xref: /openbmc/linux/arch/x86/kernel/smp.c (revision 206a81c1)
1 /*
2  *	Intel SMP support routines.
3  *
4  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *      (c) 2002,2003 Andi Kleen, SuSE Labs.
7  *
8  *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
9  *
10  *	This code is released under the GNU General Public License version 2 or
11  *	later.
12  */
13 
14 #include <linux/init.h>
15 
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/spinlock.h>
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mc146818rtc.h>
22 #include <linux/cache.h>
23 #include <linux/interrupt.h>
24 #include <linux/cpu.h>
25 #include <linux/gfp.h>
26 
27 #include <asm/mtrr.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/proto.h>
31 #include <asm/apic.h>
32 #include <asm/nmi.h>
33 #include <asm/trace/irq_vectors.h>
34 /*
35  *	Some notes on x86 processor bugs affecting SMP operation:
36  *
37  *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
38  *	The Linux implications for SMP are handled as follows:
39  *
40  *	Pentium III / [Xeon]
41  *		None of the E1AP-E3AP errata are visible to the user.
42  *
43  *	E1AP.	see PII A1AP
44  *	E2AP.	see PII A2AP
45  *	E3AP.	see PII A3AP
46  *
47  *	Pentium II / [Xeon]
48  *		None of the A1AP-A3AP errata are visible to the user.
49  *
50  *	A1AP.	see PPro 1AP
51  *	A2AP.	see PPro 2AP
52  *	A3AP.	see PPro 7AP
53  *
54  *	Pentium Pro
55  *		None of 1AP-9AP errata are visible to the normal user,
56  *	except occasional delivery of 'spurious interrupt' as trap #15.
57  *	This is very rare and a non-problem.
58  *
59  *	1AP.	Linux maps APIC as non-cacheable
60  *	2AP.	worked around in hardware
61  *	3AP.	fixed in C0 and above steppings microcode update.
62  *		Linux does not use excessive STARTUP_IPIs.
63  *	4AP.	worked around in hardware
64  *	5AP.	symmetric IO mode (normal Linux operation) not affected.
65  *		'noapic' mode has vector 0xf filled out properly.
66  *	6AP.	'noapic' mode might be affected - fixed in later steppings
67  *	7AP.	We do not assume writes to the LVT deassering IRQs
68  *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
69  *	9AP.	We do not use mixed mode
70  *
71  *	Pentium
72  *		There is a marginal case where REP MOVS on 100MHz SMP
73  *	machines with B stepping processors can fail. XXX should provide
74  *	an L1cache=Writethrough or L1cache=off option.
75  *
76  *		B stepping CPUs may hang. There are hardware work arounds
77  *	for this. We warn about it in case your board doesn't have the work
78  *	arounds. Basically that's so I can tell anyone with a B stepping
79  *	CPU and SMP problems "tough".
80  *
81  *	Specific items [From Pentium Processor Specification Update]
82  *
83  *	1AP.	Linux doesn't use remote read
84  *	2AP.	Linux doesn't trust APIC errors
85  *	3AP.	We work around this
86  *	4AP.	Linux never generated 3 interrupts of the same priority
87  *		to cause a lost local interrupt.
88  *	5AP.	Remote read is never used
89  *	6AP.	not affected - worked around in hardware
90  *	7AP.	not affected - worked around in hardware
91  *	8AP.	worked around in hardware - we get explicit CS errors if not
92  *	9AP.	only 'noapic' mode affected. Might generate spurious
93  *		interrupts, we log only the first one and count the
94  *		rest silently.
95  *	10AP.	not affected - worked around in hardware
96  *	11AP.	Linux reads the APIC between writes to avoid this, as per
97  *		the documentation. Make sure you preserve this as it affects
98  *		the C stepping chips too.
99  *	12AP.	not affected - worked around in hardware
100  *	13AP.	not affected - worked around in hardware
101  *	14AP.	we always deassert INIT during bootup
102  *	15AP.	not affected - worked around in hardware
103  *	16AP.	not affected - worked around in hardware
104  *	17AP.	not affected - worked around in hardware
105  *	18AP.	not affected - worked around in hardware
106  *	19AP.	not affected - worked around in BIOS
107  *
108  *	If this sounds worrying believe me these bugs are either ___RARE___,
109  *	or are signal timing bugs worked around in hardware and there's
110  *	about nothing of note with C stepping upwards.
