 461 return topology_sane(c, o, "llc"); 462 463 return false; 464 } 465 466 /* 467 * Unlike the other levels, we do not enforce keeping a 468 * multicore group inside a NUMA node. If this happens, we will 469 * discard the MC level of the topology later. 470 */ 471 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) 472 { 473 if (c->phys_proc_id == o->phys_proc_id) 474 return true; 475 return false; 476 } 477 478 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC) 479 static inline int x86_sched_itmt_flags(void) 480 { 481 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0; 482 } 483 484 #ifdef CONFIG_SCHED_MC 485 static int x86_core_flags(void) 486 { 487 return cpu_core_flags() | x86_sched_itmt_flags(); 488 } 489 #endif 490 #ifdef CONFIG_SCHED_SMT 491 static int x86_smt_flags(void) 492 { 493 return cpu_smt_flags() | x86_sched_itmt_flags(); 494 } 495 #endif 496 #endif 497 498 static struct sched_domain_topology_level x86_numa_in_package_topology[] = { 499 #ifdef CONFIG_SCHED_SMT 500 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) }, 501 #endif 502 #ifdef CONFIG_SCHED_MC 503 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) }, 504 #endif 505 { NULL, }, 506 }; 507 508 static struct sched_domain_topology_level x86_topology[] = { 509 #ifdef CONFIG_SCHED_SMT 510 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) }, 511 #endif 512 #ifdef CONFIG_SCHED_MC 513 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) }, 514 #endif 515 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 516 { NULL, }, 517 }; 518 519 /* 520 * Set if a package/die has multiple NUMA nodes inside. 521 * AMD Magny-Cours and Intel Cluster-on-Die have this. 522 */ 523 static bool x86_has_numa_in_package; 524 525 void set_cpu_sibling_map(int cpu) 526 { 527 bool has_smt = smp_num_siblings > 1; 528 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1; 529 struct cpuinfo_x86 *c = &cpu_data(cpu); 530 struct cpuinfo_x86 *o; 531 int i, threads; 532 533 cpumask_set_cpu(cpu, cpu_sibling_setup_mask); 534 535 if (!has_mp) { 536 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu)); 537 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu)); 538 cpumask_set_cpu(cpu, topology_core_cpumask(cpu)); 539 c->booted_cores = 1; 540 return; 541 } 542 543 for_each_cpu(i, cpu_sibling_setup_mask) { 544 o = &cpu_data(i); 545 546 if ((i == cpu) || (has_smt && match_smt(c, o))) 547 link_mask(topology_sibling_cpumask, cpu, i); 548 549 if ((i == cpu) || (has_mp && match_llc(c, o))) 550 link_mask(cpu_llc_shared_mask, cpu, i); 551 552 } 553 554 /* 555 * This needs a separate iteration over the cpus because we rely on all 556 * topology_sibling_cpumask links to be set-up. 557 */ 558 for_each_cpu(i, cpu_sibling_setup_mask) { 559 o = &cpu_data(i); 560 561 if ((i == cpu) || (has_mp && match_die(c, o))) { 562 link_mask(topology_core_cpumask, cpu, i); 563 564 /* 565 * Does this new cpu bringup a new core? 566 */ 567 if (cpumask_weight( 568 topology_sibling_cpumask(cpu)) == 1) { 569 /* 570 * for each core in package, increment 571 * the booted_cores for this new cpu 572 */ 573 if (cpumask_first( 574 topology_sibling_cpumask(i)) == i) 575 c->booted_cores++; 576 /* 577 * increment the core count for all 578 * the other cpus in this package 579 */ 580 if (i != cpu) 581 cpu_data(i).booted_cores++; 582 } else if (i != cpu && !c->booted_cores) 583 c->booted_cores = cpu_data(i).booted_cores; 584 } 585 if (match_die(c, o) && !topology_same_node(c, o)) 586 x86_has_numa_in_package = true; 587 } 588 589 threads = cpumask_weight(topology_sibling_cpumask(cpu)); 590 if (threads > __max_smt_threads) 591 __max_smt_threads = threads; 592 } 593 594 /* maps the cpu to the sched domain representing multi-core */ 595 const struct cpumask *cpu_coregroup_mask(int cpu) 596 { 597 return cpu_llc_shared_mask(cpu); 598 } 599 600 static void impress_friends(void) 601 { 602 int cpu; 603 unsigned long bogosum = 0; 604 /* 605 * Allow the user to impress friends. 