xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision 099ab4fc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59 #include <linux/syscore_ops.h>
60 
61 #include <asm/acpi.h>
62 #include <asm/desc.h>
63 #include <asm/nmi.h>
64 #include <asm/irq.h>
65 #include <asm/realmode.h>
66 #include <asm/cpu.h>
67 #include <asm/numa.h>
68 #include <asm/tlbflush.h>
69 #include <asm/mtrr.h>
70 #include <asm/mwait.h>
71 #include <asm/apic.h>
72 #include <asm/io_apic.h>
73 #include <asm/fpu/internal.h>
74 #include <asm/setup.h>
75 #include <asm/uv/uv.h>
76 #include <linux/mc146818rtc.h>
77 #include <asm/i8259.h>
78 #include <asm/misc.h>
79 #include <asm/qspinlock.h>
80 #include <asm/intel-family.h>
81 #include <asm/cpu_device_id.h>
82 #include <asm/spec-ctrl.h>
83 #include <asm/hw_irq.h>
84 #include <asm/stackprotector.h>
85 
86 #ifdef CONFIG_ACPI_CPPC_LIB
87 #include <acpi/cppc_acpi.h>
88 #endif
89 
90 /* representing HT siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
93 
94 /* representing HT and core siblings of each logical CPU */
95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
96 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
97 
98 /* representing HT, core, and die siblings of each logical CPU */
99 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
100 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
101 
102 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
103 
104 /* Per CPU bogomips and other parameters */
105 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
106 EXPORT_PER_CPU_SYMBOL(cpu_info);
107 
108 /* Logical package management. We might want to allocate that dynamically */
109 unsigned int __max_logical_packages __read_mostly;
110 EXPORT_SYMBOL(__max_logical_packages);
111 static unsigned int logical_packages __read_mostly;
112 static unsigned int logical_die __read_mostly;
113 
114 /* Maximum number of SMT threads on any online core */
115 int __read_mostly __max_smt_threads = 1;
116 
117 /* Flag to indicate if a complete sched domain rebuild is required */
118 bool x86_topology_update;
119 
120 int arch_update_cpu_topology(void)
121 {
122 	int retval = x86_topology_update;
123 
124 	x86_topology_update = false;
125 	return retval;
126 }
127 
128 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
129 {
130 	unsigned long flags;
131 
132 	spin_lock_irqsave(&rtc_lock, flags);
133 	CMOS_WRITE(0xa, 0xf);
134 	spin_unlock_irqrestore(&rtc_lock, flags);
135 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
136 							start_eip >> 4;
137 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
138 							start_eip & 0xf;
139 }
140 
141 static inline void smpboot_restore_warm_reset_vector(void)
142 {
143 	unsigned long flags;
144 
145 	/*
146 	 * Paranoid:  Set warm reset code and vector here back
147 	 * to default values.
148 	 */
149 	spin_lock_irqsave(&rtc_lock, flags);
150 	CMOS_WRITE(0, 0xf);
151 	spin_unlock_irqrestore(&rtc_lock, flags);
152 
153 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
154 }
155 
156 static void init_freq_invariance(bool secondary, bool cppc_ready);
157 
158 /*
159  * Report back to the Boot Processor during boot time or to the caller processor
160  * during CPU online.
161  */
162 static void smp_callin(void)
163 {
164 	int cpuid;
165 
166 	/*
167 	 * If waken up by an INIT in an 82489DX configuration
168 	 * cpu_callout_mask guarantees we don't get here before
169 	 * an INIT_deassert IPI reaches our local APIC, so it is
170 	 * now safe to touch our local APIC.
171 	 */
172 	cpuid = smp_processor_id();
173 
174 	/*
175 	 * the boot CPU has finished the init stage and is spinning
176 	 * on callin_map until we finish. We are free to set up this
177 	 * CPU, first the APIC. (this is probably redundant on most
178 	 * boards)
179 	 */
180 	apic_ap_setup();
181 
182 	/*
183 	 * Save our processor parameters. Note: this information
184 	 * is needed for clock calibration.
185 	 */
186 	smp_store_cpu_info(cpuid);
187 
188 	/*
189 	 * The topology information must be up to date before
190 	 * calibrate_delay() and notify_cpu_starting().
191 	 */
192 	set_cpu_sibling_map(raw_smp_processor_id());
193 
194 	init_freq_invariance(true, false);
195 
196 	/*
197 	 * Get our bogomips.
198 	 * Update loops_per_jiffy in cpu_data. Previous call to
199 	 * smp_store_cpu_info() stored a value that is close but not as
200 	 * accurate as the value just calculated.
201 	 */
202 	calibrate_delay();
203 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
204 	pr_debug("Stack at about %p\n", &cpuid);
205 
206 	wmb();
207 
208 	notify_cpu_starting(cpuid);
209 
210 	/*
211 	 * Allow the master to continue.
212 	 */
213 	cpumask_set_cpu(cpuid, cpu_callin_mask);
214 }
215 
216 static int cpu0_logical_apicid;
217 static int enable_start_cpu0;
218 /*
219  * Activate a secondary processor.
220  */
221 static void notrace start_secondary(void *unused)
222 {
223 	/*
224 	 * Don't put *anything* except direct CPU state initialization
225 	 * before cpu_init(), SMP booting is too fragile that we want to
226 	 * limit the things done here to the most necessary things.
227 	 */
228 	cr4_init();
229 
230 #ifdef CONFIG_X86_32
231 	/* switch away from the initial page table */
232 	load_cr3(swapper_pg_dir);
233 	__flush_tlb_all();
234 #endif
235 	cpu_init_exception_handling();
236 	cpu_init();
237 	rcu_cpu_starting(raw_smp_processor_id());
238 	x86_cpuinit.early_percpu_clock_init();
239 	preempt_disable();
240 	smp_callin();
241 
242 	enable_start_cpu0 = 0;
243 
244 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
245 	barrier();
246 	/*
247 	 * Check TSC synchronization with the boot CPU:
248 	 */
249 	check_tsc_sync_target();
250 
251 	speculative_store_bypass_ht_init();
252 
253 	/*
254 	 * Lock vector_lock, set CPU online and bring the vector
255 	 * allocator online. Online must be set with vector_lock held
256 	 * to prevent a concurrent irq setup/teardown from seeing a
257 	 * half valid vector space.
