xref: /openbmc/linux/arch/x86/kernel/smp.c (revision 9cdb81c7)
1 /*
2  *	Intel SMP support routines.
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *      (c) 2002,2003 Andi Kleen, SuSE Labs.
7  *
8  *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
9  *
10  *	This code is released under the GNU General Public License version 2 or
11  *	later.
12  */
13 
14 #include <linux/init.h>
15 
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/spinlock.h>
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mc146818rtc.h>
22 #include <linux/cache.h>
23 #include <linux/interrupt.h>
24 #include <linux/cpu.h>
25 #include <linux/gfp.h>
26 
27 #include <asm/mtrr.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/proto.h>
31 #include <asm/apic.h>
32 #include <asm/nmi.h>
33 /*
34  *	Some notes on x86 processor bugs affecting SMP operation:
35  *
36  *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
37  *	The Linux implications for SMP are handled as follows:
38  *
39  *	Pentium III / [Xeon]
40  *		None of the E1AP-E3AP errata are visible to the user.
41  *
42  *	E1AP.	see PII A1AP
43  *	E2AP.	see PII A2AP
44  *	E3AP.	see PII A3AP
45  *
46  *	Pentium II / [Xeon]
47  *		None of the A1AP-A3AP errata are visible to the user.
48  *
49  *	A1AP.	see PPro 1AP
50  *	A2AP.	see PPro 2AP
51  *	A3AP.	see PPro 7AP
52  *
53  *	Pentium Pro
54  *		None of 1AP-9AP errata are visible to the normal user,
55  *	except occasional delivery of 'spurious interrupt' as trap #15.
56  *	This is very rare and a non-problem.
57  *
58  *	1AP.	Linux maps APIC as non-cacheable
59  *	2AP.	worked around in hardware
60  *	3AP.	fixed in C0 and above steppings microcode update.
61  *		Linux does not use excessive STARTUP_IPIs.
62  *	4AP.	worked around in hardware
63  *	5AP.	symmetric IO mode (normal Linux operation) not affected.
64  *		'noapic' mode has vector 0xf filled out properly.
65  *	6AP.	'noapic' mode might be affected - fixed in later steppings
66  *	7AP.	We do not assume writes to the LVT deassering IRQs
67  *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
68  *	9AP.	We do not use mixed mode
69  *
70  *	Pentium
71  *		There is a marginal case where REP MOVS on 100MHz SMP
72  *	machines with B stepping processors can fail. XXX should provide
73  *	an L1cache=Writethrough or L1cache=off option.
74  *
75  *		B stepping CPUs may hang. There are hardware work arounds
76  *	for this. We warn about it in case your board doesn't have the work
77  *	arounds. Basically that's so I can tell anyone with a B stepping
78  *	CPU and SMP problems "tough".
79  *
80  *	Specific items [From Pentium Processor Specification Update]
81  *
82  *	1AP.	Linux doesn't use remote read
83  *	2AP.	Linux doesn't trust APIC errors
84  *	3AP.	We work around this
85  *	4AP.	Linux never generated 3 interrupts of the same priority
86  *		to cause a lost local interrupt.
87  *	5AP.	Remote read is never used
88  *	6AP.	not affected - worked around in hardware
89  *	7AP.	not affected - worked around in hardware
90  *	8AP.	worked around in hardware - we get explicit CS errors if not
91  *	9AP.	only 'noapic' mode affected. Might generate spurious
92  *		interrupts, we log only the first one and count the
93  *		rest silently.
94  *	10AP.	not affected - worked around in hardware
95  *	11AP.	Linux reads the APIC between writes to avoid this, as per
96  *		the documentation. Make sure you preserve this as it affects
97  *		the C stepping chips too.
98  *	12AP.	not affected - worked around in hardware
99  *	13AP.	not affected - worked around in hardware
100  *	14AP.	we always deassert INIT during bootup
101  *	15AP.	not affected - worked around in hardware
102  *	16AP.	not affected - worked around in hardware
103  *	17AP.	not affected - worked around in hardware
104  *	18AP.	not affected - worked around in hardware
105  *	19AP.	not affected - worked around in BIOS
106  *
107  *	If this sounds worrying believe me these bugs are either ___RARE___,
108  *	or are signal timing bugs worked around in hardware and there's
109  *	about nothing of note with C stepping upwards.
110  */
111 
112 /*
113  * this function sends a 'reschedule' IPI to another CPU.
114  * it goes straight through and wastes no time serializing
115  * anything. Worst case is that we lose a reschedule ...