606 */ 607 pr_debug("Before bogomips\n"); 608 for_each_possible_cpu(cpu) 609 if (cpumask_test_cpu(cpu, cpu_callout_mask)) 610 bogosum += cpu_data(cpu).loops_per_jiffy; 611 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n", 612 num_online_cpus(), 613 bogosum/(500000/HZ), 614 (bogosum/(5000/HZ))%100); 615 616 pr_debug("Before bogocount - setting activated=1\n"); 617 } 618 619 void __inquire_remote_apic(int apicid) 620 { 621 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; 622 const char * const names[] = { "ID", "VERSION", "SPIV" }; 623 int timeout; 624 u32 status; 625 626 pr_info("Inquiring remote APIC 0x%x...\n", apicid); 627 628 for (i = 0; i < ARRAY_SIZE(regs); i++) { 629 pr_info("... APIC 0x%x %s: ", apicid, names[i]); 630 631 /* 632 * Wait for idle. 633 */ 634 status = safe_apic_wait_icr_idle(); 635 if (status) 636 pr_cont("a previous APIC delivery may have failed\n"); 637 638 apic_icr_write(APIC_DM_REMRD | regs[i], apicid); 639 640 timeout = 0; 641 do { 642 udelay(100); 643 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; 644 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); 645 646 switch (status) { 647 case APIC_ICR_RR_VALID: 648 status = apic_read(APIC_RRR); 649 pr_cont("%08x\n", status); 650 break; 651 default: 652 pr_cont("failed\n"); 653 } 654 } 655 } 656 657 /* 658 * The Multiprocessor Specification 1.4 (1997) example code suggests 659 * that there should be a 10ms delay between the BSP asserting INIT 660 * and de-asserting INIT, when starting a remote processor. 661 * But that slows boot and resume on modern processors, which include 662 * many cores and don't require that delay. 663 * 664 * Cmdline "init_cpu_udelay=" is available to over-ride this delay. 665 * Modern processor families are quirked to remove the delay entirely. 666 */ 667 #define UDELAY_10MS_DEFAULT 10000 668 669 static unsigned int init_udelay = UINT_MAX; 670 671 static int __init cpu_init_udelay(char *str) 672 { 673 get_option(&str, &init_udelay); 674 675 return 0; 676 } 677 early_param("cpu_init_udelay", cpu_init_udelay); 678 679 static void __init smp_quirk_init_udelay(void) 680 { 681 /* if cmdline changed it from default, leave it alone */ 682 if (init_udelay != UINT_MAX) 683 return; 684 685 /* if modern processor, use no delay */ 686 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) || 687 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) { 688 init_udelay = 0; 689 return; 690 } 691 /* else, use legacy delay */ 692 init_udelay = UDELAY_10MS_DEFAULT; 693 } 694 695 /* 696 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal 697 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this 698 * won't ... remember to clear down the APIC, etc later. 699 */ 700 int 701 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip) 702 { 703 unsigned long send_status, accept_status = 0; 704 int maxlvt; 705 706 /* Target chip */ 707 /* Boot on the stack */ 708 /* Kick the second */ 709 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid); 710 711 pr_debug("Waiting for send to finish...\n"); 712 send_status = safe_apic_wait_icr_idle(); 713 714 /* 715 * Give the other CPU some time to accept the IPI. 716 */ 717 udelay(200); 718 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 719 maxlvt = lapic_get_maxlvt(); 720 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 721 apic_write(APIC_ESR, 0); 722 accept_status = (apic_read(APIC_ESR) & 0xEF); 723 } 724 pr_debug("NMI sent\n"); 725 726 if (send_status) 727 pr_err("APIC never delivered???\n"); 728 if (accept_status) 729 pr_err("APIC delivery error (%lx)\n", accept_status); 730 731 return (send_status | accept_status); 732 } 733 734 static int 735 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip) 736 { 737 unsigned long send_status = 0, accept_status = 0; 738 int maxlvt, num_starts, j; 739 740 maxlvt = lapic_get_maxlvt(); 741 742 /* 743 * Be paranoid about clearing APIC errors. 744 */ 745 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 746 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 747 apic_write(APIC_ESR, 0); 748 apic_read(APIC_ESR); 749 } 750 751 pr_debug("Asserting INIT\n"); 752 753 /* 754 * Turn INIT on target chip 755 */ 756 /* 757 * Send IPI 758 */ 759 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, 760 phys_apicid); 761 762 pr_debug("Waiting for send to finish...