xref: /openbmc/linux/arch/x86/kernel/sev.c (revision d8f5ce3c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2019 SUSE
6  *
7  * Author: Joerg Roedel <jroedel@suse.de>
8  */
9 
10 #define pr_fmt(fmt)	"SEV: " fmt
11 
12 #include <linux/sched/debug.h>	/* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/cc_platform.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/efi.h>
23 #include <linux/platform_device.h>
24 #include <linux/io.h>
25 #include <linux/psp-sev.h>
26 #include <linux/dmi.h>
27 #include <uapi/linux/sev-guest.h>
28 
29 #include <asm/init.h>
30 #include <asm/cpu_entry_area.h>
31 #include <asm/stacktrace.h>
32 #include <asm/sev.h>
33 #include <asm/insn-eval.h>
34 #include <asm/fpu/xcr.h>
35 #include <asm/processor.h>
36 #include <asm/realmode.h>
37 #include <asm/setup.h>
38 #include <asm/traps.h>
39 #include <asm/svm.h>
40 #include <asm/smp.h>
41 #include <asm/cpu.h>
42 #include <asm/apic.h>
43 #include <asm/cpuid.h>
44 #include <asm/cmdline.h>
45 
46 #define DR7_RESET_VALUE        0x400
47 
48 /* AP INIT values as documented in the APM2  section "Processor Initialization State" */
49 #define AP_INIT_CS_LIMIT		0xffff
50 #define AP_INIT_DS_LIMIT		0xffff
51 #define AP_INIT_LDTR_LIMIT		0xffff
52 #define AP_INIT_GDTR_LIMIT		0xffff
53 #define AP_INIT_IDTR_LIMIT		0xffff
54 #define AP_INIT_TR_LIMIT		0xffff
55 #define AP_INIT_RFLAGS_DEFAULT		0x2
56 #define AP_INIT_DR6_DEFAULT		0xffff0ff0
57 #define AP_INIT_GPAT_DEFAULT		0x0007040600070406ULL
58 #define AP_INIT_XCR0_DEFAULT		0x1
59 #define AP_INIT_X87_FTW_DEFAULT		0x5555
60 #define AP_INIT_X87_FCW_DEFAULT		0x0040
61 #define AP_INIT_CR0_DEFAULT		0x60000010
62 #define AP_INIT_MXCSR_DEFAULT		0x1f80
63 
64 /* For early boot hypervisor communication in SEV-ES enabled guests */
65 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
66 
67 /*
68  * Needs to be in the .data section because we need it NULL before bss is
69  * cleared
70  */
71 static struct ghcb *boot_ghcb __section(".data");
72 
73 /* Bitmap of SEV features supported by the hypervisor */
74 static u64 sev_hv_features __ro_after_init;
75 
76 /* #VC handler runtime per-CPU data */
77 struct sev_es_runtime_data {
78 	struct ghcb ghcb_page;
79 
80 	/*
81 	 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
82 	 * It is needed when an NMI happens while the #VC handler uses the real
83 	 * GHCB, and the NMI handler itself is causing another #VC exception. In
84 	 * that case the GHCB content of the first handler needs to be backed up
85 	 * and restored.
86 	 */
87 	struct ghcb backup_ghcb;
88 
89 	/*
90 	 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
91 	 * There is no need for it to be atomic, because nothing is written to
92 	 * the GHCB between the read and the write of ghcb_active. So it is safe
93 	 * to use it when a nested #VC exception happens before the write.
94 	 *
95 	 * This is necessary for example in the #VC->NMI->#VC case when the NMI
96 	 * happens while the first #VC handler uses the GHCB. When the NMI code
97 	 * raises a second #VC handler it might overwrite the contents of the
98 	 * GHCB written by the first handler. To avoid this the content of the
99 	 * GHCB is saved and restored when the GHCB is detected to be in use
100 	 * already.
101 	 */
102 	bool ghcb_active;
103 	bool backup_ghcb_active;
104 
105 	/*
106 	 * Cached DR7 value - write it on DR7 writes and return it on reads.
107 	 * That value will never make it to the real hardware DR7 as debugging
108 	 * is currently unsupported in SEV-ES guests.
109 	 */
110 	unsigned long dr7;
111 };
112 
113 struct ghcb_state {
114 	struct ghcb *ghcb;
115 };
116 
117 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
118 static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
119 
120 struct sev_config {
121 	__u64 debug		: 1,
122 
123 	      /*
124 	       * A flag used by __set_pages_state() that indicates when the
125 	       * per-CPU GHCB has been created and registered and thus can be
126 	       * used by the BSP instead of the early boot GHCB.
127 	       *
128 	       * For APs, the per-CPU GHCB is created before they are started
129 	       * and registered upon startup, so this flag can be used globally
130 	       * for the BSP and APs.
131 	       */
132 	      ghcbs_initialized	: 1,
133 
134 	      __reserved	: 62;
135 };
136 
137 static struct sev_config sev_cfg __read_mostly;
138 
139 static __always_inline bool on_vc_stack(struct pt_regs *regs)
140 {
141 	unsigned long sp = regs->sp;
142 
143 	/* User-mode RSP is not trusted */
144 	if (user_mode(regs))
145 		return false;
146 
147 	/* SYSCALL gap still has user-mode RSP */
148 	if (ip_within_syscall_gap(regs))
149 		return false;
150 
151 	return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
152 }
153 
154 /*
155  * This function handles the case when an NMI is raised in the #VC
156  * exception handler entry code, before the #VC handler has switched off
157  * its IST stack. In this case, the IST entry for #VC must be adjusted,
158  * so that any nested #VC exception will not overwrite the stack
159  * contents of the interrupted #VC handler.
160  *
161  * The IST entry is adjusted unconditionally so that it can be also be
162  * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
163  * nested sev_es_ist_exit() call may adjust back the IST entry too
164  * early.
165  *
166  * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
167  * on the NMI IST stack, as they are only called from NMI handling code
168  * right now.
169  */
170 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
171 {
172 	unsigned long old_ist, new_ist;
173 
174 	/* Read old IST entry */
175 	new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
176 
177 	/*
178 	 * If NMI happened while on the #VC IST stack, set the new IST
179 	 * value below regs->sp, so that the interrupted stack frame is
180 	 * not overwritten by subsequent #VC exceptions.
181 	 */
182 	if (on_vc_stack(regs))
183 		new_ist = regs->sp;
184 
185 	/*
186 	 * Reserve additional 8 bytes and store old IST value so this
187 	 * adjustment can be unrolled in __sev_es_ist_exit().
188 	 */
189 	new_ist -= sizeof(old_ist);
190 	*(unsigned long *)new_ist = old_ist;
191 
192 	/* Set new IST entry */
193 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
194 }
195 
196 void noinstr __sev_es_ist_exit(void)
197 {
198 	unsigned long ist;
199 
200 	/* Read IST entry */
201 	ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
202 
203 	if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
204 		return;
205 
206 	/* Read back old IST entry and write it to the TSS */
207 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
208 }
209 
210 /*
211  * Nothing shall interrupt this code path while holding the per-CPU
212  * GHCB. The backup GHCB is only for NMIs interrupting this path.
213  *
214  * Callers must disable local interrupts around it.
215  */
216 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
217 {
218 	struct sev_es_runtime_data *data;
219 	struct ghcb *ghcb;
220 
221 	WARN_ON(!irqs_disabled());
222 
223 	data = this_cpu_read(runtime_data);
224 	ghcb = &data->ghcb_page;
225 
226 	if (unlikely(data->ghcb_active)) {
227 		/* GHCB is already in use - save its contents */
228 
229 		if (unlikely(data->backup_ghcb_active)) {
230 			/*
231 			 * Backup-GHCB is also already in use. There is no way
232 			 * to continue here so just kill the machine. To make
233 			 * panic() work, mark GHCBs inactive so that messages
234 			 * can be printed out.