258 	 */
259 	lock_vector_lock();
260 	set_cpu_online(smp_processor_id(), true);
261 	lapic_online();
262 	unlock_vector_lock();
263 	cpu_set_state_online(smp_processor_id());
264 	x86_platform.nmi_init();
265 
266 	/* enable local interrupts */
267 	local_irq_enable();
268 
269 	x86_cpuinit.setup_percpu_clockev();
270 
271 	wmb();
272 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
273 }
274 
275 /**
276  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
277  * @cpu:	CPU to check
278  */
279 bool topology_is_primary_thread(unsigned int cpu)
280 {
281 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
282 }
283 
284 /**
285  * topology_smt_supported - Check whether SMT is supported by the CPUs
286  */
287 bool topology_smt_supported(void)
288 {
289 	return smp_num_siblings > 1;
290 }
291 
292 /**
293  * topology_phys_to_logical_pkg - Map a physical package id to a logical
294  *
295  * Returns logical package id or -1 if not found
296  */
297 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
298 {
299 	int cpu;
300 
301 	for_each_possible_cpu(cpu) {
302 		struct cpuinfo_x86 *c = &cpu_data(cpu);
303 
304 		if (c->initialized && c->phys_proc_id == phys_pkg)
305 			return c->logical_proc_id;
306 	}
307 	return -1;
308 }
309 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
310 /**
311  * topology_phys_to_logical_die - Map a physical die id to logical
312  *
313  * Returns logical die id or -1 if not found
314  */
315 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
316 {
317 	int cpu;
318 	int proc_id = cpu_data(cur_cpu).phys_proc_id;
319 
320 	for_each_possible_cpu(cpu) {
321 		struct cpuinfo_x86 *c = &cpu_data(cpu);
322 
323 		if (c->initialized && c->cpu_die_id == die_id &&
324 		    c->phys_proc_id == proc_id)
325 			return c->logical_die_id;
326 	}
327 	return -1;
328 }
329 EXPORT_SYMBOL(topology_phys_to_logical_die);
330 
331 /**
332  * topology_update_package_map - Update the physical to logical package map
333  * @pkg:	The physical package id as retrieved via CPUID
334  * @cpu:	The cpu for which this is updated
335  */
336 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
337 {
338 	int new;
339 
340 	/* Already available somewhere? */
341 	new = topology_phys_to_logical_pkg(pkg);
342 	if (new >= 0)
343 		goto found;
344 
345 	new = logical_packages++;
346 	if (new != pkg) {
347 		pr_info("CPU %u Converting physical %u to logical package %u\n",
348 			cpu, pkg, new);
349 	}
350 found:
351 	cpu_data(cpu).logical_proc_id = new;
352 	return 0;
353 }
354 /**
355  * topology_update_die_map - Update the physical to logical die map
356  * @die:	The die id as retrieved via CPUID
357  * @cpu:	The cpu for which this is updated
358  */
359 int topology_update_die_map(unsigned int die, unsigned int cpu)
360 {
361 	int new;
362 
363 	/* Already available somewhere? */
364 	new = topology_phys_to_logical_die(die, cpu);
365 	if (new >= 0)
366 		goto found;
367 
368 	new = logical_die++;
369 	if (new != die) {
370 		pr_info("CPU %u Converting physical %u to logical die %u\n",
371 			cpu, die, new);
372 	}
373 found:
374 	cpu_data(cpu).logical_die_id = new;
375 	return 0;
376 }
377 
378 void __init smp_store_boot_cpu_info(void)
379 {
380 	int id = 0; /* CPU 0 */
381 	struct cpuinfo_x86 *c = &cpu_data(id);
382 
383 	*c = boot_cpu_data;
384 	c->cpu_index = id;
385 	topology_update_package_map(c->phys_proc_id, id);
386 	topology_update_die_map(c->cpu_die_id, id);
387 	c->initialized = true;
388 }
389 
390 /*
391  * The bootstrap kernel entry code has set these up. Save them for
392  * a given CPU
393  */
394 void smp_store_cpu_info(int id)
395 {
396 	struct cpuinfo_x86 *c = &cpu_data(id);
397 
398 	/* Copy boot_cpu_data only on the first bringup */
399 	if (!c->initialized)
400 		*c = boot_cpu_data;
401 	c->cpu_index = id;
402 	/*
403 	 * During boot time, CPU0 has this setup already. Save the info when
404 	 * bringing up AP or offlined CPU0.
405 	 */
406 	identify_secondary_cpu(c);
407 	c->initialized = true;
408 }
409 
410 static bool
411 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
412 {
413 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
414 
415 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
416 }
417 
418 static bool
419 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
420 {
421 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
422 
423 	return !WARN_ONCE(!topology_same_node(c, o),
424 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
425 		"[node: %d != %d]. Ignoring dependency.\n",
426 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
427 }
428 
429 #define link_mask(mfunc, c1, c2)					\
430 do {									\
431 	cpumask_set_cpu((c1), mfunc(c2));				\
432 	cpumask_set_cpu((c2), mfunc(c1));				\
433 } while (0)
434 
435 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
436 {
437 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
438 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
439 
440 		if (c->phys_proc_id == o->phys_proc_id &&
441 		    c->cpu_die_id == o->cpu_die_id &&
442 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
443 			if (c->cpu_core_id == o->cpu_core_id)
444 				return topology_sane(c, o, "smt");
445 
446 			if ((c->cu_id != 0xff) &&
447 			    (o->cu_id != 0xff) &&
448 			    (c->cu_id == o->cu_id))
449 				return topology_sane(c, o, "smt");
450 		}
451 
452 	} else if (c->phys_proc_id == o->phys_proc_id &&
453 		   c->cpu_die_id == o->cpu_die_id &&
454 		   c->cpu_core_id == o->cpu_core_id) {
455 		return topology_sane(c, o, "smt");
456 	}
457 
458 	return false;
459 }
460 
461 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
462 {
463 	if (c->phys_proc_id == o->phys_proc_id &&
464 	    c->cpu_die_id == o->cpu_die_id)
465 		return true;
466 	return false;
467 }
468 
469 /*
470  * Unlike the other levels, we do not enforce keeping a
471  * multicore group inside a NUMA node.  If this happens, we will
472  * discard the MC level of the topology later.
473  */
474 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
475 {
476 	if (c->phys_proc_id == o->phys_proc_id)
477 		return true;
478 	return false;
479 }
480 
481 /*
482  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
483  *
484  * Any Intel CPU that has multiple nodes per package and does not
485  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
486  *
487  * When in SNC mode, these CPUs enumerate an LLC that is shared
488  * by multiple NUMA nodes. The LLC is shared for off-package data
489  * access but private to the NUMA node (half of the package) for
490  * on-package access. CPUID (the source of the information about
491  * the LLC) can only enumerate the cache as shared or unshared,
492  * but not this particular configuration.
493  */
494 
495 static const struct x86_cpu_id intel_cod_cpu[] = {
496 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
497 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
498 	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
499 	{}
500 };
501 
502 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
503 {
504 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
505 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
506 	bool intel_snc = id && id->driver_data;
507 
508 	/* Do not match if we do not have a valid APICID for cpu: */
509 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
510 		return false;
511 
512 	/* Do not match if LLC id does not match: */
513 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
514 		return false;
515 
516 	/*
517 	 * Allow the SNC topology without warning. Return of false
518 	 * means 'c' does not share the LLC of 'o'. This will be
519 	 * reflected to userspace.
520 	 */
521 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
522 		return false;
523 
524 	return topology_sane(c, o, "llc");
525 }
526 
527 
528 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
529 static inline int x86_sched_itmt_flags(void)
530 {
531 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
532 }
533 
534 #ifdef CONFIG_SCHED_MC
535 static int x86_core_flags(void)
536 {
537 	return cpu_core_flags() | x86_sched_itmt_flags();
538 }
539 #endif
540 #ifdef CONFIG_SCHED_SMT
541 static int x86_smt_flags(void)
542 {
543 	return cpu_smt_flags() | x86_sched_itmt_flags();
544 }
545 #endif
546 #endif
547 
548 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
549 #ifdef CONFIG_SCHED_SMT
550 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
551 #endif
552 #ifdef CONFIG_SCHED_MC
553 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
554 #endif
555 	{ NULL, },
556 };
557 
558 static struct sched_domain_topology_level x86_topology[] = {
559 #ifdef CONFIG_SCHED_SMT
560 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
561 #endif
562 #ifdef CONFIG_SCHED_MC
563 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
564 #endif
565 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
566 	{ NULL, },
567 };
568 
569 /*
570  * Set if a package/die has multiple NUMA nodes inside.
571  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
572  * Sub-NUMA Clustering have this.