\n"); 763 send_status = safe_apic_wait_icr_idle(); 764 765 udelay(init_udelay); 766 767 pr_debug("Deasserting INIT\n"); 768 769 /* Target chip */ 770 /* Send IPI */ 771 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid); 772 773 pr_debug("Waiting for send to finish...\n"); 774 send_status = safe_apic_wait_icr_idle(); 775 776 mb(); 777 778 /* 779 * Should we send STARTUP IPIs ? 780 * 781 * Determine this based on the APIC version. 782 * If we don't have an integrated APIC, don't send the STARTUP IPIs. 783 */ 784 if (APIC_INTEGRATED(boot_cpu_apic_version)) 785 num_starts = 2; 786 else 787 num_starts = 0; 788 789 /* 790 * Run STARTUP IPI loop. 791 */ 792 pr_debug("#startup loops: %d\n", num_starts); 793 794 for (j = 1; j <= num_starts; j++) { 795 pr_debug("Sending STARTUP #%d\n", j); 796 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 797 apic_write(APIC_ESR, 0); 798 apic_read(APIC_ESR); 799 pr_debug("After apic_write\n"); 800 801 /* 802 * STARTUP IPI 803 */ 804 805 /* Target chip */ 806 /* Boot on the stack */ 807 /* Kick the second */ 808 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12), 809 phys_apicid); 810 811 /* 812 * Give the other CPU some time to accept the IPI. 813 */ 814 if (init_udelay == 0) 815 udelay(10); 816 else 817 udelay(300); 818 819 pr_debug("Startup point 1\n"); 820 821 pr_debug("Waiting for send to finish...\n"); 822 send_status = safe_apic_wait_icr_idle(); 823 824 /* 825 * Give the other CPU some time to accept the IPI. 826 */ 827 if (init_udelay == 0) 828 udelay(10); 829 else 830 udelay(200); 831 832 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 833 apic_write(APIC_ESR, 0); 834 accept_status = (apic_read(APIC_ESR) & 0xEF); 835 if (send_status || accept_status) 836 break; 837 } 838 pr_debug("After Startup\n"); 839 840 if (send_status) 841 pr_err("APIC never delivered???\n"); 842 if (accept_status) 843 pr_err("APIC delivery error (%lx)\n", accept_status); 844 845 return (send_status | accept_status); 846 } 847 848 /* reduce the number of lines printed when booting a large cpu count system */ 849 static void announce_cpu(int cpu, int apicid) 850 { 851 static int current_node = -1; 852 int node = early_cpu_to_node(cpu); 853 static int width, node_width; 854 855 if (!width) 856 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */ 857 858 if (!node_width) 859 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */ 860 861 if (cpu == 1) 862 printk(KERN_INFO "x86: Booting SMP configuration:\n"); 863 864 if (system_state == SYSTEM_BOOTING) { 865 if (node != current_node) { 866 if (current_node > (-1)) 867 pr_cont("\n"); 868 current_node = node; 869 870 printk(KERN_INFO ".... node %*s#%d, CPUs: ", 871 node_width - num_digits(node), " ", node); 872 } 873 874 /* Add padding for the BSP */ 875 if (cpu == 1) 876 pr_cont("%*s", width + 1, " "); 877 878 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu); 879 880 } else 881 pr_info("Booting Node %d Processor %d APIC 0x%x\n", 882 node, cpu, apicid); 883 } 884 885 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs) 886 { 887 int cpu; 888 889 cpu = smp_processor_id(); 890 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0) 891 return NMI_HANDLED; 892 893 return NMI_DONE; 894 } 895 896 /* 897 * Wake up AP by INIT, INIT, STARTUP sequence. 898 * 899 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS 900 * boot-strap code which is not a desired behavior for waking up BSP. To 901 * void the boot-strap code, wake up CPU0 by NMI instead. 902 * 903 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined 904 * (i.e. physically hot removed and then hot added), NMI won't wake it up. 905 * We'll change this code in the future to wake up hard offlined CPU0 if 906 * real platform and request are available. 907 */ 908 static int 909 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid, 910 int *cpu0_nmi_registered) 911 { 912 int id; 913 int boot_error; 914 915 preempt_disable(); 916 917 /* 918 * Wake up AP by INIT, INIT, STARTUP sequence. 919 */ 920 if (cpu) { 921 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip); 922 goto out; 923 } 924 925 /* 926 * Wake up BSP by nmi. 927 * 928 * Register a NMI handler to help wake up CPU0. 