116  */
117 static void native_smp_send_reschedule(int cpu)
118 {
119 	if (unlikely(cpu_is_offline(cpu))) {
120 		WARN_ON(1);
121 		return;
122 	}
123 	apic->send_IPI_mask(cpumask_of(cpu), RESCHEDULE_VECTOR);
124 }
125 
126 void native_send_call_func_single_ipi(int cpu)
127 {
128 	apic->send_IPI_mask(cpumask_of(cpu), CALL_FUNCTION_SINGLE_VECTOR);
129 }
130 
131 void native_send_call_func_ipi(const struct cpumask *mask)
132 {
133 	cpumask_var_t allbutself;
134 
135 	if (!alloc_cpumask_var(&allbutself, GFP_ATOMIC)) {
136 		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
137 		return;
138 	}
139 
140 	cpumask_copy(allbutself, cpu_online_mask);
141 	cpumask_clear_cpu(smp_processor_id(), allbutself);
142 
143 	if (cpumask_equal(mask, allbutself) &&
144 	    cpumask_equal(cpu_online_mask, cpu_callout_mask))
145 		apic->send_IPI_allbutself(CALL_FUNCTION_VECTOR);
146 	else
147 		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
148 
149 	free_cpumask_var(allbutself);
150 }
151 
152 static atomic_t stopping_cpu = ATOMIC_INIT(-1);
153 
154 static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
155 {
156 	/* We are registered on stopping cpu too, avoid spurious NMI */
157 	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
158 		return NMI_HANDLED;
159 
160 	stop_this_cpu(NULL);
161 
162 	return NMI_HANDLED;
163 }
164 
165 static void native_nmi_stop_other_cpus(int wait)
166 {
167 	unsigned long flags;
168 	unsigned long timeout;
169 
170 	if (reboot_force)
171 		return;
172 
173 	/*
174 	 * Use an own vector here because smp_call_function
175 	 * does lots of things not suitable in a panic situation.
176 	 */
177 	if (num_online_cpus() > 1) {
178 		/* did someone beat us here? */
179 		if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
180 			return;
181 
182 		if (register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
183 					 NMI_FLAG_FIRST, "smp_stop"))
184 			/* Note: we ignore failures here */
185 			return;
186 
187 		/* sync above data before sending NMI */
188 		wmb();
189 
190 		apic->send_IPI_allbutself(NMI_VECTOR);
191 
192 		/*
193 		 * Don't wait longer than a second if the caller
194 		 * didn't ask us to wait.
195 		 */
196 		timeout = USEC_PER_SEC;
197 		while (num_online_cpus() > 1 && (wait || timeout--))
198 			udelay(1);
199 	}
200 
201 	local_irq_save(flags);
202 	disable_local_APIC();
203 	local_irq_restore(flags);
204 }
205 
206 /*
207  * this function calls the 'stop' function on all other CPUs in the system.
208  */
209 
210 asmlinkage void smp_reboot_interrupt(void)
211 {
212 	ack_APIC_irq();
213 	irq_enter();
214 	stop_this_cpu(NULL);
215 	irq_exit();
216 }
217 
218 static void native_irq_stop_other_cpus(int wait)
219 {
220 	unsigned long flags;
221 	unsigned long timeout;
222 
223 	if (reboot_force)
224 		return;
225 
226 	/*
227 	 * Use an own vector here because smp_call_function
228 	 * does lots of things not suitable in a panic situation.
229 	 * On most systems we could also use an NMI here,
230 	 * but there are a few systems around where NMI
231 	 * is problematic so stay with an non NMI for now
232 	 * (this implies we cannot stop CPUs spinning with irq off
233 	 * currently)
234 	 */
235 	if (num_online_cpus() > 1) {
236 		apic->send_IPI_allbutself(REBOOT_VECTOR);
237 
238 		/*
239 		 * Don't wait longer than a second if the caller
240 		 * didn't ask us to wait.
241 		 */
242 		timeout = USEC_PER_SEC;
243 		while (num_online_cpus() > 1 && (wait || timeout--))
244 			udelay(1);
245 	}
246 
247 	local_irq_save(flags);
248 	disable_local_APIC();
249 	local_irq_restore(flags);
250 }
251 
252 static void native_smp_disable_nmi_ipi(void)
253 {
254 	smp_ops.stop_other_cpus = native_irq_stop_other_cpus;
255 }
256 
257 /*
258  * Reschedule call back.
259  */
260 void smp_reschedule_interrupt(struct pt_regs *regs)
261 {
262 	ack_APIC_irq();
263 	inc_irq_stat(irq_resched_count);
264 	scheduler_ipi();
265 	/*
266 	 * KVM uses this interrupt to force a cpu out of guest mode
267 	 */
268 }
269 
270 void smp_call_function_interrupt(struct pt_regs *regs)
271 {
272 	ack_APIC_irq();
273 	irq_enter();
274 	generic_smp_call_function_interrupt();
275 	inc_irq_stat(irq_call_count);
276 	irq_exit();
277 }
278 
279 void smp_call_function_single_interrupt(struct pt_regs *regs)
280 {
281 	ack_APIC_irq();
282 	irq_enter();
283 	generic_smp_call_function_single_interrupt();
284 	inc_irq_stat(irq_call_count);
285 	irq_exit();
286 }
287 
288 static int __init nonmi_ipi_setup(char *str)
289 {
290         native_smp_disable_nmi_ipi();
291         return 1;
292 }
293 
294 __setup("nonmi_ipi", nonmi_ipi_setup);
295 
296 struct smp_ops smp_ops = {
297 	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
298 	.smp_prepare_cpus	= native_smp_prepare_cpus,
299 	.smp_cpus_done		= native_smp_cpus_done,
300 
301 	.stop_other_cpus	= native_nmi_stop_other_cpus,
302 	.smp_send_reschedule	= native_smp_send_reschedule,
303 
304 	.cpu_up			= native_cpu_up,
305 	.cpu_die		= native_cpu_die,
306 	.cpu_disable		= native_cpu_disable,
307 	.play_dead		= native_play_dead,
308 
309 	.send_call_func_ipi	= native_send_call_func_ipi,
310 	.send_call_func_single_ipi = native_send_call_func_single_ipi,
311 };
312 EXPORT_SYMBOL_GPL(smp_ops);
313