573  */
574 static bool x86_has_numa_in_package;
575 
576 void set_cpu_sibling_map(int cpu)
577 {
578 	bool has_smt = smp_num_siblings > 1;
579 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
580 	struct cpuinfo_x86 *c = &cpu_data(cpu);
581 	struct cpuinfo_x86 *o;
582 	int i, threads;
583 
584 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
585 
586 	if (!has_mp) {
587 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
588 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
589 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
590 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
591 		c->booted_cores = 1;
592 		return;
593 	}
594 
595 	for_each_cpu(i, cpu_sibling_setup_mask) {
596 		o = &cpu_data(i);
597 
598 		if (match_pkg(c, o) && !topology_same_node(c, o))
599 			x86_has_numa_in_package = true;
600 
601 		if ((i == cpu) || (has_smt && match_smt(c, o)))
602 			link_mask(topology_sibling_cpumask, cpu, i);
603 
604 		if ((i == cpu) || (has_mp && match_llc(c, o)))
605 			link_mask(cpu_llc_shared_mask, cpu, i);
606 
607 		if ((i == cpu) || (has_mp && match_die(c, o)))
608 			link_mask(topology_die_cpumask, cpu, i);
609 	}
610 
611 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
612 	if (threads > __max_smt_threads)
613 		__max_smt_threads = threads;
614 
615 	/*
616 	 * This needs a separate iteration over the cpus because we rely on all
617 	 * topology_sibling_cpumask links to be set-up.
618 	 */
619 	for_each_cpu(i, cpu_sibling_setup_mask) {
620 		o = &cpu_data(i);
621 
622 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
623 			link_mask(topology_core_cpumask, cpu, i);
624 
625 			/*
626 			 *  Does this new cpu bringup a new core?
627 			 */
628 			if (threads == 1) {
629 				/*
630 				 * for each core in package, increment
631 				 * the booted_cores for this new cpu
632 				 */
633 				if (cpumask_first(
634 				    topology_sibling_cpumask(i)) == i)
635 					c->booted_cores++;
636 				/*
637 				 * increment the core count for all
638 				 * the other cpus in this package
639 				 */
640 				if (i != cpu)
641 					cpu_data(i).booted_cores++;
642 			} else if (i != cpu && !c->booted_cores)
643 				c->booted_cores = cpu_data(i).booted_cores;
644 		}
645 	}
646 }
647 
648 /* maps the cpu to the sched domain representing multi-core */
649 const struct cpumask *cpu_coregroup_mask(int cpu)
650 {
651 	return cpu_llc_shared_mask(cpu);
652 }
653 
654 static void impress_friends(void)
655 {
656 	int cpu;
657 	unsigned long bogosum = 0;
658 	/*
659 	 * Allow the user to impress friends.
660 	 */
661 	pr_debug("Before bogomips\n");
662 	for_each_possible_cpu(cpu)
663 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
664 			bogosum += cpu_data(cpu).loops_per_jiffy;
665 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
666 		num_online_cpus(),
667 		bogosum/(500000/HZ),
668 		(bogosum/(5000/HZ))%100);
669 
670 	pr_debug("Before bogocount - setting activated=1\n");
671 }
672 
673 void __inquire_remote_apic(int apicid)
674 {
675 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
676 	const char * const names[] = { "ID", "VERSION", "SPIV" };
677 	int timeout;
678 	u32 status;
679 
680 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
681 
682 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
683 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
684 
685 		/*
686 		 * Wait for idle.
687 		 */
688 		status = safe_apic_wait_icr_idle();
689 		if (status)
690 			pr_cont("a previous APIC delivery may have failed\n");
691 
692 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
693 
694 		timeout = 0;
695 		do {
696 			udelay(100);
697 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
698 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
699 
700 		switch (status) {
701 		case APIC_ICR_RR_VALID:
702 			status = apic_read(APIC_RRR);
703 			pr_cont("%08x\n", status);
704 			break;
705 		default:
706 			pr_cont("failed\n");
707 		}
708 	}
709 }
710 
711 /*
712  * The Multiprocessor Specification 1.4 (1997) example code suggests
713  * that there should be a 10ms delay between the BSP asserting INIT
714  * and de-asserting INIT, when starting a remote processor.
715  * But that slows boot and resume on modern processors, which include
716  * many cores and don't require that delay.
717  *
718  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
719  * Modern processor families are quirked to remove the delay entirely.
720  */
721 #define UDELAY_10MS_DEFAULT 10000
722 
723 static unsigned int init_udelay = UINT_MAX;
724 
725 static int __init cpu_init_udelay(char *str)
726 {
727 	get_option(&str, &init_udelay);
728 
729 	return 0;
730 }
731 early_param("cpu_init_udelay", cpu_init_udelay);
732 
733 static void __init smp_quirk_init_udelay(void)
734 {
735 	/* if cmdline changed it from default, leave it alone */
736 	if (init_udelay != UINT_MAX)
737 		return;
738 
739 	/* if modern processor, use no delay */
740 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
741 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
742 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
743 		init_udelay = 0;
744 		return;
745 	}
746 	/* else, use legacy delay */
747 	init_udelay = UDELAY_10MS_DEFAULT;
748 }
749 
750 /*
751  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
752  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
753  * won't ... remember to clear down the APIC, etc later.
754  */
755 int
756 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
757 {
758 	u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
759 	unsigned long send_status, accept_status = 0;
760 	int maxlvt;
761 
762 	/* Target chip */
763 	/* Boot on the stack */
764 	/* Kick the second */
765 	apic_icr_write(APIC_DM_NMI | dm, apicid);
766 
767 	pr_debug("Waiting for send to finish...\n");
768 	send_status = safe_apic_wait_icr_idle();
769 
770 	/*
771 	 * Give the other CPU some time to accept the IPI.
772 	 */
773 	udelay(200);
774 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
775 		maxlvt = lapic_get_maxlvt();
776 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
777 			apic_write(APIC_ESR, 0);
778 		accept_status = (apic_read(APIC_ESR) & 0xEF);
779 	}
780 	pr_debug("NMI sent\n");
781 
782 	if (send_status)
783 		pr_err("APIC never delivered???\n");
784 	if (accept_status)
785 		pr_err("APIC delivery error (%lx)\n", accept_status);
786 
787 	return (send_status | accept_status);
788 }
789 
790 static int
791 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
792 {
793 	unsigned long send_status = 0, accept_status = 0;
794 	int maxlvt, num_starts, j;
795 
796 	maxlvt = lapic_get_maxlvt();
797 
798 	/*
799 	 * Be paranoid about clearing APIC errors.
800 	 */
801 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
802 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
803 			apic_write(APIC_ESR, 0);
804 		apic_read(APIC_ESR);
805 	}
806 
807 	pr_debug("Asserting INIT\n");
808 
809 	/*
810 	 * Turn INIT on target chip
811 	 */
812 	/*
813 	 * Send IPI
814 	 */
815 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
816 		       phys_apicid);
817 
818 	pr_debug("Waiting for send to finish...\n");
819 	send_status = safe_apic_wait_icr_idle();
820 
821 	udelay(init_udelay);
822 
823 	pr_debug("Deasserting INIT\n");
824 
825 	/* Target chip */
826 	/* Send IPI */
827 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
828 
829 	pr_debug("Waiting for send to finish...\n");
830 	send_status = safe_apic_wait_icr_idle();
831 
832 	mb();
833 
834 	/*
835 	 * Should we send STARTUP IPIs ?
836 	 *
837 	 * Determine this based on the APIC version.
838 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
839 	 */
840 	if (APIC_INTEGRATED(boot_cpu_apic_version))
841 		num_starts = 2;
842 	else
843 		num_starts = 0;
844 
845 	/*
846 	 * Run STARTUP IPI loop.