235 			 */
236 			data->ghcb_active        = false;
237 			data->backup_ghcb_active = false;
238 
239 			instrumentation_begin();
240 			panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
241 			instrumentation_end();
242 		}
243 
244 		/* Mark backup_ghcb active before writing to it */
245 		data->backup_ghcb_active = true;
246 
247 		state->ghcb = &data->backup_ghcb;
248 
249 		/* Backup GHCB content */
250 		*state->ghcb = *ghcb;
251 	} else {
252 		state->ghcb = NULL;
253 		data->ghcb_active = true;
254 	}
255 
256 	return ghcb;
257 }
258 
259 static inline u64 sev_es_rd_ghcb_msr(void)
260 {
261 	return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
262 }
263 
264 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
265 {
266 	u32 low, high;
267 
268 	low  = (u32)(val);
269 	high = (u32)(val >> 32);
270 
271 	native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
272 }
273 
274 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
275 				unsigned char *buffer)
276 {
277 	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
278 }
279 
280 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
281 {
282 	char buffer[MAX_INSN_SIZE];
283 	int insn_bytes;
284 
285 	insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
286 	if (insn_bytes == 0) {
287 		/* Nothing could be copied */
288 		ctxt->fi.vector     = X86_TRAP_PF;
289 		ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
290 		ctxt->fi.cr2        = ctxt->regs->ip;
291 		return ES_EXCEPTION;
292 	} else if (insn_bytes == -EINVAL) {
293 		/* Effective RIP could not be calculated */
294 		ctxt->fi.vector     = X86_TRAP_GP;
295 		ctxt->fi.error_code = 0;
296 		ctxt->fi.cr2        = 0;
297 		return ES_EXCEPTION;
298 	}
299 
300 	if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
301 		return ES_DECODE_FAILED;
302 
303 	if (ctxt->insn.immediate.got)
304 		return ES_OK;
305 	else
306 		return ES_DECODE_FAILED;
307 }
308 
309 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
310 {
311 	char buffer[MAX_INSN_SIZE];
312 	int res, ret;
313 
314 	res = vc_fetch_insn_kernel(ctxt, buffer);
315 	if (res) {
316 		ctxt->fi.vector     = X86_TRAP_PF;
317 		ctxt->fi.error_code = X86_PF_INSTR;
318 		ctxt->fi.cr2        = ctxt->regs->ip;
319 		return ES_EXCEPTION;
320 	}
321 
322 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
323 	if (ret < 0)
324 		return ES_DECODE_FAILED;
325 	else
326 		return ES_OK;
327 }
328 
329 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
330 {
331 	if (user_mode(ctxt->regs))
332 		return __vc_decode_user_insn(ctxt);
333 	else
334 		return __vc_decode_kern_insn(ctxt);
335 }
336 
337 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
338 				   char *dst, char *buf, size_t size)
339 {
340 	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
341 
342 	/*
343 	 * This function uses __put_user() independent of whether kernel or user
344 	 * memory is accessed. This works fine because __put_user() does no
345 	 * sanity checks of the pointer being accessed. All that it does is
346 	 * to report when the access failed.
347 	 *
348 	 * Also, this function runs in atomic context, so __put_user() is not
349 	 * allowed to sleep. The page-fault handler detects that it is running
350 	 * in atomic context and will not try to take mmap_sem and handle the
351 	 * fault, so additional pagefault_enable()/disable() calls are not
352 	 * needed.
353 	 *
354 	 * The access can't be done via copy_to_user() here because
355 	 * vc_write_mem() must not use string instructions to access unsafe
356 	 * memory. The reason is that MOVS is emulated by the #VC handler by
357 	 * splitting the move up into a read and a write and taking a nested #VC
358 	 * exception on whatever of them is the MMIO access. Using string
359 	 * instructions here would cause infinite nesting.
360 	 */
361 	switch (size) {
362 	case 1: {
363 		u8 d1;
364 		u8 __user *target = (u8 __user *)dst;
365 
366 		memcpy(&d1, buf, 1);
367 		if (__put_user(d1, target))
368 			goto fault;
369 		break;
370 	}
371 	case 2: {
372 		u16 d2;
373 		u16 __user *target = (u16 __user *)dst;
374 
375 		memcpy(&d2, buf, 2);
376 		if (__put_user(d2, target))
377 			goto fault;
378 		break;
379 	}
380 	case 4: {
381 		u32 d4;
382 		u32 __user *target = (u32 __user *)dst;
383 
384 		memcpy(&d4, buf, 4);
385 		if (__put_user(d4, target))
386 			goto fault;
387 		break;
388 	}
389 	case 8: {
390 		u64 d8;
391 		u64 __user *target = (u64 __user *)dst;
392 
393 		memcpy(&d8, buf, 8);
394 		if (__put_user(d8, target))
395 			goto fault;
396 		break;
397 	}
398 	default:
399 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
400 		return ES_UNSUPPORTED;
401 	}
402 
403 	return ES_OK;
404 
405 fault:
406 	if (user_mode(ctxt->regs))
407 		error_code |= X86_PF_USER;
408 
409 	ctxt->fi.vector = X86_TRAP_PF;
410 	ctxt->fi.error_code = error_code;
411 	ctxt->fi.cr2 = (unsigned long)dst;
412 
413 	return ES_EXCEPTION;
414 }
415 
416 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
417 				  char *src, char *buf, size_t size)
418 {
419 	unsigned long error_code = X86_PF_PROT;
420 
421 	/*
422 	 * This function uses __get_user() independent of whether kernel or user
423 	 * memory is accessed. This works fine because __get_user() does no
424 	 * sanity checks of the pointer being accessed. All that it does is
425 	 * to report when the access failed.
426 	 *
427 	 * Also, this function runs in atomic context, so __get_user() is not
428 	 * allowed to sleep. The page-fault handler detects that it is running
429 	 * in atomic context and will not try to take mmap_sem and handle the
430 	 * fault, so additional pagefault_enable()/disable() calls are not
431 	 * needed.
432 	 *
433 	 * The access can't be done via copy_from_user() here because
434 	 * vc_read_mem() must not use string instructions to access unsafe
435 	 * memory. The reason is that MOVS is emulated by the #VC handler by
436 	 * splitting the move up into a read and a write and taking a nested #VC
437 	 * exception on whatever of them is the MMIO access. Using string
438 	 * instructions here would cause infinite nesting.
439 	 */
440 	switch (size) {
441 	case 1: {
442 		u8 d1;
443 		u8 __user *s = (u8 __user *)src;
444 
445 		if (__get_user(d1, s))
446 			goto fault;
447 		memcpy(buf, &d1, 1);
448 		break;
449 	}
450 	case 2: {
451 		u16 d2;
452 		u16 __user *s = (u16 __user *)src;
453 
454 		if (__get_user(d2, s))
455 			goto fault;
456 		memcpy(buf, &d2, 2);
457 		break;
458 	}
459 	case 4: {
460 		u32 d4;
461 		u32 __user *s = (u32 __user *)src;
462 
463 		if (__get_user(d4, s))
464 			goto fault;
465 		memcpy(buf, &d4, 4);
466 		break;
467 	}
468 	case 8: {
469 		u64 d8;
470 		u64 __user *s = (u64 __user *)src;
471 		if (__get_user(d8, s))
472 			goto fault;
473 		memcpy(buf, &d8, 8);
474 		break;
475 	}
476 	default:
477 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
478 		return ES_UNSUPPORTED;
479 	}
480 
481 	return ES_OK;
482 
483 fault:
484 	if (user_mode(ctxt->regs))
485 		error_code |= X86_PF_USER;
486 
487 	ctxt->fi.vector = X86_TRAP_PF;
488 	ctxt->fi.error_code = error_code;
489 	ctxt->fi.cr2 = (unsigned long)src;
490 
491 	return ES_EXCEPTION;
492 }
493 
494 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
495 					   unsigned long vaddr, phys_addr_t *paddr)
496 {
497 	unsigned long va = (unsigned long)vaddr;
498 	unsigned int level;
499 	phys_addr_t pa;
500 	pgd_t *pgd;
501 	pte_t *pte;
502 
503 	pgd = __va(read_cr3_pa());
504 	pgd = &pgd[pgd_index(va)];
505 	pte = lookup_address_in_pgd(pgd, va, &level);
506 	if (!pte) {
507 		ctxt->fi.vector     = X86_TRAP_PF;
508 		ctxt->fi.cr2        = vaddr;
509 		ctxt->fi.error_code = 0;
510 
511 		if (user_mode(ctxt->regs))
512 			ctxt->fi.error_code |= X86_PF_USER;
513 
514 		return ES_EXCEPTION;
515 	}
516 
517 	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
518 		/* Emulated MMIO to/from encrypted memory not supported */
519 		return ES_UNSUPPORTED;
520 
521 	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
522 	pa |= va & ~page_level_mask(level);
523 
524 	*paddr = pa;
525 
526 	return ES_OK;
527 }
528 
529 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
530 {
531 	BUG_ON(size > 4);
532 
533 	if (user_mode(ctxt->regs)) {
534 		struct thread_struct *t = &current->thread;
535 		struct io_bitmap *iobm = t->io_bitmap;
536 		size_t idx;
537 
538 		if (!iobm)
539 			goto fault;
540 
541 		for (idx = port; idx < port + size; ++idx) {
542 			if (test_bit(idx, iobm->bitmap))
543 				goto fault;
544 		}
545 	}
546 
547 	return ES_OK;
548 
549 fault:
550 	ctxt->fi.vector = X86_TRAP_GP;
551 	ctxt->fi.error_code = 0;
552 
553 	return ES_EXCEPTION;
554 }
555 
556 /* Include code shared with pre-decompression boot stage */
557 #include "sev-shared.c"
558 
559 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
560 {
561 	struct sev_es_runtime_data *data;
562 	struct ghcb *ghcb;
563 
564 	WARN_ON(!irqs_disabled());
565 
566 	data = this_cpu_read(runtime_data);
567 	ghcb = &data->ghcb_page;
568 
569 	if (state->ghcb) {
570 		/* Restore GHCB from Backup */
571 		*ghcb = *state->ghcb;
572 		data->backup_ghcb_active = false;
573 		state->ghcb = NULL;
574 	} else {
575 		/*
576 		 * Invalidate the GHCB so a VMGEXIT instruction issued
577 		 * from userspace won't appear to be valid.
