xref: /openbmc/linux/arch/x86/kernel/smp.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  *	Intel SMP support routines.
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *      (c) 2002,2003 Andi Kleen, SuSE Labs.
7  *
8  *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
9  *
10  *	This code is released under the GNU General Public License version 2 or
11  *	later.
12  */
13 
14 #include <linux/init.h>
15 
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/spinlock.h>
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mc146818rtc.h>
22 #include <linux/cache.h>
23 #include <linux/interrupt.h>
24 #include <linux/cpu.h>
25 #include <linux/gfp.h>
26 
27 #include <asm/mtrr.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/proto.h>
31 #include <asm/apic.h>
32 #include <asm/nmi.h>
33 #include <asm/mce.h>
34 #include <asm/trace/irq_vectors.h>
35 /*
36  *	Some notes on x86 processor bugs affecting SMP operation:
37  *
38  *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
39  *	The Linux implications for SMP are handled as follows:
40  *
41  *	Pentium III / [Xeon]
42  *		None of the E1AP-E3AP errata are visible to the user.
43  *
44  *	E1AP.	see PII A1AP
45  *	E2AP.	see PII A2AP
46  *	E3AP.	see PII A3AP
47  *
48  *	Pentium II / [Xeon]
49  *		None of the A1AP-A3AP errata are visible to the user.
50  *
51  *	A1AP.	see PPro 1AP
52  *	A2AP.	see PPro 2AP
53  *	A3AP.	see PPro 7AP
54  *
55  *	Pentium Pro
56  *		None of 1AP-9AP errata are visible to the normal user,
57  *	except occasional delivery of 'spurious interrupt' as trap #15.
58  *	This is very rare and a non-problem.
59  *
60  *	1AP.	Linux maps APIC as non-cacheable
61  *	2AP.	worked around in hardware
62  *	3AP.	fixed in C0 and above steppings microcode update.
63  *		Linux does not use excessive STARTUP_IPIs.
64  *	4AP.	worked around in hardware
65  *	5AP.	symmetric IO mode (normal Linux operation) not affected.
66  *		'noapic' mode has vector 0xf filled out properly.
67  *	6AP.	'noapic' mode might be affected - fixed in later steppings
68  *	7AP.	We do not assume writes to the LVT deassering IRQs
69  *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
70  *	9AP.	We do not use mixed mode
71  *
72  *	Pentium
73  *		There is a marginal case where REP MOVS on 100MHz SMP
74  *	machines with B stepping processors can fail. XXX should provide
75  *	an L1cache=Writethrough or L1cache=off option.
76  *
77  *		B stepping CPUs may hang. There are hardware work arounds
78  *	for this. We warn about it in case your board doesn't have the work
79  *	arounds. Basically that's so I can tell anyone with a B stepping
80  *	CPU and SMP problems "tough".
81  *
82  *	Specific items [From Pentium Processor Specification Update]
83  *
84  *	1AP.	Linux doesn't use remote read
85  *	2AP.	Linux doesn't trust APIC errors
86  *	3AP.	We work around this
87  *	4AP.	Linux never generated 3 interrupts of the same priority
88  *		to cause a lost local interrupt.
89  *	5AP.	Remote read is never used
90  *	6AP.	not affected - worked around in hardware
91  *	7AP.	not affected - worked around in hardware
92  *	8AP.	worked around in hardware - we get explicit CS errors if not
93  *	9AP.	only 'noapic' mode affected. Might generate spurious
94  *		interrupts, we log only the first one and count the
95  *		rest silently.
96  *	10AP.	not affected - worked around in hardware
97  *	11AP.	Linux reads the APIC between writes to avoid this, as per
98  *		the documentation. Make sure you preserve this as it affects
99  *		the C stepping chips too.
100  *	12AP.	not affected - worked around in hardware
101  *	13AP.	not affected - worked around in hardware
102  *	14AP.	we always deassert INIT during bootup
103  *	15AP.	not affected - worked around in hardware
104  *	16AP.	not affected - worked around in hardware
105  *	17AP.	not affected - worked around in hardware
106  *	18AP.	not affected - worked around in hardware
107  *	19AP.	not affected - worked around in BIOS
108  *
109  *	If this sounds worrying believe me these bugs are either ___RARE___,
110  *	or are signal timing bugs worked around in hardware and there's
111  *	about nothing of note with C stepping upwards.