847 	 */
848 	pr_debug("#startup loops: %d\n", num_starts);
849 
850 	for (j = 1; j <= num_starts; j++) {
851 		pr_debug("Sending STARTUP #%d\n", j);
852 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
853 			apic_write(APIC_ESR, 0);
854 		apic_read(APIC_ESR);
855 		pr_debug("After apic_write\n");
856 
857 		/*
858 		 * STARTUP IPI
859 		 */
860 
861 		/* Target chip */
862 		/* Boot on the stack */
863 		/* Kick the second */
864 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
865 			       phys_apicid);
866 
867 		/*
868 		 * Give the other CPU some time to accept the IPI.
869 		 */
870 		if (init_udelay == 0)
871 			udelay(10);
872 		else
873 			udelay(300);
874 
875 		pr_debug("Startup point 1\n");
876 
877 		pr_debug("Waiting for send to finish...\n");
878 		send_status = safe_apic_wait_icr_idle();
879 
880 		/*
881 		 * Give the other CPU some time to accept the IPI.
882 		 */
883 		if (init_udelay == 0)
884 			udelay(10);
885 		else
886 			udelay(200);
887 
888 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
889 			apic_write(APIC_ESR, 0);
890 		accept_status = (apic_read(APIC_ESR) & 0xEF);
891 		if (send_status || accept_status)
892 			break;
893 	}
894 	pr_debug("After Startup\n");
895 
896 	if (send_status)
897 		pr_err("APIC never delivered???\n");
898 	if (accept_status)
899 		pr_err("APIC delivery error (%lx)\n", accept_status);
900 
901 	return (send_status | accept_status);
902 }
903 
904 /* reduce the number of lines printed when booting a large cpu count system */
905 static void announce_cpu(int cpu, int apicid)
906 {
907 	static int current_node = NUMA_NO_NODE;
908 	int node = early_cpu_to_node(cpu);
909 	static int width, node_width;
910 
911 	if (!width)
912 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
913 
914 	if (!node_width)
915 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
916 
917 	if (cpu == 1)
918 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
919 
920 	if (system_state < SYSTEM_RUNNING) {
921 		if (node != current_node) {
922 			if (current_node > (-1))
923 				pr_cont("\n");
924 			current_node = node;
925 
926 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
927 			       node_width - num_digits(node), " ", node);
928 		}
929 
930 		/* Add padding for the BSP */
931 		if (cpu == 1)
932 			pr_cont("%*s", width + 1, " ");
933 
934 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
935 
936 	} else
937 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
938 			node, cpu, apicid);
939 }
940 
941 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
942 {
943 	int cpu;
944 
945 	cpu = smp_processor_id();
946 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
947 		return NMI_HANDLED;
948 
949 	return NMI_DONE;
950 }
951 
952 /*
953  * Wake up AP by INIT, INIT, STARTUP sequence.
954  *
955  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
956  * boot-strap code which is not a desired behavior for waking up BSP. To
957  * void the boot-strap code, wake up CPU0 by NMI instead.
958  *
959  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
960  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
961  * We'll change this code in the future to wake up hard offlined CPU0 if
962  * real platform and request are available.
963  */
964 static int
965 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
966 	       int *cpu0_nmi_registered)
967 {
968 	int id;
969 	int boot_error;
970 
971 	preempt_disable();
972 
973 	/*
974 	 * Wake up AP by INIT, INIT, STARTUP sequence.
975 	 */
976 	if (cpu) {
977 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
978 		goto out;
979 	}
980 
981 	/*
982 	 * Wake up BSP by nmi.
983 	 *
984 	 * Register a NMI handler to help wake up CPU0.
985 	 */
986 	boot_error = register_nmi_handler(NMI_LOCAL,
987 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
988 
989 	if (!boot_error) {
990 		enable_start_cpu0 = 1;
991 		*cpu0_nmi_registered = 1;
992 		id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
993 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
994 	}
995 
996 out:
997 	preempt_enable();
998 
999 	return boot_error;
1000 }
1001 
1002 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1003 {
1004 	int ret;
1005 
1006 	/* Just in case we booted with a single CPU. */
1007 	alternatives_enable_smp();
1008 
1009 	per_cpu(current_task, cpu) = idle;
1010 	cpu_init_stack_canary(cpu, idle);
1011 
1012 	/* Initialize the interrupt stack(s) */
1013 	ret = irq_init_percpu_irqstack(cpu);
1014 	if (ret)
1015 		return ret;
1016 
1017 #ifdef CONFIG_X86_32
1018 	/* Stack for startup_32 can be just as for start_secondary onwards */
1019 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1020 #else
1021 	initial_gs = per_cpu_offset(cpu);
1022 #endif
1023 	return 0;
1024 }
1025 
1026 /*
1027  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1028  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1029  * Returns zero if CPU booted OK, else error code from
1030  * ->wakeup_secondary_cpu.
1031  */
1032 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1033 		       int *cpu0_nmi_registered)
1034 {
1035 	/* start_ip had better be page-aligned! */
1036 	unsigned long start_ip = real_mode_header->trampoline_start;
1037 
1038 	unsigned long boot_error = 0;
1039 	unsigned long timeout;
1040 
1041 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1042 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1043 	initial_code = (unsigned long)start_secondary;
1044 	initial_stack  = idle->thread.sp;
1045 
1046 	/* Enable the espfix hack for this CPU */
1047 	init_espfix_ap(cpu);
1048 
1049 	/* So we see what's up */
1050 	announce_cpu(cpu, apicid);
1051 
1052 	/*
1053 	 * This grunge runs the startup process for
1054 	 * the targeted processor.
1055 	 */
1056 
1057 	if (x86_platform.legacy.warm_reset) {
1058 
1059 		pr_debug("Setting warm reset code and vector.\n");
1060 
1061 		smpboot_setup_warm_reset_vector(start_ip);
1062 		/*
1063 		 * Be paranoid about clearing APIC errors.
1064 		*/
1065 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1066 			apic_write(APIC_ESR, 0);
1067 			apic_read(APIC_ESR);
1068 		}
1069 	}
1070 
1071 	/*
1072 	 * AP might wait on cpu_callout_mask in cpu_init() with
1073 	 * cpu_initialized_mask set if previous attempt to online
1074 	 * it timed-out. Clear cpu_initialized_mask so that after
1075 	 * INIT/SIPI it could start with a clean state.
1076 	 */
1077 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1078 	smp_mb();
1079 
1080 	/*
1081 	 * Wake up a CPU in difference cases:
1082 	 * - Use the method in the APIC driver if it's defined
1083 	 * Otherwise,
1084 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1085 	 */
1086 	if (apic->wakeup_secondary_cpu)
1087 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1088 	else
1089 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1090 						     cpu0_nmi_registered);
1091 
1092 	if (!boot_error) {
1093 		/*
1094 		 * Wait 10s total for first sign of life from AP
1095 		 */
1096 		boot_error = -1;
1097 		timeout = jiffies + 10*HZ;
1098 		while (time_before(jiffies, timeout)) {
1099 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1100 				/*
1101 				 * Tell AP to proceed with initialization
1102 				 */
1103 				cpumask_set_cpu(cpu, cpu_callout_mask);
1104 				boot_error = 0;
1105 				break;
1106 			}
1107 			schedule();
1108 		}
1109 	}
1110 
1111 	if (!boot_error) {
1112 		/*
1113 		 * Wait till AP completes initial initialization
1114 		 */
1115 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1116 			/*
1117 			 * Allow other tasks to run while we wait for the
1118 			 * AP to come online. This also gives a chance
1119 			 * for the MTRR work(triggered by the AP coming online)
1120 			 * to be completed in the stop machine context.
1121 			 */
1122 			schedule();
1123 		}
1124 	}
1125 
1126 	if (x86_platform.legacy.warm_reset) {
1127 		/*
1128 		 * Cleanup possible dangling ends...