578 		 */
579 		vc_ghcb_invalidate(ghcb);
580 		data->ghcb_active = false;
581 	}
582 }
583 
584 void noinstr __sev_es_nmi_complete(void)
585 {
586 	struct ghcb_state state;
587 	struct ghcb *ghcb;
588 
589 	ghcb = __sev_get_ghcb(&state);
590 
591 	vc_ghcb_invalidate(ghcb);
592 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
593 	ghcb_set_sw_exit_info_1(ghcb, 0);
594 	ghcb_set_sw_exit_info_2(ghcb, 0);
595 
596 	sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
597 	VMGEXIT();
598 
599 	__sev_put_ghcb(&state);
600 }
601 
602 static u64 __init get_secrets_page(void)
603 {
604 	u64 pa_data = boot_params.cc_blob_address;
605 	struct cc_blob_sev_info info;
606 	void *map;
607 
608 	/*
609 	 * The CC blob contains the address of the secrets page, check if the
610 	 * blob is present.
611 	 */
612 	if (!pa_data)
613 		return 0;
614 
615 	map = early_memremap(pa_data, sizeof(info));
616 	if (!map) {
617 		pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n");
618 		return 0;
619 	}
620 	memcpy(&info, map, sizeof(info));
621 	early_memunmap(map, sizeof(info));
622 
623 	/* smoke-test the secrets page passed */
624 	if (!info.secrets_phys || info.secrets_len != PAGE_SIZE)
625 		return 0;
626 
627 	return info.secrets_phys;
628 }
629 
630 static u64 __init get_snp_jump_table_addr(void)
631 {
632 	struct snp_secrets_page_layout *layout;
633 	void __iomem *mem;
634 	u64 pa, addr;
635 
636 	pa = get_secrets_page();
637 	if (!pa)
638 		return 0;
639 
640 	mem = ioremap_encrypted(pa, PAGE_SIZE);
641 	if (!mem) {
642 		pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
643 		return 0;
644 	}
645 
646 	layout = (__force struct snp_secrets_page_layout *)mem;
647 
648 	addr = layout->os_area.ap_jump_table_pa;
649 	iounmap(mem);
650 
651 	return addr;
652 }
653 
654 static u64 __init get_jump_table_addr(void)
655 {
656 	struct ghcb_state state;
657 	unsigned long flags;
658 	struct ghcb *ghcb;
659 	u64 ret = 0;
660 
661 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
662 		return get_snp_jump_table_addr();
663 
664 	local_irq_save(flags);
665 
666 	ghcb = __sev_get_ghcb(&state);
667 
668 	vc_ghcb_invalidate(ghcb);
669 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
670 	ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
671 	ghcb_set_sw_exit_info_2(ghcb, 0);
672 
673 	sev_es_wr_ghcb_msr(__pa(ghcb));
674 	VMGEXIT();
675 
676 	if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
677 	    ghcb_sw_exit_info_2_is_valid(ghcb))
678 		ret = ghcb->save.sw_exit_info_2;
679 
680 	__sev_put_ghcb(&state);
681 
682 	local_irq_restore(flags);
683 
684 	return ret;
685 }
686 
687 static void __head
688 early_set_pages_state(unsigned long vaddr, unsigned long paddr,
689 		      unsigned long npages, enum psc_op op)
690 {
691 	unsigned long paddr_end;
692 	u64 val;
693 	int ret;
694 
695 	vaddr = vaddr & PAGE_MASK;
696 
697 	paddr = paddr & PAGE_MASK;
698 	paddr_end = paddr + (npages << PAGE_SHIFT);
699 
700 	while (paddr < paddr_end) {
701 		if (op == SNP_PAGE_STATE_SHARED) {
702 			/* Page validation must be rescinded before changing to shared */
703 			ret = pvalidate(vaddr, RMP_PG_SIZE_4K, false);
704 			if (WARN(ret, "Failed to validate address 0x%lx ret %d", paddr, ret))
705 				goto e_term;
706 		}
707 
708 		/*
709 		 * Use the MSR protocol because this function can be called before
710 		 * the GHCB is established.
711 		 */
712 		sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
713 		VMGEXIT();
714 
715 		val = sev_es_rd_ghcb_msr();
716 
717 		if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP,
718 			 "Wrong PSC response code: 0x%x\n",
719 			 (unsigned int)GHCB_RESP_CODE(val)))
720 			goto e_term;
721 
722 		if (WARN(GHCB_MSR_PSC_RESP_VAL(val),
723 			 "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n",
724 			 op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared",
725 			 paddr, GHCB_MSR_PSC_RESP_VAL(val)))
726 			goto e_term;
727 
728 		if (op == SNP_PAGE_STATE_PRIVATE) {
729 			/* Page validation must be performed after changing to private */
730 			ret = pvalidate(vaddr, RMP_PG_SIZE_4K, true);
731 			if (WARN(ret, "Failed to validate address 0x%lx ret %d", paddr, ret))
732 				goto e_term;
733 		}
734 
735 		vaddr += PAGE_SIZE;
736 		paddr += PAGE_SIZE;
737 	}
738 
739 	return;
740 
741 e_term:
742 	sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
743 }
744 
745 void __head early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr,
746 					 unsigned long npages)
747 {
748 	/*
749 	 * This can be invoked in early boot while running identity mapped, so
750 	 * use an open coded check for SNP instead of using cc_platform_has().
751 	 * This eliminates worries about jump tables or checking boot_cpu_data
752 	 * in the cc_platform_has() function.
753 	 */
754 	if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
755 		return;
756 
757 	 /*
758 	  * Ask the hypervisor to mark the memory pages as private in the RMP
759 	  * table.
760 	  */
761 	early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_PRIVATE);
762 }
763 
764 void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr,
765 					unsigned long npages)
766 {
767 	/*
768 	 * This can be invoked in early boot while running identity mapped, so
769 	 * use an open coded check for SNP instead of using cc_platform_has().
770 	 * This eliminates worries about jump tables or checking boot_cpu_data
771 	 * in the cc_platform_has() function.
772 	 */
773 	if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
774 		return;
775 
776 	 /* Ask hypervisor to mark the memory pages shared in the RMP table. */
777 	early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_SHARED);
778 }
779 
780 static unsigned long __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
781 				       unsigned long vaddr_end, int op)
782 {
783 	struct ghcb_state state;
784 	bool use_large_entry;
785 	struct psc_hdr *hdr;
786 	struct psc_entry *e;
787 	unsigned long flags;
788 	unsigned long pfn;
789 	struct ghcb *ghcb;
790 	int i;
791 
792 	hdr = &data->hdr;
793 	e = data->entries;
794 
795 	memset(data, 0, sizeof(*data));
796 	i = 0;
797 
798 	while (vaddr < vaddr_end && i < ARRAY_SIZE(data->entries)) {
799 		hdr->end_entry = i;
800 
801 		if (is_vmalloc_addr((void *)vaddr)) {
802 			pfn = vmalloc_to_pfn((void *)vaddr);
803 			use_large_entry = false;
804 		} else {
805 			pfn = __pa(vaddr) >> PAGE_SHIFT;
806 			use_large_entry = true;
807 		}
808 
809 		e->gfn = pfn;
810 		e->operation = op;
811 
812 		if (use_large_entry && IS_ALIGNED(vaddr, PMD_SIZE) &&
813 		    (vaddr_end - vaddr) >= PMD_SIZE) {
814 			e->pagesize = RMP_PG_SIZE_2M;
815 			vaddr += PMD_SIZE;
816 		} else {
817 			e->pagesize = RMP_PG_SIZE_4K;
818 			vaddr += PAGE_SIZE;
819 		}
820 
821 		e++;
822 		i++;
823 	}
824 
825 	/* Page validation must be rescinded before changing to shared */
826 	if (op == SNP_PAGE_STATE_SHARED)
827 		pvalidate_pages(data);
828 
829 	local_irq_save(flags);
830 
831 	if (sev_cfg.ghcbs_initialized)
832 		ghcb = __sev_get_ghcb(&state);
833 	else
834 		ghcb = boot_ghcb;
835 
836 	/* Invoke the hypervisor to perform the page state changes */
837 	if (!ghcb || vmgexit_psc(ghcb, data))
838 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
839 
840 	if (sev_cfg.ghcbs_initialized)
841 		__sev_put_ghcb(&state);
842 
843 	local_irq_restore(flags);
844 
845 	/* Page validation must be performed after changing to private */
846 	if (op == SNP_PAGE_STATE_PRIVATE)
847 		pvalidate_pages(data);
848 
849 	return vaddr;
850 }
851 
852 static void set_pages_state(unsigned long vaddr, unsigned long npages, int op)
853 {
854 	struct snp_psc_desc desc;
855 	unsigned long vaddr_end;
856 
857 	/* Use the MSR protocol when a GHCB is not available. */
858 	if (!boot_ghcb)
859 		return early_set_pages_state(vaddr, __pa(vaddr), npages, op);
860 
861 	vaddr = vaddr & PAGE_MASK;
862 	vaddr_end = vaddr + (npages << PAGE_SHIFT);
863 
864 	while (vaddr < vaddr_end)
865 		vaddr = __set_pages_state(&desc, vaddr, vaddr_end, op);
866 }
867 
868 void snp_set_memory_shared(unsigned long vaddr, unsigned long npages)
869 {
870 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
871 		return;
872 
873 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
874 }
875 
876 void snp_set_memory_private(unsigned long vaddr, unsigned long npages)
877 {
878 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
879 		return;
880 
881 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
882 }
883 
884 void snp_accept_memory(phys_addr_t start, phys_addr_t end)
885 {
886 	unsigned long vaddr, npages;
887 
888 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
889 		return;
890 
891 	vaddr = (unsigned long)__va(start);
892 	npages = (end - start) >> PAGE_SHIFT;
893 
894 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
895 }
896 
897 static int snp_set_vmsa(void *va, bool vmsa)
898 {
899 	u64 attrs;
900 
901 	/*
902 	 * Running at VMPL0 allows the kernel to change the VMSA bit for a page
903 	 * using the RMPADJUST instruction. However, for the instruction to
904 	 * succeed it must target the permissions of a lesser privileged
905 	 * (higher numbered) VMPL level, so use VMPL1 (refer to the RMPADJUST
906 	 * instruction in the AMD64 APM Volume 3).
