xref: /openbmc/linux/arch/x86/kernel/smp.c (revision b9ccfda2)
1 /*
2  *	Intel SMP support routines.
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *      (c) 2002,2003 Andi Kleen, SuSE Labs.
7  *
8  *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
9  *
10  *	This code is released under the GNU General Public License version 2 or
11  *	later.
12  */
13 
14 #include <linux/init.h>
15 
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/spinlock.h>
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mc146818rtc.h>
22 #include <linux/cache.h>
23 #include <linux/interrupt.h>
24 #include <linux/cpu.h>
25 #include <linux/gfp.h>
26 
27 #include <asm/mtrr.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/proto.h>
31 #include <asm/apic.h>
32 #include <asm/nmi.h>
33 /*
34  *	Some notes on x86 processor bugs affecting SMP operation:
35  *
36  *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
37  *	The Linux implications for SMP are handled as follows:
38  *
39  *	Pentium III / [Xeon]
40  *		None of the E1AP-E3AP errata are visible to the user.
41  *
42  *	E1AP.	see PII A1AP
43  *	E2AP.	see PII A2AP
44  *	E3AP.	see PII A3AP
45  *
46  *	Pentium II / [Xeon]
47  *		None of the A1AP-A3AP errata are visible to the user.
48  *
49  *	A1AP.	see PPro 1AP
50  *	A2AP.	see PPro 2AP
51  *	A3AP.	see PPro 7AP
52  *
53  *	Pentium Pro
54  *		None of 1AP-9AP errata are visible to the normal user,
55  *	except occasional delivery of 'spurious interrupt' as trap #15.
56  *	This is very rare and a non-problem.
57  *
58  *	1AP.	Linux maps APIC as non-cacheable
59  *	2AP.	worked around in hardware
60  *	3AP.	fixed in C0 and above steppings microcode update.
61  *		Linux does not use excessive STARTUP_IPIs.
62  *	4AP.	worked around in hardware
63  *	5AP.	symmetric IO mode (normal Linux operation) not affected.
64  *		'noapic' mode has vector 0xf filled out properly.
65  *	6AP.	'noapic' mode might be affected - fixed in later steppings
66  *	7AP.	We do not assume writes to the LVT deassering IRQs
67  *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
68  *	9AP.	We do not use mixed mode
69  *
70  *	Pentium
71  *		There is a marginal case where REP MOVS on 100MHz SMP
72  *	machines with B stepping processors can fail. XXX should provide
73  *	an L1cache=Writethrough or L1cache=off option.
74  *
75  *		B stepping CPUs may hang. There are hardware work arounds
76  *	for this. We warn about it in case your board doesn't have the work
77  *	arounds. Basically that's so I can tell anyone with a B stepping
78  *	CPU and SMP problems "tough".
79  *
80  *	Specific items [From Pentium Processor Specification Update]
81  *
82  *	1AP.	Linux doesn't use remote read
83  *	2AP.	Linux doesn't trust APIC errors
84  *	3AP.	We work around this
85  *	4AP.	Linux never generated 3 interrupts of the same priority
86  *		to cause a lost local interrupt.
87  *	5AP.	Remote read is never used
88  *	6AP.	not affected - worked around in hardware
89  *	7AP.	not affected - worked around in hardware
90  *	8AP.	worked around in hardware - we get explicit CS errors if not
91  *	9AP.	only 'noapic' mode affected. Might generate spurious
92  *		interrupts, we log only the first one and count the
93  *		rest silently.
94  *	10AP.	not affected - worked around in hardware
95  *	11AP.	Linux reads the APIC between writes to avoid this, as per
96  *		the documentation. Make sure you preserve this as it affects
97  *		the C stepping chips too.
98  *	12AP.	not affected - worked around in hardware
99  *	13AP.	not affected - worked around in hardware
100  *	14AP.	we always deassert INIT during bootup
101  *	15AP.	not affected - worked around in hardware
102  *	16AP.	not affected - worked around in hardware
103  *	17AP.	not affected - worked around in hardware
104  *	18AP.	not affected - worked around in hardware
105  *	19AP.	not affected - worked around in BIOS
106  *
107  *	If this sounds worrying believe me these bugs are either ___RARE___,
108  *	or are signal timing bugs worked around in hardware and there's
109  *	about nothing of note with C stepping upwards.
110  */
111 
112 static atomic_t stopping_cpu = ATOMIC_INIT(-1);
113 static bool smp_no_nmi_ipi = false;
114 
115 /*
116  * this function sends a 'reschedule' IPI to another CPU.
117  * it goes straight through and wastes no time serializing
118  * anything. Worst case is that we lose a reschedule ...