1129 		 */
1130 		smpboot_restore_warm_reset_vector();
1131 	}
1132 
1133 	return boot_error;
1134 }
1135 
1136 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1137 {
1138 	int apicid = apic->cpu_present_to_apicid(cpu);
1139 	int cpu0_nmi_registered = 0;
1140 	unsigned long flags;
1141 	int err, ret = 0;
1142 
1143 	lockdep_assert_irqs_enabled();
1144 
1145 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1146 
1147 	if (apicid == BAD_APICID ||
1148 	    !physid_isset(apicid, phys_cpu_present_map) ||
1149 	    !apic->apic_id_valid(apicid)) {
1150 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1151 		return -EINVAL;
1152 	}
1153 
1154 	/*
1155 	 * Already booted CPU?
1156 	 */
1157 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1158 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1159 		return -ENOSYS;
1160 	}
1161 
1162 	/*
1163 	 * Save current MTRR state in case it was changed since early boot
1164 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1165 	 */
1166 	mtrr_save_state();
1167 
1168 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1169 	err = cpu_check_up_prepare(cpu);
1170 	if (err && err != -EBUSY)
1171 		return err;
1172 
1173 	/* the FPU context is blank, nobody can own it */
1174 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1175 
1176 	err = common_cpu_up(cpu, tidle);
1177 	if (err)
1178 		return err;
1179 
1180 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1181 	if (err) {
1182 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1183 		ret = -EIO;
1184 		goto unreg_nmi;
1185 	}
1186 
1187 	/*
1188 	 * Check TSC synchronization with the AP (keep irqs disabled
1189 	 * while doing so):
1190 	 */
1191 	local_irq_save(flags);
1192 	check_tsc_sync_source(cpu);
1193 	local_irq_restore(flags);
1194 
1195 	while (!cpu_online(cpu)) {
1196 		cpu_relax();
1197 		touch_nmi_watchdog();
1198 	}
1199 
1200 unreg_nmi:
1201 	/*
1202 	 * Clean up the nmi handler. Do this after the callin and callout sync
1203 	 * to avoid impact of possible long unregister time.
1204 	 */
1205 	if (cpu0_nmi_registered)
1206 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1207 
1208 	return ret;
1209 }
1210 
1211 /**
1212  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1213  */
1214 void arch_disable_smp_support(void)
1215 {
1216 	disable_ioapic_support();
1217 }
1218 
1219 /*
1220  * Fall back to non SMP mode after errors.
1221  *
1222  * RED-PEN audit/test this more. I bet there is more state messed up here.
1223  */
1224 static __init void disable_smp(void)
1225 {
1226 	pr_info("SMP disabled\n");
1227 
1228 	disable_ioapic_support();
1229 
1230 	init_cpu_present(cpumask_of(0));
1231 	init_cpu_possible(cpumask_of(0));
1232 
1233 	if (smp_found_config)
1234 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1235 	else
1236 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1237 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1238 	cpumask_set_cpu(0, topology_core_cpumask(0));
1239 	cpumask_set_cpu(0, topology_die_cpumask(0));
1240 }
1241 
1242 /*
1243  * Various sanity checks.
1244  */
1245 static void __init smp_sanity_check(void)
1246 {
1247 	preempt_disable();
1248 
1249 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1250 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1251 		unsigned int cpu;
1252 		unsigned nr;
1253 
1254 		pr_warn("More than 8 CPUs detected - skipping them\n"
1255 			"Use CONFIG_X86_BIGSMP\n");
1256 
1257 		nr = 0;
1258 		for_each_present_cpu(cpu) {
1259 			if (nr >= 8)
1260 				set_cpu_present(cpu, false);
1261 			nr++;
1262 		}
1263 
1264 		nr = 0;
1265 		for_each_possible_cpu(cpu) {
1266 			if (nr >= 8)
1267 				set_cpu_possible(cpu, false);
1268 			nr++;
1269 		}
1270 
1271 		nr_cpu_ids = 8;
1272 	}
1273 #endif
1274 
1275 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1276 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1277 			hard_smp_processor_id());
1278 
1279 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1280 	}
1281 
1282 	/*
1283 	 * Should not be necessary because the MP table should list the boot
1284 	 * CPU too, but we do it for the sake of robustness anyway.
1285 	 */
1286 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1287 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1288 			  boot_cpu_physical_apicid);
1289 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1290 	}
1291 	preempt_enable();
1292 }
1293 
1294 static void __init smp_cpu_index_default(void)
1295 {
1296 	int i;
1297 	struct cpuinfo_x86 *c;
1298 
1299 	for_each_possible_cpu(i) {
1300 		c = &cpu_data(i);
1301 		/* mark all to hotplug */
1302 		c->cpu_index = nr_cpu_ids;
1303 	}
1304 }
1305 
1306 static void __init smp_get_logical_apicid(void)
1307 {
1308 	if (x2apic_mode)
1309 		cpu0_logical_apicid = apic_read(APIC_LDR);
1310 	else
1311 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1312 }
1313 
1314 /*
1315  * Prepare for SMP bootup.
1316  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1317  *            for common interface support.
1318  */
1319 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1320 {
1321 	unsigned int i;
1322 
1323 	smp_cpu_index_default();
1324 
1325 	/*
1326 	 * Setup boot CPU information
1327 	 */
1328 	smp_store_boot_cpu_info(); /* Final full version of the data */
1329 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1330 	mb();
1331 
1332 	for_each_possible_cpu(i) {
1333 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1334 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1335 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1336 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1337 	}
1338 
1339 	/*
1340 	 * Set 'default' x86 topology, this matches default_topology() in that
1341 	 * it has NUMA nodes as a topology level. See also
1342 	 * native_smp_cpus_done().
1343 	 *
1344 	 * Must be done before set_cpus_sibling_map() is ran.
1345 	 */
1346 	set_sched_topology(x86_topology);
1347 
1348 	set_cpu_sibling_map(0);
1349 	init_freq_invariance(false, false);
1350 	smp_sanity_check();
1351 
1352 	switch (apic_intr_mode) {
1353 	case APIC_PIC:
1354 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1355 		disable_smp();
1356 		return;
1357 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1358 		disable_smp();
1359 		/* Setup local timer */
1360 		x86_init.timers.setup_percpu_clockev();
1361 		return;
1362 	case APIC_VIRTUAL_WIRE:
1363 	case APIC_SYMMETRIC_IO:
1364 		break;
1365 	}
1366 
1367 	/* Setup local timer */
1368 	x86_init.timers.setup_percpu_clockev();
1369 
1370 	smp_get_logical_apicid();
1371 
1372 	pr_info("CPU0: ");
1373 	print_cpu_info(&cpu_data(0));
1374 
1375 	uv_system_init();
1376 
1377 	set_mtrr_aps_delayed_init();
1378 
1379 	smp_quirk_init_udelay();
1380 
1381 	speculative_store_bypass_ht_init();
1382 }
1383 
1384 void arch_thaw_secondary_cpus_begin(void)
1385 {
1386 	set_mtrr_aps_delayed_init();
1387 }
1388 
1389 void arch_thaw_secondary_cpus_end(void)
1390 {
1391 	mtrr_aps_init();
1392 }
1393 
1394 /*
1395  * Early setup to make printk work.
1396  */
1397 void __init native_smp_prepare_boot_cpu(void)
1398 {
1399 	int me = smp_processor_id();
1400 	switch_to_new_gdt(me);
1401 	/* already set me in cpu_online_mask in boot_cpu_init() */
1402 	cpumask_set_cpu(me, cpu_callout_mask);
1403 	cpu_set_state_online(me);
1404 	native_pv_lock_init();
1405 }
1406 
1407 void __init calculate_max_logical_packages(void)
1408 {
1409 	int ncpus;
1410 
1411 	/*
1412 	 * Today neither Intel nor AMD support heterogeneous systems so
1413 	 * extrapolate the boot cpu's data to all packages.