929 */ 930 boot_error = register_nmi_handler(NMI_LOCAL, 931 wakeup_cpu0_nmi, 0, "wake_cpu0"); 932 933 if (!boot_error) { 934 enable_start_cpu0 = 1; 935 *cpu0_nmi_registered = 1; 936 if (apic->dest_logical == APIC_DEST_LOGICAL) 937 id = cpu0_logical_apicid; 938 else 939 id = apicid; 940 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip); 941 } 942 943 out: 944 preempt_enable(); 945 946 return boot_error; 947 } 948 949 void common_cpu_up(unsigned int cpu, struct task_struct *idle) 950 { 951 /* Just in case we booted with a single CPU. */ 952 alternatives_enable_smp(); 953 954 per_cpu(current_task, cpu) = idle; 955 956 #ifdef CONFIG_X86_32 957 /* Stack for startup_32 can be just as for start_secondary onwards */ 958 irq_ctx_init(cpu); 959 per_cpu(cpu_current_top_of_stack, cpu) = 960 (unsigned long)task_stack_page(idle) + THREAD_SIZE; 961 #else 962 initial_gs = per_cpu_offset(cpu); 963 #endif 964 } 965 966 /* 967 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad 968 * (ie clustered apic addressing mode), this is a LOGICAL apic ID. 969 * Returns zero if CPU booted OK, else error code from 970 * ->wakeup_secondary_cpu. 971 */ 972 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle) 973 { 974 volatile u32 *trampoline_status = 975 (volatile u32 *) __va(real_mode_header->trampoline_status); 976 /* start_ip had better be page-aligned! */ 977 unsigned long start_ip = real_mode_header->trampoline_start; 978 979 unsigned long boot_error = 0; 980 int cpu0_nmi_registered = 0; 981 unsigned long timeout; 982 983 idle->thread.sp = (unsigned long)task_pt_regs(idle); 984 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu); 985 initial_code = (unsigned long)start_secondary; 986 initial_stack = idle->thread.sp; 987 988 /* 989 * Enable the espfix hack for this CPU 990 */ 991 #ifdef CONFIG_X86_ESPFIX64 992 init_espfix_ap(cpu); 993 #endif 994 995 /* So we see what's up */ 996 announce_cpu(cpu, apicid); 997 998 /* 999 * This grunge runs the startup process for 1000 * the targeted processor. 1001 */ 1002 1003 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) { 1004 1005 pr_debug("Setting warm reset code and vector.\n"); 1006 1007 smpboot_setup_warm_reset_vector(start_ip); 1008 /* 1009 * Be paranoid about clearing APIC errors. 1010 */ 1011 if (APIC_INTEGRATED(boot_cpu_apic_version)) { 1012 apic_write(APIC_ESR, 0); 1013 apic_read(APIC_ESR); 1014 } 1015 } 1016 1017 /* 1018 * AP might wait on cpu_callout_mask in cpu_init() with 1019 * cpu_initialized_mask set if previous attempt to online 1020 * it timed-out. Clear cpu_initialized_mask so that after 1021 * INIT/SIPI it could start with a clean state. 1022 */ 1023 cpumask_clear_cpu(cpu, cpu_initialized_mask); 1024 smp_mb(); 1025 1026 /* 1027 * Wake up a CPU in difference cases: 1028 * - Use the method in the APIC driver if it's defined 1029 * Otherwise, 1030 * - Use an INIT boot APIC message for APs or NMI for BSP. 1031 */ 1032 if (apic->wakeup_secondary_cpu) 1033 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip); 1034 else 1035 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid, 1036 &cpu0_nmi_registered); 1037 1038 if (!boot_error) { 1039 /* 1040 * Wait 10s total for first sign of life from AP 1041 */ 1042 boot_error = -1; 1043 timeout = jiffies + 10*HZ; 1044 while (time_before(jiffies, timeout)) { 1045 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) { 1046 /* 1047 * Tell AP to proceed with initialization 1048 */ 1049 cpumask_set_cpu(cpu, cpu_callout_mask); 1050 boot_error = 0; 1051 break; 1052 } 1053 schedule(); 1054 } 1055 } 1056 1057 if (!boot_error) { 1058 /* 1059 * Wait till AP completes initial initialization 1060 */ 1061 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) { 1062 /* 1063 * Allow other tasks to run while we wait for the 1064 * AP to come online. This also gives a chance 1065 * for the MTRR work(triggered by the AP coming online) 1066 * to be completed in the stop machine context. 