xref: /openbmc/linux/arch/x86/kernel/smp.c (revision 4da722ca)
1 /*
2  *	Intel SMP support routines.
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *      (c) 2002,2003 Andi Kleen, SuSE Labs.
7  *
8  *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
9  *
10  *	This code is released under the GNU General Public License version 2 or
11  *	later.
12  */
13 
14 #include <linux/init.h>
15 
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/spinlock.h>
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mc146818rtc.h>
22 #include <linux/cache.h>
23 #include <linux/interrupt.h>
24 #include <linux/cpu.h>
25 #include <linux/gfp.h>
26 
27 #include <asm/mtrr.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/proto.h>
31 #include <asm/apic.h>
32 #include <asm/nmi.h>
33 #include <asm/mce.h>
34 #include <asm/trace/irq_vectors.h>
35 #include <asm/kexec.h>
36 #include <asm/virtext.h>
37 
38 /*
39  *	Some notes on x86 processor bugs affecting SMP operation:
40  *
41  *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
42  *	The Linux implications for SMP are handled as follows:
43  *
44  *	Pentium III / [Xeon]
45  *		None of the E1AP-E3AP errata are visible to the user.
46  *
47  *	E1AP.	see PII A1AP
48  *	E2AP.	see PII A2AP
49  *	E3AP.	see PII A3AP
50  *
51  *	Pentium II / [Xeon]
52  *		None of the A1AP-A3AP errata are visible to the user.
53  *
54  *	A1AP.	see PPro 1AP
55  *	A2AP.	see PPro 2AP
56  *	A3AP.	see PPro 7AP
57  *
58  *	Pentium Pro
59  *		None of 1AP-9AP errata are visible to the normal user,
60  *	except occasional delivery of 'spurious interrupt' as trap #15.
61  *	This is very rare and a non-problem.
62  *
63  *	1AP.	Linux maps APIC as non-cacheable
64  *	2AP.	worked around in hardware
65  *	3AP.	fixed in C0 and above steppings microcode update.
66  *		Linux does not use excessive STARTUP_IPIs.
67  *	4AP.	worked around in hardware
68  *	5AP.	symmetric IO mode (normal Linux operation) not affected.
69  *		'noapic' mode has vector 0xf filled out properly.
70  *	6AP.	'noapic' mode might be affected - fixed in later steppings
71  *	7AP.	We do not assume writes to the LVT deassering IRQs
72  *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
73  *	9AP.	We do not use mixed mode
74  *
75  *	Pentium
76  *		There is a marginal case where REP MOVS on 100MHz SMP
77  *	machines with B stepping processors can fail. XXX should provide
78  *	an L1cache=Writethrough or L1cache=off option.
79  *
80  *		B stepping CPUs may hang. There are hardware work arounds
81  *	for this. We warn about it in case your board doesn't have the work
82  *	arounds. Basically that's so I can tell anyone with a B stepping
83  *	CPU and SMP problems "tough".
84  *
85  *	Specific items [From Pentium Processor Specification Update]
86  *
87  *	1AP.	Linux doesn't use remote read
88  *	2AP.	Linux doesn't trust APIC errors
89  *	3AP.	We work around this
90  *	4AP.	Linux never generated 3 interrupts of the same priority
91  *		to cause a lost local interrupt.
92  *	5AP.	Remote read is never used
93  *	6AP.	not affected - worked around in hardware
94  *	7AP.	not affected - worked around in hardware
95  *	8AP.	worked around in hardware - we get explicit CS errors if not
96  *	9AP.	only 'noapic' mode affected. Might generate spurious
97  *		interrupts, we log only the first one and count the
98  *		rest silently.
99  *	10AP.	not affected - worked around in hardware
100  *	11AP.	Linux reads the APIC between writes to avoid this, as per
101  *		the documentation. Make sure you preserve this as it affects
102  *		the C stepping chips too.
103  *	12AP.	not affected - worked around in hardware
104  *	13AP.	not affected - worked around in hardware
105  *	14AP.	we always deassert INIT during bootup
106  *	15AP.	not affected - worked around in hardware
107  *	16AP.	not affected - worked around in hardware
108  *	17AP.	not affected - worked around in hardware
109  *	18AP.	not affected - worked around in hardware
110  *	19AP.	not affected - worked around in BIOS
111  *
112  *	If this sounds worrying believe me these bugs are either ___RARE___,
113  *	or are signal timing bugs worked around in hardware and there's
114  *	about nothing of note with C stepping upwards.