111  */
112 
113 static atomic_t stopping_cpu = ATOMIC_INIT(-1);
114 static bool smp_no_nmi_ipi = false;
115 
116 /*
117  * this function sends a 'reschedule' IPI to another CPU.
118  * it goes straight through and wastes no time serializing
119  * anything. Worst case is that we lose a reschedule ...
120  */
121 static void native_smp_send_reschedule(int cpu)
122 {
123 	if (unlikely(cpu_is_offline(cpu))) {
124 		WARN_ON(1);
125 		return;
126 	}
127 	apic->send_IPI_mask(cpumask_of(cpu), RESCHEDULE_VECTOR);
128 }
129 
130 void native_send_call_func_single_ipi(int cpu)
131 {
132 	apic->send_IPI_mask(cpumask_of(cpu), CALL_FUNCTION_SINGLE_VECTOR);
133 }
134 
135 void native_send_call_func_ipi(const struct cpumask *mask)
136 {
137 	cpumask_var_t allbutself;
138 
139 	if (!alloc_cpumask_var(&allbutself, GFP_ATOMIC)) {
140 		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
141 		return;
142 	}
143 
144 	cpumask_copy(allbutself, cpu_online_mask);
145 	cpumask_clear_cpu(smp_processor_id(), allbutself);
146 
147 	if (cpumask_equal(mask, allbutself) &&
148 	    cpumask_equal(cpu_online_mask, cpu_callout_mask))
149 		apic->send_IPI_allbutself(CALL_FUNCTION_VECTOR);
150 	else
151 		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
152 
153 	free_cpumask_var(allbutself);
154 }
155 
156 static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
157 {
158 	/* We are registered on stopping cpu too, avoid spurious NMI */
159 	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
160 		return NMI_HANDLED;
161 
162 	stop_this_cpu(NULL);
163 
164 	return NMI_HANDLED;
165 }
166 
167 /*
168  * this function calls the 'stop' function on all other CPUs in the system.
169  */
170 
171 asmlinkage __visible void smp_reboot_interrupt(void)
172 {
173 	ack_APIC_irq();
174 	irq_enter();
175 	stop_this_cpu(NULL);
176 	irq_exit();
177 }
178 
179 static void native_stop_other_cpus(int wait)
180 {
181 	unsigned long flags;
182 	unsigned long timeout;
183 
184 	if (reboot_force)
185 		return;
186 
187 	/*
188 	 * Use an own vector here because smp_call_function
189 	 * does lots of things not suitable in a panic situation.
190 	 */
191 
192 	/*
193 	 * We start by using the REBOOT_VECTOR irq.
194 	 * The irq is treated as a sync point to allow critical
195 	 * regions of code on other cpus to release their spin locks
196 	 * and re-enable irqs.  Jumping straight to an NMI might
197 	 * accidentally cause deadlocks with further shutdown/panic
198 	 * code.  By syncing, we give the cpus up to one second to
199 	 * finish their work before we force them off with the NMI.
200 	 */
201 	if (num_online_cpus() > 1) {
202 		/* did someone beat us here? */
203 		if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
204 			return;
205 
206 		/* sync above data before sending IRQ */
207 		wmb();
208 
209 		apic->send_IPI_allbutself(REBOOT_VECTOR);
210 
211 		/*
212 		 * Don't wait longer than a second if the caller
213 		 * didn't ask us to wait.
214 		 */
215 		timeout = USEC_PER_SEC;
216 		while (num_online_cpus() > 1 && (wait || timeout--))
217 			udelay(1);
218 	}
219 
220 	/* if the REBOOT_VECTOR didn't work, try with the NMI */
221 	if ((num_online_cpus() > 1) && (!smp_no_nmi_ipi))  {
222 		if (register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
223 					 NMI_FLAG_FIRST, "smp_stop"))
224 			/* Note: we ignore failures here */
225 			/* Hope the REBOOT_IRQ is good enough */
226 			goto finish;
227 
228 		/* sync above data before sending IRQ */
229 		wmb();
230 
231 		pr_emerg("Shutting down cpus with NMI\n");
232 
233 		apic->send_IPI_allbutself(NMI_VECTOR);
234 
235 		/*
236 		 * Don't wait longer than a 10 ms if the caller
237 		 * didn't ask us to wait.