907 	 */
908 	attrs = 1;
909 	if (vmsa)
910 		attrs |= RMPADJUST_VMSA_PAGE_BIT;
911 
912 	return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
913 }
914 
915 #define __ATTR_BASE		(SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
916 #define INIT_CS_ATTRIBS		(__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
917 #define INIT_DS_ATTRIBS		(__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)
918 
919 #define INIT_LDTR_ATTRIBS	(SVM_SELECTOR_P_MASK | 2)
920 #define INIT_TR_ATTRIBS		(SVM_SELECTOR_P_MASK | 3)
921 
922 static void *snp_alloc_vmsa_page(void)
923 {
924 	struct page *p;
925 
926 	/*
927 	 * Allocate VMSA page to work around the SNP erratum where the CPU will
928 	 * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
929 	 * collides with the RMP entry of VMSA page. The recommended workaround
930 	 * is to not use a large page.
931 	 *
932 	 * Allocate an 8k page which is also 8k-aligned.
933 	 */
934 	p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
935 	if (!p)
936 		return NULL;
937 
938 	split_page(p, 1);
939 
940 	/* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
941 	__free_page(p);
942 
943 	return page_address(p + 1);
944 }
945 
946 static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa)
947 {
948 	int err;
949 
950 	err = snp_set_vmsa(vmsa, false);
951 	if (err)
952 		pr_err("clear VMSA page failed (%u), leaking page\n", err);
953 	else
954 		free_page((unsigned long)vmsa);
955 }
956 
957 static int wakeup_cpu_via_vmgexit(int apic_id, unsigned long start_ip)
958 {
959 	struct sev_es_save_area *cur_vmsa, *vmsa;
960 	struct ghcb_state state;
961 	unsigned long flags;
962 	struct ghcb *ghcb;
963 	u8 sipi_vector;
964 	int cpu, ret;
965 	u64 cr4;
966 
967 	/*
968 	 * The hypervisor SNP feature support check has happened earlier, just check
969 	 * the AP_CREATION one here.
970 	 */
971 	if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
972 		return -EOPNOTSUPP;
973 
974 	/*
975 	 * Verify the desired start IP against the known trampoline start IP
976 	 * to catch any future new trampolines that may be introduced that
977 	 * would require a new protected guest entry point.
978 	 */
979 	if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
980 		      "Unsupported SNP start_ip: %lx\n", start_ip))
981 		return -EINVAL;
982 
983 	/* Override start_ip with known protected guest start IP */
984 	start_ip = real_mode_header->sev_es_trampoline_start;
985 
986 	/* Find the logical CPU for the APIC ID */
987 	for_each_present_cpu(cpu) {
988 		if (arch_match_cpu_phys_id(cpu, apic_id))
989 			break;
990 	}
991 	if (cpu >= nr_cpu_ids)
992 		return -EINVAL;
993 
994 	cur_vmsa = per_cpu(sev_vmsa, cpu);
995 
996 	/*
997 	 * A new VMSA is created each time because there is no guarantee that
998 	 * the current VMSA is the kernels or that the vCPU is not running. If
999 	 * an attempt was done to use the current VMSA with a running vCPU, a
1000 	 * #VMEXIT of that vCPU would wipe out all of the settings being done
1001 	 * here.
1002 	 */
1003 	vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page();
1004 	if (!vmsa)
1005 		return -ENOMEM;
1006 
1007 	/* CR4 should maintain the MCE value */
1008 	cr4 = native_read_cr4() & X86_CR4_MCE;
1009 
1010 	/* Set the CS value based on the start_ip converted to a SIPI vector */
1011 	sipi_vector		= (start_ip >> 12);
1012 	vmsa->cs.base		= sipi_vector << 12;
1013 	vmsa->cs.limit		= AP_INIT_CS_LIMIT;
1014 	vmsa->cs.attrib		= INIT_CS_ATTRIBS;
1015 	vmsa->cs.selector	= sipi_vector << 8;
1016 
1017 	/* Set the RIP value based on start_ip */
1018 	vmsa->rip		= start_ip & 0xfff;
1019 
1020 	/* Set AP INIT defaults as documented in the APM */
1021 	vmsa->ds.limit		= AP_INIT_DS_LIMIT;
1022 	vmsa->ds.attrib		= INIT_DS_ATTRIBS;
1023 	vmsa->es		= vmsa->ds;
1024 	vmsa->fs		= vmsa->ds;
1025 	vmsa->gs		= vmsa->ds;
1026 	vmsa->ss		= vmsa->ds;
1027 
1028 	vmsa->gdtr.limit	= AP_INIT_GDTR_LIMIT;
1029 	vmsa->ldtr.limit	= AP_INIT_LDTR_LIMIT;
1030 	vmsa->ldtr.attrib	= INIT_LDTR_ATTRIBS;
1031 	vmsa->idtr.limit	= AP_INIT_IDTR_LIMIT;
1032 	vmsa->tr.limit		= AP_INIT_TR_LIMIT;
1033 	vmsa->tr.attrib		= INIT_TR_ATTRIBS;
1034 
1035 	vmsa->cr4		= cr4;
1036 	vmsa->cr0		= AP_INIT_CR0_DEFAULT;
1037 	vmsa->dr7		= DR7_RESET_VALUE;
1038 	vmsa->dr6		= AP_INIT_DR6_DEFAULT;
1039 	vmsa->rflags		= AP_INIT_RFLAGS_DEFAULT;
1040 	vmsa->g_pat		= AP_INIT_GPAT_DEFAULT;
1041 	vmsa->xcr0		= AP_INIT_XCR0_DEFAULT;
1042 	vmsa->mxcsr		= AP_INIT_MXCSR_DEFAULT;
1043 	vmsa->x87_ftw		= AP_INIT_X87_FTW_DEFAULT;
1044 	vmsa->x87_fcw		= AP_INIT_X87_FCW_DEFAULT;
1045 
1046 	/* SVME must be set. */
1047 	vmsa->efer		= EFER_SVME;
1048 
1049 	/*
1050 	 * Set the SNP-specific fields for this VMSA:
1051 	 *   VMPL level
1052 	 *   SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
1053 	 */
1054 	vmsa->vmpl		= 0;
1055 	vmsa->sev_features	= sev_status >> 2;
1056 
1057 	/* Switch the page over to a VMSA page now that it is initialized */
1058 	ret = snp_set_vmsa(vmsa, true);
1059 	if (ret) {
1060 		pr_err("set VMSA page failed (%u)\n", ret);
1061 		free_page((unsigned long)vmsa);
1062 
1063 		return -EINVAL;
1064 	}
1065 
1066 	/* Issue VMGEXIT AP Creation NAE event */
1067 	local_irq_save(flags);
1068 
1069 	ghcb = __sev_get_ghcb(&state);
1070 
1071 	vc_ghcb_invalidate(ghcb);
1072 	ghcb_set_rax(ghcb, vmsa->sev_features);
1073 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
1074 	ghcb_set_sw_exit_info_1(ghcb, ((u64)apic_id << 32) | SVM_VMGEXIT_AP_CREATE);
1075 	ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));
1076 
1077 	sev_es_wr_ghcb_msr(__pa(ghcb));
1078 	VMGEXIT();
1079 
1080 	if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
1081 	    lower_32_bits(ghcb->save.sw_exit_info_1)) {
1082 		pr_err("SNP AP Creation error\n");
1083 		ret = -EINVAL;
1084 	}
1085 
1086 	__sev_put_ghcb(&state);
1087 
1088 	local_irq_restore(flags);
1089 
1090 	/* Perform cleanup if there was an error */
1091 	if (ret) {
1092 		snp_cleanup_vmsa(vmsa);
1093 		vmsa = NULL;
1094 	}
1095 
1096 	/* Free up any previous VMSA page */
1097 	if (cur_vmsa)
1098 		snp_cleanup_vmsa(cur_vmsa);
1099 
1100 	/* Record the current VMSA page */
1101 	per_cpu(sev_vmsa, cpu) = vmsa;
1102 
1103 	return ret;
1104 }
1105 
1106 void __init snp_set_wakeup_secondary_cpu(void)
1107 {
1108 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1109 		return;
1110 
1111 	/*
1112 	 * Always set this override if SNP is enabled. This makes it the
1113 	 * required method to start APs under SNP. If the hypervisor does
1114 	 * not support AP creation, then no APs will be started.