1414 	 */
1415 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1416 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1417 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1418 }
1419 
1420 void __init native_smp_cpus_done(unsigned int max_cpus)
1421 {
1422 	pr_debug("Boot done\n");
1423 
1424 	calculate_max_logical_packages();
1425 
1426 	if (x86_has_numa_in_package)
1427 		set_sched_topology(x86_numa_in_package_topology);
1428 
1429 	nmi_selftest();
1430 	impress_friends();
1431 	mtrr_aps_init();
1432 }
1433 
1434 static int __initdata setup_possible_cpus = -1;
1435 static int __init _setup_possible_cpus(char *str)
1436 {
1437 	get_option(&str, &setup_possible_cpus);
1438 	return 0;
1439 }
1440 early_param("possible_cpus", _setup_possible_cpus);
1441 
1442 
1443 /*
1444  * cpu_possible_mask should be static, it cannot change as cpu's
1445  * are onlined, or offlined. The reason is per-cpu data-structures
1446  * are allocated by some modules at init time, and don't expect to
1447  * do this dynamically on cpu arrival/departure.
1448  * cpu_present_mask on the other hand can change dynamically.
1449  * In case when cpu_hotplug is not compiled, then we resort to current
1450  * behaviour, which is cpu_possible == cpu_present.
1451  * - Ashok Raj
1452  *
1453  * Three ways to find out the number of additional hotplug CPUs:
1454  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1455  * - The user can overwrite it with possible_cpus=NUM
1456  * - Otherwise don't reserve additional CPUs.
1457  * We do this because additional CPUs waste a lot of memory.
1458  * -AK
1459  */
1460 __init void prefill_possible_map(void)
1461 {
1462 	int i, possible;
1463 
1464 	/* No boot processor was found in mptable or ACPI MADT */
1465 	if (!num_processors) {
1466 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1467 			int apicid = boot_cpu_physical_apicid;
1468 			int cpu = hard_smp_processor_id();
1469 
1470 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1471 
1472 			/* Make sure boot cpu is enumerated */
1473 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1474 			    apic->apic_id_valid(apicid))
1475 				generic_processor_info(apicid, boot_cpu_apic_version);
1476 		}
1477 
1478 		if (!num_processors)
1479 			num_processors = 1;
1480 	}
1481 
1482 	i = setup_max_cpus ?: 1;
1483 	if (setup_possible_cpus == -1) {
1484 		possible = num_processors;
1485 #ifdef CONFIG_HOTPLUG_CPU
1486 		if (setup_max_cpus)
1487 			possible += disabled_cpus;
1488 #else
1489 		if (possible > i)
1490 			possible = i;
1491 #endif
1492 	} else
1493 		possible = setup_possible_cpus;
1494 
1495 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1496 
1497 	/* nr_cpu_ids could be reduced via nr_cpus= */
1498 	if (possible > nr_cpu_ids) {
1499 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1500 			possible, nr_cpu_ids);
1501 		possible = nr_cpu_ids;
1502 	}
1503 
1504 #ifdef CONFIG_HOTPLUG_CPU
1505 	if (!setup_max_cpus)
1506 #endif
1507 	if (possible > i) {
1508 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1509 			possible, setup_max_cpus);
1510 		possible = i;
1511 	}
1512 
1513 	nr_cpu_ids = possible;
1514 
1515 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1516 		possible, max_t(int, possible - num_processors, 0));
1517 
1518 	reset_cpu_possible_mask();
1519 
1520 	for (i = 0; i < possible; i++)
1521 		set_cpu_possible(i, true);
1522 }
1523 
1524 #ifdef CONFIG_HOTPLUG_CPU
1525 
1526 /* Recompute SMT state for all CPUs on offline */
1527 static void recompute_smt_state(void)
1528 {
1529 	int max_threads, cpu;
1530 
1531 	max_threads = 0;
1532 	for_each_online_cpu (cpu) {
1533 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1534 
1535 		if (threads > max_threads)
1536 			max_threads = threads;
1537 	}
1538 	__max_smt_threads = max_threads;
1539 }
1540 
1541 static void remove_siblinginfo(int cpu)
1542 {
1543 	int sibling;
1544 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1545 
1546 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1547 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1548 		/*/
1549 		 * last thread sibling in this cpu core going down
1550 		 */
1551 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1552 			cpu_data(sibling).booted_cores--;
1553 	}
1554 
1555 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1556 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1557 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1558 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1559 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1560 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1561 	cpumask_clear(cpu_llc_shared_mask(cpu));
1562 	cpumask_clear(topology_sibling_cpumask(cpu));
1563 	cpumask_clear(topology_core_cpumask(cpu));
1564 	cpumask_clear(topology_die_cpumask(cpu));
1565 	c->cpu_core_id = 0;
1566 	c->booted_cores = 0;
1567 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1568 	recompute_smt_state();
1569 }
1570 
1571 static void remove_cpu_from_maps(int cpu)
1572 {
1573 	set_cpu_online(cpu, false);
1574 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1575 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1576 	/* was set by cpu_init() */
1577 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1578 	numa_remove_cpu(cpu);
1579 }
1580 
1581 void cpu_disable_common(void)
1582 {
1583 	int cpu = smp_processor_id();
1584 
1585 	remove_siblinginfo(cpu);
1586 
1587 	/* It's now safe to remove this processor from the online map */
1588 	lock_vector_lock();
1589 	remove_cpu_from_maps(cpu);
1590 	unlock_vector_lock();
1591 	fixup_irqs();
1592 	lapic_offline();
1593 }
1594 
1595 int native_cpu_disable(void)
1596 {
1597 	int ret;
1598 
1599 	ret = lapic_can_unplug_cpu();
1600 	if (ret)
1601 		return ret;
1602 
1603 	cpu_disable_common();
1604 
1605         /*
1606          * Disable the local APIC. Otherwise IPI broadcasts will reach
1607          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1608          * messages.
1609          *
1610          * Disabling the APIC must happen after cpu_disable_common()
1611          * which invokes fixup_irqs().
1612          *
1613          * Disabling the APIC preserves already set bits in IRR, but
1614          * an interrupt arriving after disabling the local APIC does not
1615          * set the corresponding IRR bit.
1616          *
1617          * fixup_irqs() scans IRR for set bits so it can raise a not
1618          * yet handled interrupt on the new destination CPU via an IPI
1619          * but obviously it can't do so for IRR bits which are not set.
1620          * IOW, interrupts arriving after disabling the local APIC will
1621          * be lost.
1622          */
1623 	apic_soft_disable();
1624 
1625 	return 0;
1626 }
1627 
1628 int common_cpu_die(unsigned int cpu)
1629 {
1630 	int ret = 0;
1631 
1632 	/* We don't do anything here: idle task is faking death itself. */
1633 
1634 	/* They ack this in play_dead() by setting CPU_DEAD */
1635 	if (cpu_wait_death(cpu, 5)) {
1636 		if (system_state == SYSTEM_RUNNING)
1637 			pr_info("CPU %u is now offline\n", cpu);
1638 	} else {
1639 		pr_err("CPU %u didn't die...\n", cpu);
1640 		ret = -1;
1641 	}
1642 
1643 	return ret;
1644 }
1645 
1646 void native_cpu_die(unsigned int cpu)
1647 {
1648 	common_cpu_die(cpu);
1649 }
1650 
1651 void play_dead_common(void)
1652 {
1653 	idle_task_exit();
1654 
1655 	/* Ack it */
1656 	(void)cpu_report_death();
1657 
1658 	/*
1659 	 * With physical CPU hotplug, we should halt the cpu
1660 	 */
1661 	local_irq_disable();
1662 }
1663 
1664 /**
1665  * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1666  *
1667  * If NMI wants to wake up CPU0, start CPU0.