115  */
116 
117 static atomic_t stopping_cpu = ATOMIC_INIT(-1);
118 static bool smp_no_nmi_ipi = false;
119 
120 /*
121  * this function sends a 'reschedule' IPI to another CPU.
122  * it goes straight through and wastes no time serializing
123  * anything. Worst case is that we lose a reschedule ...
124  */
125 static void native_smp_send_reschedule(int cpu)
126 {
127 	if (unlikely(cpu_is_offline(cpu))) {
128 		WARN(1, "sched: Unexpected reschedule of offline CPU#%d!\n", cpu);
129 		return;
130 	}
131 	apic->send_IPI(cpu, RESCHEDULE_VECTOR);
132 }
133 
134 void native_send_call_func_single_ipi(int cpu)
135 {
136 	apic->send_IPI(cpu, CALL_FUNCTION_SINGLE_VECTOR);
137 }
138 
139 void native_send_call_func_ipi(const struct cpumask *mask)
140 {
141 	cpumask_var_t allbutself;
142 
143 	if (!alloc_cpumask_var(&allbutself, GFP_ATOMIC)) {
144 		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
145 		return;
146 	}
147 
148 	cpumask_copy(allbutself, cpu_online_mask);
149 	cpumask_clear_cpu(smp_processor_id(), allbutself);
150 
151 	if (cpumask_equal(mask, allbutself) &&
152 	    cpumask_equal(cpu_online_mask, cpu_callout_mask))
153 		apic->send_IPI_allbutself(CALL_FUNCTION_VECTOR);
154 	else
155 		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
156 
157 	free_cpumask_var(allbutself);
158 }
159 
160 static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
161 {
162 	/* We are registered on stopping cpu too, avoid spurious NMI */
163 	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
164 		return NMI_HANDLED;
165 
166 	cpu_emergency_vmxoff();
167 	stop_this_cpu(NULL);
168 
169 	return NMI_HANDLED;
170 }
171 
172 /*
173  * this function calls the 'stop' function on all other CPUs in the system.
174  */
175 
176 asmlinkage __visible void smp_reboot_interrupt(void)
177 {
178 	ipi_entering_ack_irq();
179 	cpu_emergency_vmxoff();
180 	stop_this_cpu(NULL);
181 	irq_exit();
182 }
183 
184 static void native_stop_other_cpus(int wait)
185 {
186 	unsigned long flags;
187 	unsigned long timeout;
188 
189 	if (reboot_force)
190 		return;
191 
192 	/*
193 	 * Use an own vector here because smp_call_function
194 	 * does lots of things not suitable in a panic situation.
195 	 */
196 
197 	/*
198 	 * We start by using the REBOOT_VECTOR irq.
199 	 * The irq is treated as a sync point to allow critical
200 	 * regions of code on other cpus to release their spin locks
201 	 * and re-enable irqs.  Jumping straight to an NMI might
202 	 * accidentally cause deadlocks with further shutdown/panic
203 	 * code.  By syncing, we give the cpus up to one second to
204 	 * finish their work before we force them off with the NMI.
205 	 */
206 	if (num_online_cpus() > 1) {
207 		/* did someone beat us here? */
208 		if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
209 			return;
210 
211 		/* sync above data before sending IRQ */
212 		wmb();
213 
214 		apic->send_IPI_allbutself(REBOOT_VECTOR);
215 
216 		/*
217 		 * Don't wait longer than a second if the caller
218 		 * didn't ask us to wait.
219 		 */
220 		timeout = USEC_PER_SEC;
221 		while (num_online_cpus() > 1 && (wait || timeout--))
222 			udelay(1);
223 	}
224 
225 	/* if the REBOOT_VECTOR didn't work, try with the NMI */
226 	if ((num_online_cpus() > 1) && (!smp_no_nmi_ipi))  {
227 		if (register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
228 					 NMI_FLAG_FIRST, "smp_stop"))
229 			/* Note: we ignore failures here */
230 			/* Hope the REBOOT_IRQ is good enough */
231 			goto finish;
232 
233 		/* sync above data before sending IRQ */
234 		wmb();
235 
236 		pr_emerg("Shutting down cpus with NMI\n");
237 
238 		apic->send_IPI_allbutself(NMI_VECTOR);
239 
240 		/*
241 		 * Don't wait longer than a 10 ms if the caller
242 		 * didn't ask us to wait.