1115 	 */
1116 	apic_update_callback(wakeup_secondary_cpu, wakeup_cpu_via_vmgexit);
1117 }
1118 
1119 int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
1120 {
1121 	u16 startup_cs, startup_ip;
1122 	phys_addr_t jump_table_pa;
1123 	u64 jump_table_addr;
1124 	u16 __iomem *jump_table;
1125 
1126 	jump_table_addr = get_jump_table_addr();
1127 
1128 	/* On UP guests there is no jump table so this is not a failure */
1129 	if (!jump_table_addr)
1130 		return 0;
1131 
1132 	/* Check if AP Jump Table is page-aligned */
1133 	if (jump_table_addr & ~PAGE_MASK)
1134 		return -EINVAL;
1135 
1136 	jump_table_pa = jump_table_addr & PAGE_MASK;
1137 
1138 	startup_cs = (u16)(rmh->trampoline_start >> 4);
1139 	startup_ip = (u16)(rmh->sev_es_trampoline_start -
1140 			   rmh->trampoline_start);
1141 
1142 	jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
1143 	if (!jump_table)
1144 		return -EIO;
1145 
1146 	writew(startup_ip, &jump_table[0]);
1147 	writew(startup_cs, &jump_table[1]);
1148 
1149 	iounmap(jump_table);
1150 
1151 	return 0;
1152 }
1153 
1154 /*
1155  * This is needed by the OVMF UEFI firmware which will use whatever it finds in
1156  * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
1157  * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
1158  */
1159 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
1160 {
1161 	struct sev_es_runtime_data *data;
1162 	unsigned long address, pflags;
1163 	int cpu;
1164 	u64 pfn;
1165 
1166 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1167 		return 0;
1168 
1169 	pflags = _PAGE_NX | _PAGE_RW;
1170 
1171 	for_each_possible_cpu(cpu) {
1172 		data = per_cpu(runtime_data, cpu);
1173 
1174 		address = __pa(&data->ghcb_page);
1175 		pfn = address >> PAGE_SHIFT;
1176 
1177 		if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
1178 			return 1;
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1185 {
1186 	struct pt_regs *regs = ctxt->regs;
1187 	enum es_result ret;
1188 	u64 exit_info_1;
1189 
1190 	/* Is it a WRMSR? */
1191 	exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
1192 
1193 	ghcb_set_rcx(ghcb, regs->cx);
1194 	if (exit_info_1) {
1195 		ghcb_set_rax(ghcb, regs->ax);
1196 		ghcb_set_rdx(ghcb, regs->dx);
1197 	}
1198 
1199 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
1200 
1201 	if ((ret == ES_OK) && (!exit_info_1)) {
1202 		regs->ax = ghcb->save.rax;
1203 		regs->dx = ghcb->save.rdx;
1204 	}
1205 
1206 	return ret;
1207 }
1208 
1209 static void snp_register_per_cpu_ghcb(void)
1210 {
1211 	struct sev_es_runtime_data *data;
1212 	struct ghcb *ghcb;
1213 
1214 	data = this_cpu_read(runtime_data);
1215 	ghcb = &data->ghcb_page;
1216 
1217 	snp_register_ghcb_early(__pa(ghcb));
1218 }
1219 
1220 void setup_ghcb(void)
1221 {
1222 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1223 		return;
1224 
1225 	/*
1226 	 * Check whether the runtime #VC exception handler is active. It uses
1227 	 * the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
1228 	 *
1229 	 * If SNP is active, register the per-CPU GHCB page so that the runtime
1230 	 * exception handler can use it.
1231 	 */
1232 	if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
1233 		if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1234 			snp_register_per_cpu_ghcb();
1235 
1236 		sev_cfg.ghcbs_initialized = true;
1237 
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * Make sure the hypervisor talks a supported protocol.
1243 	 * This gets called only in the BSP boot phase.
1244 	 */
1245 	if (!sev_es_negotiate_protocol())
1246 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1247 
1248 	/*
1249 	 * Clear the boot_ghcb. The first exception comes in before the bss
1250 	 * section is cleared.
1251 	 */
1252 	memset(&boot_ghcb_page, 0, PAGE_SIZE);
1253 
1254 	/* Alright - Make the boot-ghcb public */
1255 	boot_ghcb = &boot_ghcb_page;
1256 
1257 	/* SNP guest requires that GHCB GPA must be registered. */
1258 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1259 		snp_register_ghcb_early(__pa(&boot_ghcb_page));
1260 }
1261 
1262 #ifdef CONFIG_HOTPLUG_CPU
1263 static void sev_es_ap_hlt_loop(void)
1264 {
1265 	struct ghcb_state state;
1266 	struct ghcb *ghcb;
1267 
1268 	ghcb = __sev_get_ghcb(&state);
1269 
1270 	while (true) {
1271 		vc_ghcb_invalidate(ghcb);
1272 		ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
1273 		ghcb_set_sw_exit_info_1(ghcb, 0);
1274 		ghcb_set_sw_exit_info_2(ghcb, 0);
1275 
1276 		sev_es_wr_ghcb_msr(__pa(ghcb));
1277 		VMGEXIT();
1278 
1279 		/* Wakeup signal? */
1280 		if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
1281 		    ghcb->save.sw_exit_info_2)
1282 			break;
1283 	}
1284 
1285 	__sev_put_ghcb(&state);
1286 }
1287 
1288 /*
1289  * Play_dead handler when running under SEV-ES. This is needed because
1290  * the hypervisor can't deliver an SIPI request to restart the AP.
1291  * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
1292  * hypervisor wakes it up again.
1293  */
1294 static void sev_es_play_dead(void)
1295 {
1296 	play_dead_common();
1297 
1298 	/* IRQs now disabled */
1299 
1300 	sev_es_ap_hlt_loop();
1301 
1302 	/*
1303 	 * If we get here, the VCPU was woken up again. Jump to CPU
1304 	 * startup code to get it back online.
1305 	 */
1306 	soft_restart_cpu();
1307 }
1308 #else  /* CONFIG_HOTPLUG_CPU */
1309 #define sev_es_play_dead	native_play_dead
1310 #endif /* CONFIG_HOTPLUG_CPU */
1311 
1312 #ifdef CONFIG_SMP
1313 static void __init sev_es_setup_play_dead(void)
1314 {
1315 	smp_ops.play_dead = sev_es_play_dead;
1316 }
1317 #else
1318 static inline void sev_es_setup_play_dead(void) { }
1319 #endif
1320 
1321 static void __init alloc_runtime_data(int cpu)
1322 {
1323 	struct sev_es_runtime_data *data;
1324 
1325 	data = memblock_alloc(sizeof(*data), PAGE_SIZE);
1326 	if (!data)
1327 		panic("Can't allocate SEV-ES runtime data");
1328 
1329 	per_cpu(runtime_data, cpu) = data;
1330 }
1331 
1332 static void __init init_ghcb(int cpu)
1333 {
1334 	struct sev_es_runtime_data *data;
1335 	int err;
1336 
1337 	data = per_cpu(runtime_data, cpu);
1338 
1339 	err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
1340 					 sizeof(data->ghcb_page));
1341 	if (err)
1342 		panic("Can't map GHCBs unencrypted");
1343 
1344 	memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
1345 
1346 	data->ghcb_active = false;
1347 	data->backup_ghcb_active = false;
1348 }
1349 
1350 void __init sev_es_init_vc_handling(void)
1351 {
1352 	int cpu;
1353 
1354 	BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
1355 
1356 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1357 		return;
1358 
1359 	if (!sev_es_check_cpu_features())
1360 		panic("SEV-ES CPU Features missing");
1361 
1362 	/*
1363 	 * SNP is supported in v2 of the GHCB spec which mandates support for HV
1364 	 * features.