1067 */ 1068 schedule(); 1069 } 1070 } 1071 1072 /* mark "stuck" area as not stuck */ 1073 *trampoline_status = 0; 1074 1075 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) { 1076 /* 1077 * Cleanup possible dangling ends... 1078 */ 1079 smpboot_restore_warm_reset_vector(); 1080 } 1081 /* 1082 * Clean up the nmi handler. Do this after the callin and callout sync 1083 * to avoid impact of possible long unregister time. 1084 */ 1085 if (cpu0_nmi_registered) 1086 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0"); 1087 1088 return boot_error; 1089 } 1090 1091 int native_cpu_up(unsigned int cpu, struct task_struct *tidle) 1092 { 1093 int apicid = apic->cpu_present_to_apicid(cpu); 1094 unsigned long flags; 1095 int err; 1096 1097 WARN_ON(irqs_disabled()); 1098 1099 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu); 1100 1101 if (apicid == BAD_APICID || 1102 !physid_isset(apicid, phys_cpu_present_map) || 1103 !apic->apic_id_valid(apicid)) { 1104 pr_err("%s: bad cpu %d\n", __func__, cpu); 1105 return -EINVAL; 1106 } 1107 1108 /* 1109 * Already booted CPU? 1110 */ 1111 if (cpumask_test_cpu(cpu, cpu_callin_mask)) { 1112 pr_debug("do_boot_cpu %d Already started\n", cpu); 1113 return -ENOSYS; 1114 } 1115 1116 /* 1117 * Save current MTRR state in case it was changed since early boot 1118 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: 1119 */ 1120 mtrr_save_state(); 1121 1122 /* x86 CPUs take themselves offline, so delayed offline is OK. */ 1123 err = cpu_check_up_prepare(cpu); 1124 if (err && err != -EBUSY) 1125 return err; 1126 1127 /* the FPU context is blank, nobody can own it */ 1128 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; 1129 1130 common_cpu_up(cpu, tidle); 1131 1132 err = do_boot_cpu(apicid, cpu, tidle); 1133 if (err) { 1134 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu); 1135 return -EIO; 1136 } 1137 1138 /* 1139 * Check TSC synchronization with the AP (keep irqs disabled 1140 * while doing so): 1141 */ 1142 local_irq_save(flags); 1143 check_tsc_sync_source(cpu); 1144 local_irq_restore(flags); 1145 1146 while (!cpu_online(cpu)) { 1147 cpu_relax(); 1148 touch_nmi_watchdog(); 1149 } 1150 1151 return 0; 1152 } 1153 1154 /** 1155 * arch_disable_smp_support() - disables SMP support for x86 at runtime 1156 */ 1157 void arch_disable_smp_support(void) 1158 { 1159 disable_ioapic_support(); 1160 } 1161 1162 /* 1163 * Fall back to non SMP mode after errors. 1164 * 1165 * RED-PEN audit/test this more. I bet there is more state messed up here. 1166 */ 1167 static __init void disable_smp(void) 1168 { 1169 pr_info("SMP disabled\n"); 1170 1171 disable_ioapic_support(); 1172 1173 init_cpu_present(cpumask_of(0)); 1174 init_cpu_possible(cpumask_of(0)); 1175 1176 if (smp_found_config) 1177 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); 1178 else 1179 physid_set_mask_of_physid(0, &phys_cpu_present_map); 1180 cpumask_set_cpu(0, topology_sibling_cpumask(0)); 1181 cpumask_set_cpu(0, topology_core_cpumask(0)); 1182 } 1183 1184 enum { 1185 SMP_OK, 1186 SMP_NO_CONFIG, 1187 SMP_NO_APIC, 1188 SMP_FORCE_UP, 1189 }; 1190 1191 /* 1192 * Various sanity checks. 1193 */ 1194 static int __init smp_sanity_check(unsigned max_cpus) 1195 { 1196 preempt_disable(); 1197 1198 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32) 1199 if (def_to_bigsmp && nr_cpu_ids > 8) { 1200 unsigned int cpu; 1201 unsigned nr; 1202 1203 pr_warn("More than 8 CPUs detected - skipping them\n" 1204 "Use CONFIG_X86_BIGSMP\n"); 1205 1206 nr = 0; 1207 for_each_present_cpu(cpu) { 1208 if (nr >= 8) 1209 set_cpu_present(cpu, false); 1210 nr++; 1211 } 1212 1213 nr = 0; 1214 for_each_possible_cpu(cpu) { 1215 if (nr >= 8) 1216 set_cpu_possible(cpu, false); 1217 nr++; 1218 } 1219 1220 nr_cpu_ids = 8; 1221 } 1222 #endif 1223 1224 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) { 1225 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n", 1226 hard_smp_processor_id()); 1227 1228 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 1229 } 1230 1231 /* 1232 * If we couldn't find an SMP configuration at boot time, 1233 * get out of here now! 1234 */ 1235 if (!smp_found_config && !acpi_lapic) { 1236 preempt_enable(); 1237 pr_notice("SMP motherboard not detected\n"); 1238 return SMP_NO_CONFIG; 1239 } 1240 1241 /* 1242 * Should not be necessary because the MP table should list the boot 1243 * CPU too, but we do it for the sake of robustness anyway. 