243 		 */
244 		timeout = USEC_PER_MSEC * 10;
245 		while (num_online_cpus() > 1 && (wait || timeout--))
246 			udelay(1);
247 	}
248 
249 finish:
250 	local_irq_save(flags);
251 	disable_local_APIC();
252 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
253 	local_irq_restore(flags);
254 }
255 
256 /*
257  * Reschedule call back.
258  */
259 static inline void __smp_reschedule_interrupt(void)
260 {
261 	inc_irq_stat(irq_resched_count);
262 	scheduler_ipi();
263 }
264 
265 __visible void __irq_entry smp_reschedule_interrupt(struct pt_regs *regs)
266 {
267 	ack_APIC_irq();
268 	__smp_reschedule_interrupt();
269 	/*
270 	 * KVM uses this interrupt to force a cpu out of guest mode
271 	 */
272 }
273 
274 __visible void __irq_entry smp_trace_reschedule_interrupt(struct pt_regs *regs)
275 {
276 	/*
277 	 * Need to call irq_enter() before calling the trace point.
278 	 * __smp_reschedule_interrupt() calls irq_enter/exit() too (in
279 	 * scheduler_ipi(). This is OK, since those functions are allowed
280 	 * to nest.
281 	 */
282 	ipi_entering_ack_irq();
283 	trace_reschedule_entry(RESCHEDULE_VECTOR);
284 	__smp_reschedule_interrupt();
285 	trace_reschedule_exit(RESCHEDULE_VECTOR);
286 	exiting_irq();
287 	/*
288 	 * KVM uses this interrupt to force a cpu out of guest mode
289 	 */
290 }
291 
292 static inline void __smp_call_function_interrupt(void)
293 {
294 	generic_smp_call_function_interrupt();
295 	inc_irq_stat(irq_call_count);
296 }
297 
298 __visible void __irq_entry smp_call_function_interrupt(struct pt_regs *regs)
299 {
300 	ipi_entering_ack_irq();
301 	__smp_call_function_interrupt();
302 	exiting_irq();
303 }
304 
305 __visible void __irq_entry
306 smp_trace_call_function_interrupt(struct pt_regs *regs)
307 {
308 	ipi_entering_ack_irq();
309 	trace_call_function_entry(CALL_FUNCTION_VECTOR);
310 	__smp_call_function_interrupt();
311 	trace_call_function_exit(CALL_FUNCTION_VECTOR);
312 	exiting_irq();
313 }
314 
315 static inline void __smp_call_function_single_interrupt(void)
316 {
317 	generic_smp_call_function_single_interrupt();
318 	inc_irq_stat(irq_call_count);
319 }
320 
321 __visible void __irq_entry
322 smp_call_function_single_interrupt(struct pt_regs *regs)
323 {
324 	ipi_entering_ack_irq();
325 	__smp_call_function_single_interrupt();
326 	exiting_irq();
327 }
328 
329 __visible void __irq_entry
330 smp_trace_call_function_single_interrupt(struct pt_regs *regs)
331 {
332 	ipi_entering_ack_irq();
333 	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
334 	__smp_call_function_single_interrupt();
335 	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
336 	exiting_irq();
337 }
338 
339 static int __init nonmi_ipi_setup(char *str)
340 {
341 	smp_no_nmi_ipi = true;
342 	return 1;
343 }
344 
345 __setup("nonmi_ipi", nonmi_ipi_setup);
346 
347 struct smp_ops smp_ops = {
348 	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
349 	.smp_prepare_cpus	= native_smp_prepare_cpus,
350 	.smp_cpus_done		= native_smp_cpus_done,
351 
352 	.stop_other_cpus	= native_stop_other_cpus,
353 #if defined(CONFIG_KEXEC_CORE)
354 	.crash_stop_other_cpus	= kdump_nmi_shootdown_cpus,
355 #endif
356 	.smp_send_reschedule	= native_smp_send_reschedule,
357 
358 	.cpu_up			= native_cpu_up,
359 	.cpu_die		= native_cpu_die,
360 	.cpu_disable		= native_cpu_disable,
361 	.play_dead		= native_play_dead,
362 
363 	.send_call_func_ipi	= native_send_call_func_ipi,
364 	.send_call_func_single_ipi = native_send_call_func_single_ipi,
365 };
366 EXPORT_SYMBOL_GPL(smp_ops);
367