1365 	 */
1366 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
1367 		sev_hv_features = get_hv_features();
1368 
1369 		if (!(sev_hv_features & GHCB_HV_FT_SNP))
1370 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
1371 	}
1372 
1373 	/* Initialize per-cpu GHCB pages */
1374 	for_each_possible_cpu(cpu) {
1375 		alloc_runtime_data(cpu);
1376 		init_ghcb(cpu);
1377 	}
1378 
1379 	sev_es_setup_play_dead();
1380 
1381 	/* Secondary CPUs use the runtime #VC handler */
1382 	initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
1383 }
1384 
1385 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
1386 {
1387 	int trapnr = ctxt->fi.vector;
1388 
1389 	if (trapnr == X86_TRAP_PF)
1390 		native_write_cr2(ctxt->fi.cr2);
1391 
1392 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1393 	do_early_exception(ctxt->regs, trapnr);
1394 }
1395 
1396 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
1397 {
1398 	long *reg_array;
1399 	int offset;
1400 
1401 	reg_array = (long *)ctxt->regs;
1402 	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
1403 
1404 	if (offset < 0)
1405 		return NULL;
1406 
1407 	offset /= sizeof(long);
1408 
1409 	return reg_array + offset;
1410 }
1411 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
1412 				 unsigned int bytes, bool read)
1413 {
1414 	u64 exit_code, exit_info_1, exit_info_2;
1415 	unsigned long ghcb_pa = __pa(ghcb);
1416 	enum es_result res;
1417 	phys_addr_t paddr;
1418 	void __user *ref;
1419 
1420 	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
1421 	if (ref == (void __user *)-1L)
1422 		return ES_UNSUPPORTED;
1423 
1424 	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
1425 
1426 	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
1427 	if (res != ES_OK) {
1428 		if (res == ES_EXCEPTION && !read)
1429 			ctxt->fi.error_code |= X86_PF_WRITE;
1430 
1431 		return res;
1432 	}
1433 
1434 	exit_info_1 = paddr;
1435 	/* Can never be greater than 8 */
1436 	exit_info_2 = bytes;
1437 
1438 	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
1439 
1440 	return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
1441 }
1442 
1443 /*
1444  * The MOVS instruction has two memory operands, which raises the
1445  * problem that it is not known whether the access to the source or the
1446  * destination caused the #VC exception (and hence whether an MMIO read
1447  * or write operation needs to be emulated).
1448  *
1449  * Instead of playing games with walking page-tables and trying to guess
1450  * whether the source or destination is an MMIO range, split the move
1451  * into two operations, a read and a write with only one memory operand.
1452  * This will cause a nested #VC exception on the MMIO address which can
1453  * then be handled.
1454  *
1455  * This implementation has the benefit that it also supports MOVS where
1456  * source _and_ destination are MMIO regions.
1457  *
1458  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
1459  * rare operation. If it turns out to be a performance problem the split
1460  * operations can be moved to memcpy_fromio() and memcpy_toio().
1461  */
1462 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
1463 					  unsigned int bytes)
1464 {
1465 	unsigned long ds_base, es_base;
1466 	unsigned char *src, *dst;
1467 	unsigned char buffer[8];
1468 	enum es_result ret;
1469 	bool rep;
1470 	int off;
1471 
1472 	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
1473 	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
1474 
1475 	if (ds_base == -1L || es_base == -1L) {
1476 		ctxt->fi.vector = X86_TRAP_GP;
1477 		ctxt->fi.error_code = 0;
1478 		return ES_EXCEPTION;
1479 	}
1480 
1481 	src = ds_base + (unsigned char *)ctxt->regs->si;
1482 	dst = es_base + (unsigned char *)ctxt->regs->di;
1483 
1484 	ret = vc_read_mem(ctxt, src, buffer, bytes);
1485 	if (ret != ES_OK)
1486 		return ret;
1487 
1488 	ret = vc_write_mem(ctxt, dst, buffer, bytes);
1489 	if (ret != ES_OK)
1490 		return ret;
1491 
1492 	if (ctxt->regs->flags & X86_EFLAGS_DF)
1493 		off = -bytes;
1494 	else
1495 		off =  bytes;
1496 
1497 	ctxt->regs->si += off;
1498 	ctxt->regs->di += off;
1499 
1500 	rep = insn_has_rep_prefix(&ctxt->insn);
1501 	if (rep)
1502 		ctxt->regs->cx -= 1;
1503 
1504 	if (!rep || ctxt->regs->cx == 0)
1505 		return ES_OK;
1506 	else
1507 		return ES_RETRY;
1508 }
1509 
1510 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1511 {
1512 	struct insn *insn = &ctxt->insn;
1513 	enum insn_mmio_type mmio;
1514 	unsigned int bytes = 0;
1515 	enum es_result ret;
1516 	u8 sign_byte;
1517 	long *reg_data;
1518 
1519 	mmio = insn_decode_mmio(insn, &bytes);
1520 	if (mmio == INSN_MMIO_DECODE_FAILED)
1521 		return ES_DECODE_FAILED;
1522 
1523 	if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
1524 		reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
1525 		if (!reg_data)
1526 			return ES_DECODE_FAILED;
1527 	}
1528 
1529 	if (user_mode(ctxt->regs))
1530 		return ES_UNSUPPORTED;
1531 
1532 	switch (mmio) {
1533 	case INSN_MMIO_WRITE:
1534 		memcpy(ghcb->shared_buffer, reg_data, bytes);
1535 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1536 		break;
1537 	case INSN_MMIO_WRITE_IMM:
1538 		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1539 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1540 		break;
1541 	case INSN_MMIO_READ:
1542 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1543 		if (ret)
1544 			break;
1545 
1546 		/* Zero-extend for 32-bit operation */
1547 		if (bytes == 4)
1548 			*reg_data = 0;
1549 
1550 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1551 		break;
1552 	case INSN_MMIO_READ_ZERO_EXTEND:
1553 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1554 		if (ret)
1555 			break;
1556 
1557 		/* Zero extend based on operand size */
1558 		memset(reg_data, 0, insn->opnd_bytes);
1559 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1560 		break;
1561 	case INSN_MMIO_READ_SIGN_EXTEND:
1562 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1563 		if (ret)
1564 			break;
1565 
1566 		if (bytes == 1) {
1567 			u8 *val = (u8 *)ghcb->shared_buffer;
1568 
1569 			sign_byte = (*val & 0x80) ? 0xff : 0x00;
1570 		} else {
1571 			u16 *val = (u16 *)ghcb->shared_buffer;
1572 
1573 			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
1574 		}
1575 
1576 		/* Sign extend based on operand size */
1577 		memset(reg_data, sign_byte, insn->opnd_bytes);
1578 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1579 		break;
1580 	case INSN_MMIO_MOVS:
1581 		ret = vc_handle_mmio_movs(ctxt, bytes);
1582 		break;
1583 	default:
1584 		ret = ES_UNSUPPORTED;
1585 		break;
1586 	}
1587 
1588 	return ret;
1589 }
1590 
1591 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1592 					  struct es_em_ctxt *ctxt)
1593 {
1594 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1595 	long val, *reg = vc_insn_get_rm(ctxt);
1596 	enum es_result ret;
1597 
1598 	if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1599 		return ES_VMM_ERROR;
1600 
1601 	if (!reg)
1602 		return ES_DECODE_FAILED;
1603 
1604 	val = *reg;
1605 
1606 	/* Upper 32 bits must be written as zeroes */
1607 	if (val >> 32) {
1608 		ctxt->fi.vector = X86_TRAP_GP;
1609 		ctxt->fi.error_code = 0;
1610 		return ES_EXCEPTION;
1611 	}
1612 
1613 	/* Clear out other reserved bits and set bit 10 */
1614 	val = (val & 0xffff23ffL) | BIT(10);
1615 
1616 	/* Early non-zero writes to DR7 are not supported */
1617 	if (!data && (val & ~DR7_RESET_VALUE))
1618 		return ES_UNSUPPORTED;
1619 
1620 	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
1621 	ghcb_set_rax(ghcb, val);
1622 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1623 	if (ret != ES_OK)
1624 		return ret;
1625 
1626 	if (data)
1627 		data->dr7 = val;
1628 
1629 	return ES_OK;
1630 }
1631 
1632 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1633 					 struct es_em_ctxt *ctxt)
1634 {
1635 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1636 	long *reg = vc_insn_get_rm(ctxt);
1637 
1638 	if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1639 		return ES_VMM_ERROR;
1640 
1641 	if (!reg)
1642 		return ES_DECODE_FAILED;
1643 
1644 	if (data)
1645 		*reg = data->dr7;
1646 	else
1647 		*reg = DR7_RESET_VALUE;
1648 
1649 	return ES_OK;
1650 }
1651 
1652 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1653 				       struct es_em_ctxt *ctxt)
1654 {
1655 	return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1656 }
1657 
1658 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1659 {
1660 	enum es_result ret;
1661 
1662 	ghcb_set_rcx(ghcb, ctxt->regs->cx);
1663 
1664 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1665 	if (ret != ES_OK)
1666 		return ret;
1667 
1668 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1669 		return ES_VMM_ERROR;
1670 
1671 	ctxt->regs->ax = ghcb->save.rax;
1672 	ctxt->regs->dx = ghcb->save.rdx;
1673 
1674 	return ES_OK;
1675 }
1676 
1677 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1678 					struct es_em_ctxt *ctxt)
1679 {
1680 	/*
1681 	 * Treat it as a NOP and do not leak a physical address to the
1682 	 * hypervisor.