1244 */ 1245 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) { 1246 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n", 1247 boot_cpu_physical_apicid); 1248 physid_set(hard_smp_processor_id(), phys_cpu_present_map); 1249 } 1250 preempt_enable(); 1251 1252 /* 1253 * If we couldn't find a local APIC, then get out of here now! 1254 */ 1255 if (APIC_INTEGRATED(boot_cpu_apic_version) && 1256 !boot_cpu_has(X86_FEATURE_APIC)) { 1257 if (!disable_apic) { 1258 pr_err("BIOS bug, local APIC #%d not detected!...\n", 1259 boot_cpu_physical_apicid); 1260 pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n"); 1261 } 1262 return SMP_NO_APIC; 1263 } 1264 1265 /* 1266 * If SMP should be disabled, then really disable it! 1267 */ 1268 if (!max_cpus) { 1269 pr_info("SMP mode deactivated\n"); 1270 return SMP_FORCE_UP; 1271 } 1272 1273 return SMP_OK; 1274 } 1275 1276 static void __init smp_cpu_index_default(void) 1277 { 1278 int i; 1279 struct cpuinfo_x86 *c; 1280 1281 for_each_possible_cpu(i) { 1282 c = &cpu_data(i); 1283 /* mark all to hotplug */ 1284 c->cpu_index = nr_cpu_ids; 1285 } 1286 } 1287 1288 /* 1289 * Prepare for SMP bootup. The MP table or ACPI has been read 1290 * earlier. Just do some sanity checking here and enable APIC mode. 1291 */ 1292 void __init native_smp_prepare_cpus(unsigned int max_cpus) 1293 { 1294 unsigned int i; 1295 1296 smp_cpu_index_default(); 1297 1298 /* 1299 * Setup boot CPU information 1300 */ 1301 smp_store_boot_cpu_info(); /* Final full version of the data */ 1302 cpumask_copy(cpu_callin_mask, cpumask_of(0)); 1303 mb(); 1304 1305 for_each_possible_cpu(i) { 1306 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); 1307 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); 1308 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); 1309 } 1310 1311 /* 1312 * Set 'default' x86 topology, this matches default_topology() in that 1313 * it has NUMA nodes as a topology level. See also 1314 * native_smp_cpus_done(). 1315 * 1316 * Must be done before set_cpus_sibling_map() is ran. 1317 */ 1318 set_sched_topology(x86_topology); 1319 1320 set_cpu_sibling_map(0); 1321 1322 switch (smp_sanity_check(max_cpus)) { 1323 case SMP_NO_CONFIG: 1324 disable_smp(); 1325 if (APIC_init_uniprocessor()) 1326 pr_notice("Local APIC not detected. Using dummy APIC emulation.\n"); 1327 return; 1328 case SMP_NO_APIC: 1329 disable_smp(); 1330 return; 1331 case SMP_FORCE_UP: 1332 disable_smp(); 1333 apic_bsp_setup(false); 1334 return; 1335 case SMP_OK: 1336 break; 1337 } 1338 1339 if (read_apic_id() != boot_cpu_physical_apicid) { 1340 panic("Boot APIC ID in local APIC unexpected (%d vs %d)", 1341 read_apic_id(), boot_cpu_physical_apicid); 1342 /* Or can we switch back to PIC here? */ 1343 } 1344 1345 default_setup_apic_routing(); 1346 cpu0_logical_apicid = apic_bsp_setup(false); 1347 1348 pr_info("CPU0: "); 1349 print_cpu_info(&cpu_data(0)); 1350 1351 uv_system_init(); 1352 1353 set_mtrr_aps_delayed_init(); 1354 1355 smp_quirk_init_udelay(); 1356 } 1357 1358 void arch_enable_nonboot_cpus_begin(void) 1359 { 1360 set_mtrr_aps_delayed_init(); 1361 } 1362 1363 void arch_enable_nonboot_cpus_end(void) 1364 { 1365 mtrr_aps_init(); 1366 } 1367 1368 /* 1369 * Early setup to make printk work. 1370 */ 1371 void __init native_smp_prepare_boot_cpu(void) 1372 { 1373 int me = smp_processor_id(); 1374 switch_to_new_gdt(me); 1375 /* already set me in cpu_online_mask in boot_cpu_init() */ 1376 cpumask_set_cpu(me, cpu_callout_mask); 1377 cpu_set_state_online(me); 1378 } 1379 1380 void __init native_smp_cpus_done(unsigned int max_cpus) 1381 { 1382 pr_debug("Boot done\n"); 1383 1384 if (x86_has_numa_in_package) 1385 set_sched_topology(x86_numa_in_package_topology); 1386 1387 nmi_selftest(); 1388 impress_friends(); 1389 setup_ioapic_dest(); 1390 mtrr_aps_init(); 1391 } 1392 1393 static int __initdata setup_possible_cpus = -1; 1394 static int __init _setup_possible_cpus(char *str) 1395 { 1396 get_option(&str, &setup_possible_cpus); 1397 return 0; 1398 } 1399 early_param("possible_cpus", _setup_possible_cpus); 1400 1401 1402 /* 1403 * cpu_possible_mask should be static, it cannot change as cpu's 1404 * are onlined, or offlined. The reason is per-cpu data-structures 1405 * are allocated by some modules at init time, and dont expect to 1406 * do this dynamically on cpu arrival/departure. 