1668  */
1669 void cond_wakeup_cpu0(void)
1670 {
1671 	if (smp_processor_id() == 0 && enable_start_cpu0)
1672 		start_cpu0();
1673 }
1674 EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1675 
1676 /*
1677  * We need to flush the caches before going to sleep, lest we have
1678  * dirty data in our caches when we come back up.
1679  */
1680 static inline void mwait_play_dead(void)
1681 {
1682 	unsigned int eax, ebx, ecx, edx;
1683 	unsigned int highest_cstate = 0;
1684 	unsigned int highest_subcstate = 0;
1685 	void *mwait_ptr;
1686 	int i;
1687 
1688 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1689 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1690 		return;
1691 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1692 		return;
1693 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1694 		return;
1695 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1696 		return;
1697 
1698 	eax = CPUID_MWAIT_LEAF;
1699 	ecx = 0;
1700 	native_cpuid(&eax, &ebx, &ecx, &edx);
1701 
1702 	/*
1703 	 * eax will be 0 if EDX enumeration is not valid.
1704 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1705 	 */
1706 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1707 		eax = 0;
1708 	} else {
1709 		edx >>= MWAIT_SUBSTATE_SIZE;
1710 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1711 			if (edx & MWAIT_SUBSTATE_MASK) {
1712 				highest_cstate = i;
1713 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1714 			}
1715 		}
1716 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1717 			(highest_subcstate - 1);
1718 	}
1719 
1720 	/*
1721 	 * This should be a memory location in a cache line which is
1722 	 * unlikely to be touched by other processors.  The actual
1723 	 * content is immaterial as it is not actually modified in any way.
1724 	 */
1725 	mwait_ptr = &current_thread_info()->flags;
1726 
1727 	wbinvd();
1728 
1729 	while (1) {
1730 		/*
1731 		 * The CLFLUSH is a workaround for erratum AAI65 for
1732 		 * the Xeon 7400 series.  It's not clear it is actually
1733 		 * needed, but it should be harmless in either case.
1734 		 * The WBINVD is insufficient due to the spurious-wakeup
1735 		 * case where we return around the loop.
1736 		 */
1737 		mb();
1738 		clflush(mwait_ptr);
1739 		mb();
1740 		__monitor(mwait_ptr, 0, 0);
1741 		mb();
1742 		__mwait(eax, 0);
1743 
1744 		cond_wakeup_cpu0();
1745 	}
1746 }
1747 
1748 void hlt_play_dead(void)
1749 {
1750 	if (__this_cpu_read(cpu_info.x86) >= 4)
1751 		wbinvd();
1752 
1753 	while (1) {
1754 		native_halt();
1755 
1756 		cond_wakeup_cpu0();
1757 	}
1758 }
1759 
1760 void native_play_dead(void)
1761 {
1762 	play_dead_common();
1763 	tboot_shutdown(TB_SHUTDOWN_WFS);
1764 
1765 	mwait_play_dead();	/* Only returns on failure */
1766 	if (cpuidle_play_dead())
1767 		hlt_play_dead();
1768 }
1769 
1770 #else /* ... !CONFIG_HOTPLUG_CPU */
1771 int native_cpu_disable(void)
1772 {
1773 	return -ENOSYS;
1774 }
1775 
1776 void native_cpu_die(unsigned int cpu)
1777 {
1778 	/* We said "no" in __cpu_disable */
1779 	BUG();
1780 }
1781 
1782 void native_play_dead(void)
1783 {
1784 	BUG();
1785 }
1786 
1787 #endif
1788 
1789 #ifdef CONFIG_X86_64
1790 /*
1791  * APERF/MPERF frequency ratio computation.
1792  *
1793  * The scheduler wants to do frequency invariant accounting and needs a <1
1794  * ratio to account for the 'current' frequency, corresponding to
1795  * freq_curr / freq_max.
1796  *
1797  * Since the frequency freq_curr on x86 is controlled by micro-controller and
1798  * our P-state setting is little more than a request/hint, we need to observe
1799  * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1800  * interval after discarding idle time. This is given by:
1801  *
1802  *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1803  *
1804  * where freq_base is the max non-turbo P-state.
1805  *
1806  * The freq_max term has to be set to a somewhat arbitrary value, because we
1807  * can't know which turbo states will be available at a given point in time:
1808  * it all depends on the thermal headroom of the entire package. We set it to
1809  * the turbo level with 4 cores active.
1810  *
1811  * Benchmarks show that's a good compromise between the 1C turbo ratio
1812  * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1813  * which would ignore the entire turbo range (a conspicuous part, making
1814  * freq_curr/freq_max always maxed out).
1815  *
1816  * An exception to the heuristic above is the Atom uarch, where we choose the
1817  * highest turbo level for freq_max since Atom's are generally oriented towards
1818  * power efficiency.
1819  *
1820  * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1821  * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1822  */
1823 
1824 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1825 
1826 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1827 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1828 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1829 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1830 
1831 void arch_set_max_freq_ratio(bool turbo_disabled)
1832 {
1833 	arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1834 					arch_turbo_freq_ratio;
1835 }
1836 EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1837 
1838 static bool turbo_disabled(void)
1839 {
1840 	u64 misc_en;
1841 	int err;
1842 
1843 	err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1844 	if (err)
1845 		return false;
1846 
1847 	return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1848 }
1849 
1850 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1851 {
1852 	int err;
1853 
1854 	err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1855 	if (err)
1856 		return false;
1857 
1858 	err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1859 	if (err)
1860 		return false;
1861 
1862 	*base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1863 	*turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1864 
1865 	return true;
1866 }
1867 
1868 #define X86_MATCH(model)					\
1869 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,		\
1870 		INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1871 
1872 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1873 	X86_MATCH(XEON_PHI_KNL),
1874 	X86_MATCH(XEON_PHI_KNM),
1875 	{}
1876 };
1877 
1878 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1879 	X86_MATCH(SKYLAKE_X),
1880 	{}
1881 };
1882 
1883 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1884 	X86_MATCH(ATOM_GOLDMONT),
1885 	X86_MATCH(ATOM_GOLDMONT_D),
1886 	X86_MATCH(ATOM_GOLDMONT_PLUS),
1887 	{}
1888 };
1889 
1890 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1891 				int num_delta_fratio)
1892 {
1893 	int fratio, delta_fratio, found;
1894 	int err, i;
1895 	u64 msr;
1896 
1897 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1898 	if (err)
1899 		return false;
1900 
1901 	*base_freq = (*base_freq >> 8) & 0xFF;	    /* max P state */
1902 
1903 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1904 	if (err)
1905 		return false;
1906 
1907 	fratio = (msr >> 8) & 0xFF;
1908 	i = 16;
1909 	found = 0;
1910 	do {
1911 		if (found >= num_delta_fratio) {
1912 			*turbo_freq = fratio;
1913 			return true;
1914 		}
1915 
1916 		delta_fratio = (msr >> (i + 5)) & 0x7;
1917 
1918 		if (delta_fratio) {
1919 			found += 1;
1920 			fratio -= delta_fratio;
1921 		}
1922 
1923 		i += 8;
1924 	} while (i < 64);
1925 
1926 	return true;
1927 }
1928 
1929 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1930 {
1931 	u64 ratios, counts;
1932 	u32 group_size;
1933 	int err, i;
1934 
1935 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1936 	if (err)
1937 		return false;
1938 
1939 	*base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1940 
1941 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1942 	if (err)
1943 		return false;
1944 
1945 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1946 	if (err)
1947 		return false;
1948 
1949 	for (i = 0; i < 64; i += 8) {
1950 		group_size = (counts >> i) & 0xFF;
1951 		if (group_size >= size) {
1952 			*turbo_freq = (ratios >> i) & 0xFF;
1953 			return true;
1954 		}
1955 	}
1956 
1957 	return false;
1958 }
1959 
1960 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1961 {
1962 	u64 msr;
1963 	int err;
1964 
1965 	err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1966 	if (err)
1967 		return false;
1968 
1969 	err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1970 	if (err)
1971 		return false;
1972 
1973 	*base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1974 	*turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1975 
1976 	/* The CPU may have less than 4 cores */
1977 	if (!*turbo_freq)
1978 		*turbo_freq = msr & 0xFF;         /* 1C turbo    */
1979 
1980 	return true;
1981 }
1982 
1983 static bool intel_set_max_freq_ratio(void)
1984 {
1985 	u64 base_freq, turbo_freq;
1986 	u64 turbo_ratio;
1987 
1988 	if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1989 		goto out;
1990 
1991 	if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1992 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1993 		goto out;
1994 
1995 	if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1996 	    knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1997 		goto out;
1998 
1999 	if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
2000 	    skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2001 		goto out;
2002 
2003 	if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2004 		goto out;
2005 
2006 	return false;
2007 
2008 out:
2009 	/*
2010 	 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2011 	 * but then fill all MSR's with zeroes.