1683 	 */
1684 	return ES_OK;
1685 }
1686 
1687 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1688 				      struct es_em_ctxt *ctxt)
1689 {
1690 	/* Treat the same as MONITOR/MONITORX */
1691 	return ES_OK;
1692 }
1693 
1694 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1695 					struct es_em_ctxt *ctxt)
1696 {
1697 	enum es_result ret;
1698 
1699 	ghcb_set_rax(ghcb, ctxt->regs->ax);
1700 	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1701 
1702 	if (x86_platform.hyper.sev_es_hcall_prepare)
1703 		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1704 
1705 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1706 	if (ret != ES_OK)
1707 		return ret;
1708 
1709 	if (!ghcb_rax_is_valid(ghcb))
1710 		return ES_VMM_ERROR;
1711 
1712 	ctxt->regs->ax = ghcb->save.rax;
1713 
1714 	/*
1715 	 * Call sev_es_hcall_finish() after regs->ax is already set.
1716 	 * This allows the hypervisor handler to overwrite it again if
1717 	 * necessary.
1718 	 */
1719 	if (x86_platform.hyper.sev_es_hcall_finish &&
1720 	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1721 		return ES_VMM_ERROR;
1722 
1723 	return ES_OK;
1724 }
1725 
1726 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1727 					struct es_em_ctxt *ctxt)
1728 {
1729 	/*
1730 	 * Calling ecx_alignment_check() directly does not work, because it
1731 	 * enables IRQs and the GHCB is active. Forward the exception and call
1732 	 * it later from vc_forward_exception().
1733 	 */
1734 	ctxt->fi.vector = X86_TRAP_AC;
1735 	ctxt->fi.error_code = 0;
1736 	return ES_EXCEPTION;
1737 }
1738 
1739 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1740 					 struct ghcb *ghcb,
1741 					 unsigned long exit_code)
1742 {
1743 	enum es_result result;
1744 
1745 	switch (exit_code) {
1746 	case SVM_EXIT_READ_DR7:
1747 		result = vc_handle_dr7_read(ghcb, ctxt);
1748 		break;
1749 	case SVM_EXIT_WRITE_DR7:
1750 		result = vc_handle_dr7_write(ghcb, ctxt);
1751 		break;
1752 	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1753 		result = vc_handle_trap_ac(ghcb, ctxt);
1754 		break;
1755 	case SVM_EXIT_RDTSC:
1756 	case SVM_EXIT_RDTSCP:
1757 		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1758 		break;
1759 	case SVM_EXIT_RDPMC:
1760 		result = vc_handle_rdpmc(ghcb, ctxt);
1761 		break;
1762 	case SVM_EXIT_INVD:
1763 		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1764 		result = ES_UNSUPPORTED;
1765 		break;
1766 	case SVM_EXIT_CPUID:
1767 		result = vc_handle_cpuid(ghcb, ctxt);
1768 		break;
1769 	case SVM_EXIT_IOIO:
1770 		result = vc_handle_ioio(ghcb, ctxt);
1771 		break;
1772 	case SVM_EXIT_MSR:
1773 		result = vc_handle_msr(ghcb, ctxt);
1774 		break;
1775 	case SVM_EXIT_VMMCALL:
1776 		result = vc_handle_vmmcall(ghcb, ctxt);
1777 		break;
1778 	case SVM_EXIT_WBINVD:
1779 		result = vc_handle_wbinvd(ghcb, ctxt);
1780 		break;
1781 	case SVM_EXIT_MONITOR:
1782 		result = vc_handle_monitor(ghcb, ctxt);
1783 		break;
1784 	case SVM_EXIT_MWAIT:
1785 		result = vc_handle_mwait(ghcb, ctxt);
1786 		break;
1787 	case SVM_EXIT_NPF:
1788 		result = vc_handle_mmio(ghcb, ctxt);
1789 		break;
1790 	default:
1791 		/*
1792 		 * Unexpected #VC exception
1793 		 */
1794 		result = ES_UNSUPPORTED;
1795 	}
1796 
1797 	return result;
1798 }
1799 
1800 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1801 {
1802 	long error_code = ctxt->fi.error_code;
1803 	int trapnr = ctxt->fi.vector;
1804 
1805 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1806 
1807 	switch (trapnr) {
1808 	case X86_TRAP_GP:
1809 		exc_general_protection(ctxt->regs, error_code);
1810 		break;
1811 	case X86_TRAP_UD:
1812 		exc_invalid_op(ctxt->regs);
1813 		break;
1814 	case X86_TRAP_PF:
1815 		write_cr2(ctxt->fi.cr2);
1816 		exc_page_fault(ctxt->regs, error_code);
1817 		break;
1818 	case X86_TRAP_AC:
1819 		exc_alignment_check(ctxt->regs, error_code);
1820 		break;
1821 	default:
1822 		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1823 		BUG();
1824 	}
1825 }
1826 
1827 static __always_inline bool is_vc2_stack(unsigned long sp)
1828 {
1829 	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1830 }
1831 
1832 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
1833 {
1834 	unsigned long sp, prev_sp;
1835 
1836 	sp      = (unsigned long)regs;
1837 	prev_sp = regs->sp;
1838 
1839 	/*
1840 	 * If the code was already executing on the VC2 stack when the #VC
1841 	 * happened, let it proceed to the normal handling routine. This way the
1842 	 * code executing on the VC2 stack can cause #VC exceptions to get handled.
1843 	 */
1844 	return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
1845 }
1846 
1847 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1848 {
1849 	struct ghcb_state state;
1850 	struct es_em_ctxt ctxt;
1851 	enum es_result result;
1852 	struct ghcb *ghcb;
1853 	bool ret = true;
1854 
1855 	ghcb = __sev_get_ghcb(&state);
1856 
1857 	vc_ghcb_invalidate(ghcb);
1858 	result = vc_init_em_ctxt(&ctxt, regs, error_code);
1859 
1860 	if (result == ES_OK)
1861 		result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1862 
1863 	__sev_put_ghcb(&state);
1864 
1865 	/* Done - now check the result */
1866 	switch (result) {
1867 	case ES_OK:
1868 		vc_finish_insn(&ctxt);
1869 		break;
1870 	case ES_UNSUPPORTED:
1871 		pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
1872 				   error_code, regs->ip);
1873 		ret = false;
1874 		break;
1875 	case ES_VMM_ERROR:
1876 		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1877 				   error_code, regs->ip);
1878 		ret = false;
1879 		break;
1880 	case ES_DECODE_FAILED:
1881 		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1882 				   error_code, regs->ip);
1883 		ret = false;
1884 		break;
1885 	case ES_EXCEPTION:
1886 		vc_forward_exception(&ctxt);
1887 		break;
1888 	case ES_RETRY:
1889 		/* Nothing to do */
1890 		break;
1891 	default:
1892 		pr_emerg("Unknown result in %s():%d\n", __func__, result);
1893 		/*
1894 		 * Emulating the instruction which caused the #VC exception
1895 		 * failed - can't continue so print debug information
1896 		 */
1897 		BUG();
1898 	}
1899 
1900 	return ret;
1901 }
1902 
1903 static __always_inline bool vc_is_db(unsigned long error_code)
1904 {
1905 	return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1906 }
1907 
1908 /*
1909  * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1910  * and will panic when an error happens.
1911  */
1912 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1913 {
1914 	irqentry_state_t irq_state;
1915 
1916 	/*
1917 	 * With the current implementation it is always possible to switch to a
1918 	 * safe stack because #VC exceptions only happen at known places, like
1919 	 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1920 	 * also happen with code instrumentation when the hypervisor intercepts
1921 	 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1922 	 * exceptions currently also only happen in safe places.
1923 	 *
1924 	 * But keep this here in case the noinstr annotations are violated due
1925 	 * to bug elsewhere.
1926 	 */
1927 	if (unlikely(vc_from_invalid_context(regs))) {
1928 		instrumentation_begin();
1929 		panic("Can't handle #VC exception from unsupported context\n");
1930 		instrumentation_end();
1931 	}
1932 
1933 	/*
1934 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1935 	 */
1936 	if (vc_is_db(error_code)) {
1937 		exc_debug(regs);
1938 		return;
1939 	}
1940 
1941 	irq_state = irqentry_nmi_enter(regs);
1942 
1943 	instrumentation_begin();
1944 
1945 	if (!vc_raw_handle_exception(regs, error_code)) {
1946 		/* Show some debug info */
1947 		show_regs(regs);
1948 
1949 		/* Ask hypervisor to sev_es_terminate */
1950 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1951 
1952 		/* If that fails and we get here - just panic */
1953 		panic("Returned from Terminate-Request to Hypervisor\n");
1954 	}
1955 
1956 	instrumentation_end();
1957 	irqentry_nmi_exit(regs, irq_state);
1958 }
1959 
1960 /*
1961  * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1962  * and will kill the current task with SIGBUS when an error happens.