1407 * cpu_present_mask on the other hand can change dynamically. 1408 * In case when cpu_hotplug is not compiled, then we resort to current 1409 * behaviour, which is cpu_possible == cpu_present. 1410 * - Ashok Raj 1411 * 1412 * Three ways to find out the number of additional hotplug CPUs: 1413 * - If the BIOS specified disabled CPUs in ACPI/mptables use that. 1414 * - The user can overwrite it with possible_cpus=NUM 1415 * - Otherwise don't reserve additional CPUs. 1416 * We do this because additional CPUs waste a lot of memory. 1417 * -AK 1418 */ 1419 __init void prefill_possible_map(void) 1420 { 1421 int i, possible; 1422 1423 /* No boot processor was found in mptable or ACPI MADT */ 1424 if (!num_processors) { 1425 if (boot_cpu_has(X86_FEATURE_APIC)) { 1426 int apicid = boot_cpu_physical_apicid; 1427 int cpu = hard_smp_processor_id(); 1428 1429 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu); 1430 1431 /* Make sure boot cpu is enumerated */ 1432 if (apic->cpu_present_to_apicid(0) == BAD_APICID && 1433 apic->apic_id_valid(apicid)) 1434 generic_processor_info(apicid, boot_cpu_apic_version); 1435 } 1436 1437 if (!num_processors) 1438 num_processors = 1; 1439 } 1440 1441 i = setup_max_cpus ?: 1; 1442 if (setup_possible_cpus == -1) { 1443 possible = num_processors; 1444 #ifdef CONFIG_HOTPLUG_CPU 1445 if (setup_max_cpus) 1446 possible += disabled_cpus; 1447 #else 1448 if (possible > i) 1449 possible = i; 1450 #endif 1451 } else 1452 possible = setup_possible_cpus; 1453 1454 total_cpus = max_t(int, possible, num_processors + disabled_cpus); 1455 1456 /* nr_cpu_ids could be reduced via nr_cpus= */ 1457 if (possible > nr_cpu_ids) { 1458 pr_warn("%d Processors exceeds NR_CPUS limit of %d\n", 1459 possible, nr_cpu_ids); 1460 possible = nr_cpu_ids; 1461 } 1462 1463 #ifdef CONFIG_HOTPLUG_CPU 1464 if (!setup_max_cpus) 1465 #endif 1466 if (possible > i) { 1467 pr_warn("%d Processors exceeds max_cpus limit of %u\n", 1468 possible, setup_max_cpus); 1469 possible = i; 1470 } 1471 1472 nr_cpu_ids = possible; 1473 1474 pr_info("Allowing %d CPUs, %d hotplug CPUs\n", 1475 possible, max_t(int, possible - num_processors, 0)); 1476 1477 reset_cpu_possible_mask(); 1478 1479 for (i = 0; i < possible; i++) 1480 set_cpu_possible(i, true); 1481 } 1482 1483 #ifdef CONFIG_HOTPLUG_CPU 1484 1485 /* Recompute SMT state for all CPUs on offline */ 1486 static void recompute_smt_state(void) 1487 { 1488 int max_threads, cpu; 1489 1490 max_threads = 0; 1491 for_each_online_cpu (cpu) { 1492 int threads = cpumask_weight(topology_sibling_cpumask(cpu)); 1493 1494 if (threads > max_threads) 1495 max_threads = threads; 1496 } 1497 __max_smt_threads = max_threads; 1498 } 1499 1500 static void remove_siblinginfo(int cpu) 1501 { 1502 int sibling; 1503 struct cpuinfo_x86 *c = &cpu_data(cpu); 1504 1505 for_each_cpu(sibling, topology_core_cpumask(cpu)) { 1506 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); 1507 /*/ 1508 * last thread sibling in this cpu core going down 1509 */ 1510 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1) 1511 cpu_data(sibling).booted_cores--; 1512 } 1513 1514 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) 1515 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); 1516 for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) 1517 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling)); 1518 cpumask_clear(cpu_llc_shared_mask(cpu)); 1519 cpumask_clear(topology_sibling_cpumask(cpu)); 1520 cpumask_clear(topology_core_cpumask(cpu)); 1521 c->phys_proc_id = 0; 1522 c->cpu_core_id = 0; 1523 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask); 1524 recompute_smt_state(); 1525 } 1526 1527 static void remove_cpu_from_maps(int cpu) 1528 { 1529 set_cpu_online(cpu, false); 1530 cpumask_clear_cpu(cpu, cpu_callout_mask); 1531 cpumask_clear_cpu(cpu, cpu_callin_mask); 1532 /* was set by cpu_init() */ 1533 cpumask_clear_cpu(cpu, cpu_initialized_mask); 1534 numa_remove_cpu(cpu); 1535 } 1536 1537 void cpu_disable_common(void) 1538 { 1539 int cpu = smp_processor_id(); 1540 1541 remove_siblinginfo(cpu); 1542 1543 /* It's now safe to remove this processor from the online map */ 1544 lock_vector_lock(); 1545 remove_cpu_from_maps(cpu); 1546 unlock_vector_lock(); 1547 fixup_irqs(); 1548 } 1549 1550 int native_cpu_disable(void) 1551 { 1552 int ret; 1553 1554 ret = check_irq_vectors_for_cpu_disable(); 1555 if (ret) 1556 return ret; 1557 1558 clear_local_APIC(); 1559 cpu_disable_common(); 1560 1561 return 0; 1562 } 1563 1564 int common_cpu_die(unsigned int cpu) 1565 { 1566 int ret = 0; 1567 1568 /* We don't do anything here: idle task is faking death itself. */ 1569 1570 /* They ack this in play_dead() by setting CPU_DEAD */ 1571 if (cpu_wait_death(cpu, 5)) { 1572 if (system_state == SYSTEM_RUNNING) 1573 pr_info("CPU %u is now offline\n", cpu); 1574 } else { 1575 pr_err("CPU %u didn't die...\n", cpu); 1576 ret = -1; 1577 } 1578 1579 return ret; 1580 } 1581 1582 void native_cpu_die(unsigned int cpu) 1583 { 1584 common_cpu_die(cpu); 1585 } 1586 1587 void play_dead_common(void) 1588 { 1589 idle_task_exit(); 1590 reset_lazy_tlbstate(); 1591 1592 /* Ack it */ 1593 (void)cpu_report_death(); 1594 1595 /* 1596 * With physical CPU hotplug, we should halt the cpu 1597 */ 1598 local_irq_disable(); 1599 } 1600 1601 static bool wakeup_cpu0(void) 1602 { 1603 if (smp_processor_id() == 0 && enable_start_cpu0) 1604 return true; 1605 1606 return false; 1607 } 1608 1609 /* 1610 * We need to flush the caches before going to sleep, lest we have 1611 * dirty data in our caches when we come back up. 1612 */ 1613 static inline void mwait_play_dead(void) 1614 { 1615 unsigned int eax, ebx, ecx, edx; 1616 unsigned int highest_cstate = 0; 1617 unsigned int highest_subcstate = 0; 1618 void *mwait_ptr; 1619 int i; 1620 1621 if (!this_cpu_has(X86_FEATURE_MWAIT)) 1622 return; 1623 if (!this_cpu_has(X86_FEATURE_CLFLUSH)) 1624 return; 1625 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF) 1626 return; 1627 1628 eax = CPUID_MWAIT_LEAF; 1629 ecx = 0; 1630 native_cpuid(&eax, &ebx, &ecx, &edx); 1631 1632 /* 1633 * eax will be 0 if EDX enumeration is not valid. 1634 * Initialized below to cstate, sub_cstate value when EDX is valid. 1635 */ 1636 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) { 1637 eax = 0; 1638 } else { 1639 edx >>= MWAIT_SUBSTATE_SIZE; 1640 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { 1641 if (edx & MWAIT_SUBSTATE_MASK) { 1642 highest_cstate = i; 1643 highest_subcstate = edx & MWAIT_SUBSTATE_MASK; 1644 } 1645 } 1646 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) | 1647 (highest_subcstate - 1); 1648 } 1649 1650 /* 1651 * This should be a memory location in a cache line which is 1652 * unlikely to be touched by other processors. The actual 1653 * content is immaterial as it is not actually modified in any way. 1654 */ 1655 mwait_ptr = ¤t_thread_info()->flags; 1656 1657 wbinvd(); 1658 1659 while (1) { 1660 /* 1661 * The CLFLUSH is a workaround for erratum AAI65 for 1662 * the Xeon 7400 series. It's not clear it is actually 1663 * needed, but it should be harmless in either case. 1664 * The WBINVD is insufficient due to the spurious-wakeup 1665 * case where we return around the loop. 1666 */ 1667 mb(); 1668 clflush(mwait_ptr); 1669 mb(); 1670 __monitor(mwait_ptr, 0, 0); 1671 mb(); 1672 __mwait(eax, 0); 1673 /* 1674 * If NMI wants to wake up CPU0, start CPU0. 1675 */ 1676 if (wakeup_cpu0()) 1677 start_cpu0(); 1678 } 1679 } 1680 1681 void hlt_play_dead(void) 1682 { 1683 if (__this_cpu_read(cpu_info.x86) >= 4) 1684 wbinvd(); 1685 1686 while (1) { 1687 native_halt(); 1688 /* 1689 * If NMI wants to wake up CPU0, start CPU0. 1690 */ 1691 if (wakeup_cpu0()) 1692 start_cpu0(); 1693 } 1694 } 1695 1696 void native_play_dead(void) 1697 { 1698 play_dead_common(); 1699 tboot_shutdown(TB_SHUTDOWN_WFS); 1700 1701 mwait_play_dead(); /* Only returns on failure */ 1702 if (cpuidle_play_dead()) 1703 hlt_play_dead(); 1704 } 1705 1706 #else /* ... !CONFIG_HOTPLUG_CPU */ 1707 int native_cpu_disable(void) 1708 { 1709 return -ENOSYS; 1710 } 1711 1712 void native_cpu_die(unsigned int cpu) 1713 { 1714 /* We said "no" in __cpu_disable */ 1715 BUG(); 1716 } 1717 1718 void native_play_dead(void) 1719 { 1720 BUG(); 1721 } 1722 1723 #endif 1724