2012 	 * Some CPUs have turbo boost but don't declare any turbo ratio
2013 	 * in MSR_TURBO_RATIO_LIMIT.
2014 	 */
2015 	if (!base_freq || !turbo_freq) {
2016 		pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2017 		return false;
2018 	}
2019 
2020 	turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2021 	if (!turbo_ratio) {
2022 		pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2023 		return false;
2024 	}
2025 
2026 	arch_turbo_freq_ratio = turbo_ratio;
2027 	arch_set_max_freq_ratio(turbo_disabled());
2028 
2029 	return true;
2030 }
2031 
2032 #ifdef CONFIG_ACPI_CPPC_LIB
2033 static bool amd_set_max_freq_ratio(void)
2034 {
2035 	struct cppc_perf_caps perf_caps;
2036 	u64 highest_perf, nominal_perf;
2037 	u64 perf_ratio;
2038 	int rc;
2039 
2040 	rc = cppc_get_perf_caps(0, &perf_caps);
2041 	if (rc) {
2042 		pr_debug("Could not retrieve perf counters (%d)\n", rc);
2043 		return false;
2044 	}
2045 
2046 	highest_perf = perf_caps.highest_perf;
2047 	nominal_perf = perf_caps.nominal_perf;
2048 
2049 	if (!highest_perf || !nominal_perf) {
2050 		pr_debug("Could not retrieve highest or nominal performance\n");
2051 		return false;
2052 	}
2053 
2054 	perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
2055 	/* midpoint between max_boost and max_P */
2056 	perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
2057 	if (!perf_ratio) {
2058 		pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
2059 		return false;
2060 	}
2061 
2062 	arch_turbo_freq_ratio = perf_ratio;
2063 	arch_set_max_freq_ratio(false);
2064 
2065 	return true;
2066 }
2067 #else
2068 static bool amd_set_max_freq_ratio(void)
2069 {
2070 	return false;
2071 }
2072 #endif
2073 
2074 static void init_counter_refs(void)
2075 {
2076 	u64 aperf, mperf;
2077 
2078 	rdmsrl(MSR_IA32_APERF, aperf);
2079 	rdmsrl(MSR_IA32_MPERF, mperf);
2080 
2081 	this_cpu_write(arch_prev_aperf, aperf);
2082 	this_cpu_write(arch_prev_mperf, mperf);
2083 }
2084 
2085 #ifdef CONFIG_PM_SLEEP
2086 static struct syscore_ops freq_invariance_syscore_ops = {
2087 	.resume = init_counter_refs,
2088 };
2089 
2090 static void register_freq_invariance_syscore_ops(void)
2091 {
2092 	/* Bail out if registered already. */
2093 	if (freq_invariance_syscore_ops.node.prev)
2094 		return;
2095 
2096 	register_syscore_ops(&freq_invariance_syscore_ops);
2097 }
2098 #else
2099 static inline void register_freq_invariance_syscore_ops(void) {}
2100 #endif
2101 
2102 static void init_freq_invariance(bool secondary, bool cppc_ready)
2103 {
2104 	bool ret = false;
2105 
2106 	if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2107 		return;
2108 
2109 	if (secondary) {
2110 		if (static_branch_likely(&arch_scale_freq_key)) {
2111 			init_counter_refs();
2112 		}
2113 		return;
2114 	}
2115 
2116 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2117 		ret = intel_set_max_freq_ratio();
2118 	else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2119 		if (!cppc_ready) {
2120 			return;
2121 		}
2122 		ret = amd_set_max_freq_ratio();
2123 	}
2124 
2125 	if (ret) {
2126 		init_counter_refs();
2127 		static_branch_enable(&arch_scale_freq_key);
2128 		register_freq_invariance_syscore_ops();
2129 		pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
2130 	} else {
2131 		pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2132 	}
2133 }
2134 
2135 #ifdef CONFIG_ACPI_CPPC_LIB
2136 static DEFINE_MUTEX(freq_invariance_lock);
2137 
2138 void init_freq_invariance_cppc(void)
2139 {
2140 	static bool secondary;
2141 
2142 	mutex_lock(&freq_invariance_lock);
2143 
2144 	init_freq_invariance(secondary, true);
2145 	secondary = true;
2146 
2147 	mutex_unlock(&freq_invariance_lock);
2148 }
2149 #endif
2150 
2151 static void disable_freq_invariance_workfn(struct work_struct *work)
2152 {
2153 	static_branch_disable(&arch_scale_freq_key);
2154 }
2155 
2156 static DECLARE_WORK(disable_freq_invariance_work,
2157 		    disable_freq_invariance_workfn);
2158 
2159 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2160 
2161 void arch_scale_freq_tick(void)
2162 {
2163 	u64 freq_scale = SCHED_CAPACITY_SCALE;
2164 	u64 aperf, mperf;
2165 	u64 acnt, mcnt;
2166 
2167 	if (!arch_scale_freq_invariant())
2168 		return;
2169 
2170 	rdmsrl(MSR_IA32_APERF, aperf);
2171 	rdmsrl(MSR_IA32_MPERF, mperf);
2172 
2173 	acnt = aperf - this_cpu_read(arch_prev_aperf);
2174 	mcnt = mperf - this_cpu_read(arch_prev_mperf);
2175 
2176 	this_cpu_write(arch_prev_aperf, aperf);
2177 	this_cpu_write(arch_prev_mperf, mperf);
2178 
2179 	if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2180 		goto error;
2181 
2182 	if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2183 		goto error;
2184 
2185 	freq_scale = div64_u64(acnt, mcnt);
2186 	if (!freq_scale)
2187 		goto error;
2188 
2189 	if (freq_scale > SCHED_CAPACITY_SCALE)
2190 		freq_scale = SCHED_CAPACITY_SCALE;
2191 
2192 	this_cpu_write(arch_freq_scale, freq_scale);
2193 	return;
2194 
2195 error:
2196 	pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2197 	schedule_work(&disable_freq_invariance_work);
2198 }
2199 #else
2200 static inline void init_freq_invariance(bool secondary, bool cppc_ready)
2201 {
2202 }
2203 #endif /* CONFIG_X86_64 */
2204