112  */
113 
114 static atomic_t stopping_cpu = ATOMIC_INIT(-1);
115 static bool smp_no_nmi_ipi = false;
116 
117 /*
118  * this function sends a 'reschedule' IPI to another CPU.
119  * it goes straight through and wastes no time serializing
120  * anything. Worst case is that we lose a reschedule ...
121  */
122 static void native_smp_send_reschedule(int cpu)
123 {
124 	if (unlikely(cpu_is_offline(cpu))) {
125 		WARN_ON(1);
126 		return;
127 	}
128 	apic->send_IPI_mask(cpumask_of(cpu), RESCHEDULE_VECTOR);
129 }
130 
131 void native_send_call_func_single_ipi(int cpu)
132 {
133 	apic->send_IPI_mask(cpumask_of(cpu), CALL_FUNCTION_SINGLE_VECTOR);
134 }
135 
136 void native_send_call_func_ipi(const struct cpumask *mask)
137 {
138 	cpumask_var_t allbutself;
139 
140 	if (!alloc_cpumask_var(&allbutself, GFP_ATOMIC)) {
141 		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
142 		return;
143 	}
144 
145 	cpumask_copy(allbutself, cpu_online_mask);
146 	cpumask_clear_cpu(smp_processor_id(), allbutself);
147 
148 	if (cpumask_equal(mask, allbutself) &&
149 	    cpumask_equal(cpu_online_mask, cpu_callout_mask))
150 		apic->send_IPI_allbutself(CALL_FUNCTION_VECTOR);
151 	else
152 		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
153 
154 	free_cpumask_var(allbutself);
155 }
156 
157 static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
158 {
159 	/* We are registered on stopping cpu too, avoid spurious NMI */
160 	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
161 		return NMI_HANDLED;
162 
163 	stop_this_cpu(NULL);
164 
165 	return NMI_HANDLED;
166 }
167 
168 /*
169  * this function calls the 'stop' function on all other CPUs in the system.
170  */
171 
172 asmlinkage __visible void smp_reboot_interrupt(void)
173 {
174 	ipi_entering_ack_irq();
175 	stop_this_cpu(NULL);
176 	irq_exit();
177 }
178 
179 static void native_stop_other_cpus(int wait)
180 {
181 	unsigned long flags;
182 	unsigned long timeout;
183 
184 	if (reboot_force)
185 		return;
186 
187 	/*
188 	 * Use an own vector here because smp_call_function
189 	 * does lots of things not suitable in a panic situation.
190 	 */
191 
192 	/*
193 	 * We start by using the REBOOT_VECTOR irq.
194 	 * The irq is treated as a sync point to allow critical
195 	 * regions of code on other cpus to release their spin locks
196 	 * and re-enable irqs.  Jumping straight to an NMI might
197 	 * accidentally cause deadlocks with further shutdown/panic
198 	 * code.  By syncing, we give the cpus up to one second to
199 	 * finish their work before we force them off with the NMI.
200 	 */
201 	if (num_online_cpus() > 1) {
202 		/* did someone beat us here? */
203 		if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
204 			return;
205 
206 		/* sync above data before sending IRQ */
207 		wmb();
208 
209 		apic->send_IPI_allbutself(REBOOT_VECTOR);
210 
211 		/*
212 		 * Don't wait longer than a second if the caller
213 		 * didn't ask us to wait.
214 		 */
215 		timeout = USEC_PER_SEC;
216 		while (num_online_cpus() > 1 && (wait || timeout--))
217 			udelay(1);
218 	}
219 
220 	/* if the REBOOT_VECTOR didn't work, try with the NMI */
221 	if ((num_online_cpus() > 1) && (!smp_no_nmi_ipi))  {
222 		if (register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
223 					 NMI_FLAG_FIRST, "smp_stop"))
224 			/* Note: we ignore failures here */
225 			/* Hope the REBOOT_IRQ is good enough */
226 			goto finish;
227 
228 		/* sync above data before sending IRQ */
229 		wmb();
230 
231 		pr_emerg("Shutting down cpus with NMI\n");
232 
233 		apic->send_IPI_allbutself(NMI_VECTOR);
234 
235 		/*
236 		 * Don't wait longer than a 10 ms if the caller
237 		 * didn't ask us to wait.