119  */
120 static void native_smp_send_reschedule(int cpu)
121 {
122 	if (unlikely(cpu_is_offline(cpu))) {
123 		WARN_ON(1);
124 		return;
125 	}
126 	apic->send_IPI_mask(cpumask_of(cpu), RESCHEDULE_VECTOR);
127 }
128 
129 void native_send_call_func_single_ipi(int cpu)
130 {
131 	apic->send_IPI_mask(cpumask_of(cpu), CALL_FUNCTION_SINGLE_VECTOR);
132 }
133 
134 void native_send_call_func_ipi(const struct cpumask *mask)
135 {
136 	cpumask_var_t allbutself;
137 
138 	if (!alloc_cpumask_var(&allbutself, GFP_ATOMIC)) {
139 		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
140 		return;
141 	}
142 
143 	cpumask_copy(allbutself, cpu_online_mask);
144 	cpumask_clear_cpu(smp_processor_id(), allbutself);
145 
146 	if (cpumask_equal(mask, allbutself) &&
147 	    cpumask_equal(cpu_online_mask, cpu_callout_mask))
148 		apic->send_IPI_allbutself(CALL_FUNCTION_VECTOR);
149 	else
150 		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
151 
152 	free_cpumask_var(allbutself);
153 }
154 
155 static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
156 {
157 	/* We are registered on stopping cpu too, avoid spurious NMI */
158 	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
159 		return NMI_HANDLED;
160 
161 	stop_this_cpu(NULL);
162 
163 	return NMI_HANDLED;
164 }
165 
166 /*
167  * this function calls the 'stop' function on all other CPUs in the system.
168  */
169 
170 asmlinkage void smp_reboot_interrupt(void)
171 {
172 	ack_APIC_irq();
173 	irq_enter();
174 	stop_this_cpu(NULL);
175 	irq_exit();
176 }
177 
178 static void native_stop_other_cpus(int wait)
179 {
180 	unsigned long flags;
181 	unsigned long timeout;
182 
183 	if (reboot_force)
184 		return;
185 
186 	/*
187 	 * Use an own vector here because smp_call_function
188 	 * does lots of things not suitable in a panic situation.
189 	 */
190 
191 	/*
192 	 * We start by using the REBOOT_VECTOR irq.
193 	 * The irq is treated as a sync point to allow critical
194 	 * regions of code on other cpus to release their spin locks
195 	 * and re-enable irqs.  Jumping straight to an NMI might
196 	 * accidentally cause deadlocks with further shutdown/panic
197 	 * code.  By syncing, we give the cpus up to one second to
198 	 * finish their work before we force them off with the NMI.
199 	 */
200 	if (num_online_cpus() > 1) {
201 		/* did someone beat us here? */
202 		if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
203 			return;
204 
205 		/* sync above data before sending IRQ */
206 		wmb();
207 
208 		apic->send_IPI_allbutself(REBOOT_VECTOR);
209 
210 		/*
211 		 * Don't wait longer than a second if the caller
212 		 * didn't ask us to wait.
213 		 */
214 		timeout = USEC_PER_SEC;
215 		while (num_online_cpus() > 1 && (wait || timeout--))
216 			udelay(1);
217 	}
218 
219 	/* if the REBOOT_VECTOR didn't work, try with the NMI */
220 	if ((num_online_cpus() > 1) && (!smp_no_nmi_ipi))  {
221 		if (register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
222 					 NMI_FLAG_FIRST, "smp_stop"))
223 			/* Note: we ignore failures here */
224 			/* Hope the REBOOT_IRQ is good enough */
225 			goto finish;
226 
227 		/* sync above data before sending IRQ */
228 		wmb();
229 
230 		pr_emerg("Shutting down cpus with NMI\n");
231 
232 		apic->send_IPI_allbutself(NMI_VECTOR);
233 
234 		/*
235 		 * Don't wait longer than a 10 ms if the caller
236 		 * didn't ask us to wait.
237 		 */
238 		timeout = USEC_PER_MSEC * 10;
239 		while (num_online_cpus() > 1 && (wait || timeout--))
240 			udelay(1);
241 	}
242 
243 finish:
244 	local_irq_save(flags);
245 	disable_local_APIC();
246 	local_irq_restore(flags);
247 }
248 
249 /*
250  * Reschedule call back.
251  */
252 void smp_reschedule_interrupt(struct pt_regs *regs)
253 {
254 	ack_APIC_irq();
255 	inc_irq_stat(irq_resched_count);
256 	scheduler_ipi();
257 	/*
258 	 * KVM uses this interrupt to force a cpu out of guest mode
259 	 */
260 }
261 
262 void smp_call_function_interrupt(struct pt_regs *regs)
263 {
264 	ack_APIC_irq();
265 	irq_enter();
266 	generic_smp_call_function_interrupt();
267 	inc_irq_stat(irq_call_count);
268 	irq_exit();
269 }
270 
271 void smp_call_function_single_interrupt(struct pt_regs *regs)
272 {
273 	ack_APIC_irq();
274 	irq_enter();
275 	generic_smp_call_function_single_interrupt();
276 	inc_irq_stat(irq_call_count);
277 	irq_exit();
278 }
279 
280 static int __init nonmi_ipi_setup(char *str)
281 {
282 	smp_no_nmi_ipi = true;
283 	return 1;
284 }
285 
286 __setup("nonmi_ipi", nonmi_ipi_setup);
287 
288 struct smp_ops smp_ops = {
289 	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
290 	.smp_prepare_cpus	= native_smp_prepare_cpus,
291 	.smp_cpus_done		= native_smp_cpus_done,
292 
293 	.stop_other_cpus	= native_stop_other_cpus,
294 	.smp_send_reschedule	= native_smp_send_reschedule,
295 
296 	.cpu_up			= native_cpu_up,
297 	.cpu_die		= native_cpu_die,
298 	.cpu_disable		= native_cpu_disable,
299 	.play_dead		= native_play_dead,
300 
301 	.send_call_func_ipi	= native_send_call_func_ipi,
302 	.send_call_func_single_ipi = native_send_call_func_single_ipi,
303 };
304 EXPORT_SYMBOL_GPL(smp_ops);
305