238 		 */
239 		timeout = USEC_PER_MSEC * 10;
240 		while (num_online_cpus() > 1 && (wait || timeout--))
241 			udelay(1);
242 	}
243 
244 finish:
245 	local_irq_save(flags);
246 	disable_local_APIC();
247 	local_irq_restore(flags);
248 }
249 
250 /*
251  * Reschedule call back.
252  */
253 static inline void __smp_reschedule_interrupt(void)
254 {
255 	inc_irq_stat(irq_resched_count);
256 	scheduler_ipi();
257 }
258 
259 __visible void smp_reschedule_interrupt(struct pt_regs *regs)
260 {
261 	ack_APIC_irq();
262 	__smp_reschedule_interrupt();
263 	/*
264 	 * KVM uses this interrupt to force a cpu out of guest mode
265 	 */
266 }
267 
268 static inline void smp_entering_irq(void)
269 {
270 	ack_APIC_irq();
271 	irq_enter();
272 }
273 
274 __visible void smp_trace_reschedule_interrupt(struct pt_regs *regs)
275 {
276 	/*
277 	 * Need to call irq_enter() before calling the trace point.
278 	 * __smp_reschedule_interrupt() calls irq_enter/exit() too (in
279 	 * scheduler_ipi(). This is OK, since those functions are allowed
280 	 * to nest.
281 	 */
282 	smp_entering_irq();
283 	trace_reschedule_entry(RESCHEDULE_VECTOR);
284 	__smp_reschedule_interrupt();
285 	trace_reschedule_exit(RESCHEDULE_VECTOR);
286 	exiting_irq();
287 	/*
288 	 * KVM uses this interrupt to force a cpu out of guest mode
289 	 */
290 }
291 
292 static inline void __smp_call_function_interrupt(void)
293 {
294 	generic_smp_call_function_interrupt();
295 	inc_irq_stat(irq_call_count);
296 }
297 
298 __visible void smp_call_function_interrupt(struct pt_regs *regs)
299 {
300 	smp_entering_irq();
301 	__smp_call_function_interrupt();
302 	exiting_irq();
303 }
304 
305 __visible void smp_trace_call_function_interrupt(struct pt_regs *regs)
306 {
307 	smp_entering_irq();
308 	trace_call_function_entry(CALL_FUNCTION_VECTOR);
309 	__smp_call_function_interrupt();
310 	trace_call_function_exit(CALL_FUNCTION_VECTOR);
311 	exiting_irq();
312 }
313 
314 static inline void __smp_call_function_single_interrupt(void)
315 {
316 	generic_smp_call_function_single_interrupt();
317 	inc_irq_stat(irq_call_count);
318 }
319 
320 __visible void smp_call_function_single_interrupt(struct pt_regs *regs)
321 {
322 	smp_entering_irq();
323 	__smp_call_function_single_interrupt();
324 	exiting_irq();
325 }
326 
327 __visible void smp_trace_call_function_single_interrupt(struct pt_regs *regs)
328 {
329 	smp_entering_irq();
330 	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
331 	__smp_call_function_single_interrupt();
332 	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
333 	exiting_irq();
334 }
335 
336 static int __init nonmi_ipi_setup(char *str)
337 {
338 	smp_no_nmi_ipi = true;
339 	return 1;
340 }
341 
342 __setup("nonmi_ipi", nonmi_ipi_setup);
343 
344 struct smp_ops smp_ops = {
345 	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
346 	.smp_prepare_cpus	= native_smp_prepare_cpus,
347 	.smp_cpus_done		= native_smp_cpus_done,
348 
349 	.stop_other_cpus	= native_stop_other_cpus,
350 	.smp_send_reschedule	= native_smp_send_reschedule,
351 
352 	.cpu_up			= native_cpu_up,
353 	.cpu_die		= native_cpu_die,
354 	.cpu_disable		= native_cpu_disable,
355 	.play_dead		= native_play_dead,
356 
357 	.send_call_func_ipi	= native_send_call_func_ipi,
358 	.send_call_func_single_ipi = native_send_call_func_single_ipi,
359 };
360 EXPORT_SYMBOL_GPL(smp_ops);
361