238 		 */
239 		timeout = USEC_PER_MSEC * 10;
240 		while (num_online_cpus() > 1 && (wait || timeout--))
241 			udelay(1);
242 	}
243 
244 finish:
245 	local_irq_save(flags);
246 	disable_local_APIC();
247 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
248 	local_irq_restore(flags);
249 }
250 
251 /*
252  * Reschedule call back.
253  */
254 static inline void __smp_reschedule_interrupt(void)
255 {
256 	inc_irq_stat(irq_resched_count);
257 	scheduler_ipi();
258 }
259 
260 __visible void smp_reschedule_interrupt(struct pt_regs *regs)
261 {
262 	ack_APIC_irq();
263 	__smp_reschedule_interrupt();
264 	/*
265 	 * KVM uses this interrupt to force a cpu out of guest mode
266 	 */
267 }
268 
269 __visible void smp_trace_reschedule_interrupt(struct pt_regs *regs)
270 {
271 	/*
272 	 * Need to call irq_enter() before calling the trace point.
273 	 * __smp_reschedule_interrupt() calls irq_enter/exit() too (in
274 	 * scheduler_ipi(). This is OK, since those functions are allowed
275 	 * to nest.
276 	 */
277 	ipi_entering_ack_irq();
278 	trace_reschedule_entry(RESCHEDULE_VECTOR);
279 	__smp_reschedule_interrupt();
280 	trace_reschedule_exit(RESCHEDULE_VECTOR);
281 	exiting_irq();
282 	/*
283 	 * KVM uses this interrupt to force a cpu out of guest mode
284 	 */
285 }
286 
287 static inline void __smp_call_function_interrupt(void)
288 {
289 	generic_smp_call_function_interrupt();
290 	inc_irq_stat(irq_call_count);
291 }
292 
293 __visible void smp_call_function_interrupt(struct pt_regs *regs)
294 {
295 	ipi_entering_ack_irq();
296 	__smp_call_function_interrupt();
297 	exiting_irq();
298 }
299 
300 __visible void smp_trace_call_function_interrupt(struct pt_regs *regs)
301 {
302 	ipi_entering_ack_irq();
303 	trace_call_function_entry(CALL_FUNCTION_VECTOR);
304 	__smp_call_function_interrupt();
305 	trace_call_function_exit(CALL_FUNCTION_VECTOR);
306 	exiting_irq();
307 }
308 
309 static inline void __smp_call_function_single_interrupt(void)
310 {
311 	generic_smp_call_function_single_interrupt();
312 	inc_irq_stat(irq_call_count);
313 }
314 
315 __visible void smp_call_function_single_interrupt(struct pt_regs *regs)
316 {
317 	ipi_entering_ack_irq();
318 	__smp_call_function_single_interrupt();
319 	exiting_irq();
320 }
321 
322 __visible void smp_trace_call_function_single_interrupt(struct pt_regs *regs)
323 {
324 	ipi_entering_ack_irq();
325 	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
326 	__smp_call_function_single_interrupt();
327 	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
328 	exiting_irq();
329 }
330 
331 static int __init nonmi_ipi_setup(char *str)
332 {
333 	smp_no_nmi_ipi = true;
334 	return 1;
335 }
336 
337 __setup("nonmi_ipi", nonmi_ipi_setup);
338 
339 struct smp_ops smp_ops = {
340 	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
341 	.smp_prepare_cpus	= native_smp_prepare_cpus,
342 	.smp_cpus_done		= native_smp_cpus_done,
343 
344 	.stop_other_cpus	= native_stop_other_cpus,
345 	.smp_send_reschedule	= native_smp_send_reschedule,
346 
347 	.cpu_up			= native_cpu_up,
348 	.cpu_die		= native_cpu_die,
349 	.cpu_disable		= native_cpu_disable,
350 	.play_dead		= native_play_dead,
351 
352 	.send_call_func_ipi	= native_send_call_func_ipi,
353 	.send_call_func_single_ipi = native_send_call_func_single_ipi,
354 };
355 EXPORT_SYMBOL_GPL(smp_ops);
356