1963  */
1964 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1965 {
1966 	/*
1967 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1968 	 */
1969 	if (vc_is_db(error_code)) {
1970 		noist_exc_debug(regs);
1971 		return;
1972 	}
1973 
1974 	irqentry_enter_from_user_mode(regs);
1975 	instrumentation_begin();
1976 
1977 	if (!vc_raw_handle_exception(regs, error_code)) {
1978 		/*
1979 		 * Do not kill the machine if user-space triggered the
1980 		 * exception. Send SIGBUS instead and let user-space deal with
1981 		 * it.
1982 		 */
1983 		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1984 	}
1985 
1986 	instrumentation_end();
1987 	irqentry_exit_to_user_mode(regs);
1988 }
1989 
1990 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1991 {
1992 	unsigned long exit_code = regs->orig_ax;
1993 	struct es_em_ctxt ctxt;
1994 	enum es_result result;
1995 
1996 	vc_ghcb_invalidate(boot_ghcb);
1997 
1998 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
1999 	if (result == ES_OK)
2000 		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
2001 
2002 	/* Done - now check the result */
2003 	switch (result) {
2004 	case ES_OK:
2005 		vc_finish_insn(&ctxt);
2006 		break;
2007 	case ES_UNSUPPORTED:
2008 		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
2009 				exit_code, regs->ip);
2010 		goto fail;
2011 	case ES_VMM_ERROR:
2012 		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
2013 				exit_code, regs->ip);
2014 		goto fail;
2015 	case ES_DECODE_FAILED:
2016 		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
2017 				exit_code, regs->ip);
2018 		goto fail;
2019 	case ES_EXCEPTION:
2020 		vc_early_forward_exception(&ctxt);
2021 		break;
2022 	case ES_RETRY:
2023 		/* Nothing to do */
2024 		break;
2025 	default:
2026 		BUG();
2027 	}
2028 
2029 	return true;
2030 
2031 fail:
2032 	show_regs(regs);
2033 
2034 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
2035 }
2036 
2037 /*
2038  * Initial set up of SNP relies on information provided by the
2039  * Confidential Computing blob, which can be passed to the kernel
2040  * in the following ways, depending on how it is booted:
2041  *
2042  * - when booted via the boot/decompress kernel:
2043  *   - via boot_params
2044  *
2045  * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH):
2046  *   - via a setup_data entry, as defined by the Linux Boot Protocol
2047  *
2048  * Scan for the blob in that order.
2049  */
2050 static __head struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
2051 {
2052 	struct cc_blob_sev_info *cc_info;
2053 
2054 	/* Boot kernel would have passed the CC blob via boot_params. */
2055 	if (bp->cc_blob_address) {
2056 		cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address;
2057 		goto found_cc_info;
2058 	}
2059 
2060 	/*
2061 	 * If kernel was booted directly, without the use of the
2062 	 * boot/decompression kernel, the CC blob may have been passed via
2063 	 * setup_data instead.
2064 	 */
2065 	cc_info = find_cc_blob_setup_data(bp);
2066 	if (!cc_info)
2067 		return NULL;
2068 
2069 found_cc_info:
2070 	if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
2071 		snp_abort();
2072 
2073 	return cc_info;
2074 }
2075 
2076 bool __head snp_init(struct boot_params *bp)
2077 {
2078 	struct cc_blob_sev_info *cc_info;
2079 
2080 	if (!bp)
2081 		return false;
2082 
2083 	cc_info = find_cc_blob(bp);
2084 	if (!cc_info)
2085 		return false;
2086 
2087 	setup_cpuid_table(cc_info);
2088 
2089 	/*
2090 	 * The CC blob will be used later to access the secrets page. Cache
2091 	 * it here like the boot kernel does.
2092 	 */
2093 	bp->cc_blob_address = (u32)(unsigned long)cc_info;
2094 
2095 	return true;
2096 }
2097 
2098 void __head __noreturn snp_abort(void)
2099 {
2100 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
2101 }
2102 
2103 /*
2104  * SEV-SNP guests should only execute dmi_setup() if EFI_CONFIG_TABLES are
2105  * enabled, as the alternative (fallback) logic for DMI probing in the legacy
2106  * ROM region can cause a crash since this region is not pre-validated.
2107  */
2108 void __init snp_dmi_setup(void)
2109 {
2110 	if (efi_enabled(EFI_CONFIG_TABLES))
2111 		dmi_setup();
2112 }
2113 
2114 static void dump_cpuid_table(void)
2115 {
2116 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2117 	int i = 0;
2118 
2119 	pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
2120 		cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);
2121 
2122 	for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
2123 		const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
2124 
2125 		pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
2126 			i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
2127 			fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
2128 	}
2129 }
2130 
2131 /*
2132  * It is useful from an auditing/testing perspective to provide an easy way
2133  * for the guest owner to know that the CPUID table has been initialized as
2134  * expected, but that initialization happens too early in boot to print any
2135  * sort of indicator, and there's not really any other good place to do it,
2136  * so do it here.
2137  */
2138 static int __init report_cpuid_table(void)
2139 {
2140 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2141 
2142 	if (!cpuid_table->count)
2143 		return 0;
2144 
2145 	pr_info("Using SNP CPUID table, %d entries present.\n",
2146 		cpuid_table->count);
2147 
2148 	if (sev_cfg.debug)
2149 		dump_cpuid_table();
2150 
2151 	return 0;
2152 }
2153 arch_initcall(report_cpuid_table);
2154 
2155 static int __init init_sev_config(char *str)
2156 {
2157 	char *s;
2158 
2159 	while ((s = strsep(&str, ","))) {
2160 		if (!strcmp(s, "debug")) {
2161 			sev_cfg.debug = true;
2162 			continue;
2163 		}
2164 
2165 		pr_info("SEV command-line option '%s' was not recognized\n", s);
2166 	}
2167 
2168 	return 1;
2169 }
2170 __setup("sev=", init_sev_config);
2171 
2172 int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, struct snp_guest_request_ioctl *rio)
2173 {
2174 	struct ghcb_state state;
2175 	struct es_em_ctxt ctxt;
2176 	unsigned long flags;
2177 	struct ghcb *ghcb;
2178 	int ret;
2179 
2180 	rio->exitinfo2 = SEV_RET_NO_FW_CALL;
2181 
2182 	/*
2183 	 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
2184 	 * a per-CPU GHCB.
2185 	 */
2186 	local_irq_save(flags);
2187 
2188 	ghcb = __sev_get_ghcb(&state);
2189 	if (!ghcb) {
2190 		ret = -EIO;
2191 		goto e_restore_irq;
2192 	}
2193 
2194 	vc_ghcb_invalidate(ghcb);
2195 
2196 	if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2197 		ghcb_set_rax(ghcb, input->data_gpa);
2198 		ghcb_set_rbx(ghcb, input->data_npages);
2199 	}
2200 
2201 	ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa);
2202 	if (ret)
2203 		goto e_put;
2204 
2205 	rio->exitinfo2 = ghcb->save.sw_exit_info_2;
2206 	switch (rio->exitinfo2) {
2207 	case 0:
2208 		break;
2209 
2210 	case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_BUSY):
2211 		ret = -EAGAIN;
2212 		break;
2213 
2214 	case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN):
2215 		/* Number of expected pages are returned in RBX */
2216 		if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2217 			input->data_npages = ghcb_get_rbx(ghcb);
2218 			ret = -ENOSPC;
2219 			break;
2220 		}
2221 		fallthrough;
2222 	default:
2223 		ret = -EIO;
2224 		break;
2225 	}
2226 
2227 e_put:
2228 	__sev_put_ghcb(&state);
2229 e_restore_irq:
2230 	local_irq_restore(flags);
2231 
2232 	return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(snp_issue_guest_request);
2235 
2236 static struct platform_device sev_guest_device = {
2237 	.name		= "sev-guest",
2238 	.id		= -1,
2239 };
2240 
2241 static int __init snp_init_platform_device(void)
2242 {
2243 	struct sev_guest_platform_data data;
2244 	u64 gpa;
2245 
2246 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2247 		return -ENODEV;
2248 
2249 	gpa = get_secrets_page();
2250 	if (!gpa)
2251 		return -ENODEV;
2252 
2253 	data.secrets_gpa = gpa;
2254 	if (platform_device_add_data(&sev_guest_device, &data, sizeof(data)))
2255 		return -ENODEV;
2256 
2257 	if (platform_device_register(&sev_guest_device))
2258 		return -ENODEV;
2259 
2260 	pr_info("SNP guest platform device initialized.\n");
2261 	return 0;
2262 }
2263 device_initcall(snp_init_platform_device);
2264