1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Memory Encryption Support 4 * 5 * Copyright (C) 2019 SUSE 6 * 7 * Author: Joerg Roedel <jroedel@suse.de> 8 */ 9 10 #define pr_fmt(fmt) "SEV: " fmt 11 12 #include <linux/sched/debug.h> /* For show_regs() */ 13 #include <linux/percpu-defs.h> 14 #include <linux/cc_platform.h> 15 #include <linux/printk.h> 16 #include <linux/mm_types.h> 17 #include <linux/set_memory.h> 18 #include <linux/memblock.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/cpumask.h> 22 #include <linux/efi.h> 23 #include <linux/platform_device.h> 24 #include <linux/io.h> 25 #include <linux/psp-sev.h> 26 #include <uapi/linux/sev-guest.h> 27 28 #include <asm/cpu_entry_area.h> 29 #include <asm/stacktrace.h> 30 #include <asm/sev.h> 31 #include <asm/insn-eval.h> 32 #include <asm/fpu/xcr.h> 33 #include <asm/processor.h> 34 #include <asm/realmode.h> 35 #include <asm/setup.h> 36 #include <asm/traps.h> 37 #include <asm/svm.h> 38 #include <asm/smp.h> 39 #include <asm/cpu.h> 40 #include <asm/apic.h> 41 #include <asm/cpuid.h> 42 #include <asm/cmdline.h> 43 44 #define DR7_RESET_VALUE 0x400 45 46 /* AP INIT values as documented in the APM2 section "Processor Initialization State" */ 47 #define AP_INIT_CS_LIMIT 0xffff 48 #define AP_INIT_DS_LIMIT 0xffff 49 #define AP_INIT_LDTR_LIMIT 0xffff 50 #define AP_INIT_GDTR_LIMIT 0xffff 51 #define AP_INIT_IDTR_LIMIT 0xffff 52 #define AP_INIT_TR_LIMIT 0xffff 53 #define AP_INIT_RFLAGS_DEFAULT 0x2 54 #define AP_INIT_DR6_DEFAULT 0xffff0ff0 55 #define AP_INIT_GPAT_DEFAULT 0x0007040600070406ULL 56 #define AP_INIT_XCR0_DEFAULT 0x1 57 #define AP_INIT_X87_FTW_DEFAULT 0x5555 58 #define AP_INIT_X87_FCW_DEFAULT 0x0040 59 #define AP_INIT_CR0_DEFAULT 0x60000010 60 #define AP_INIT_MXCSR_DEFAULT 0x1f80 61 62 /* For early boot hypervisor communication in SEV-ES enabled guests */ 63 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE); 64 65 /* 66 * Needs to be in the .data section because we need it NULL before bss is 67 * cleared 68 */ 69 static struct ghcb *boot_ghcb __section(".data"); 70 71 /* Bitmap of SEV features supported by the hypervisor */ 72 static u64 sev_hv_features __ro_after_init; 73 74 /* #VC handler runtime per-CPU data */ 75 struct sev_es_runtime_data { 76 struct ghcb ghcb_page; 77 78 /* 79 * Reserve one page per CPU as backup storage for the unencrypted GHCB. 80 * It is needed when an NMI happens while the #VC handler uses the real 81 * GHCB, and the NMI handler itself is causing another #VC exception. In 82 * that case the GHCB content of the first handler needs to be backed up 83 * and restored. 84 */ 85 struct ghcb backup_ghcb; 86 87 /* 88 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions. 89 * There is no need for it to be atomic, because nothing is written to 90 * the GHCB between the read and the write of ghcb_active. So it is safe 91 * to use it when a nested #VC exception happens before the write. 92 * 93 * This is necessary for example in the #VC->NMI->#VC case when the NMI 94 * happens while the first #VC handler uses the GHCB. When the NMI code 95 * raises a second #VC handler it might overwrite the contents of the 96 * GHCB written by the first handler. To avoid this the content of the 97 * GHCB is saved and restored when the GHCB is detected to be in use 98 * already. 99 */ 100 bool ghcb_active; 101 bool backup_ghcb_active; 102 103 /* 104 * Cached DR7 value - write it on DR7 writes and return it on reads. 105 * That value will never make it to the real hardware DR7 as debugging 106 * is currently unsupported in SEV-ES guests. 107 */ 108 unsigned long dr7; 109 }; 110 111 struct ghcb_state { 112 struct ghcb *ghcb; 113 }; 114 115 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data); 116 static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa); 117 118 struct sev_config { 119 __u64 debug : 1, 120 121 /* 122 * A flag used by __set_pages_state() that indicates when the 123 * per-CPU GHCB has been created and registered and thus can be 124 * used by the BSP instead of the early boot GHCB. 125 * 126 * For APs, the per-CPU GHCB is created before they are started 127 * and registered upon startup, so this flag can be used globally 128 * for the BSP and APs. 129 */ 130 ghcbs_initialized : 1, 131 132 __reserved : 62; 133 }; 134 135 static struct sev_config sev_cfg __read_mostly; 136 137 static __always_inline bool on_vc_stack(struct pt_regs *regs) 138 { 139 unsigned long sp = regs->sp; 140 141 /* User-mode RSP is not trusted */ 142 if (user_mode(regs)) 143 return false; 144 145 /* SYSCALL gap still has user-mode RSP */ 146 if (ip_within_syscall_gap(regs)) 147 return false; 148 149 return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC))); 150 } 151 152 /* 153 * This function handles the case when an NMI is raised in the #VC 154 * exception handler entry code, before the #VC handler has switched off 155 * its IST stack. In this case, the IST entry for #VC must be adjusted, 156 * so that any nested #VC exception will not overwrite the stack 157 * contents of the interrupted #VC handler. 158 * 159 * The IST entry is adjusted unconditionally so that it can be also be 160 * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a 161 * nested sev_es_ist_exit() call may adjust back the IST entry too 162 * early. 163 * 164 * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run 165 * on the NMI IST stack, as they are only called from NMI handling code 166 * right now. 167 */ 168 void noinstr __sev_es_ist_enter(struct pt_regs *regs) 169 { 170 unsigned long old_ist, new_ist; 171 172 /* Read old IST entry */ 173 new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]); 174 175 /* 176 * If NMI happened while on the #VC IST stack, set the new IST 177 * value below regs->sp, so that the interrupted stack frame is 178 * not overwritten by subsequent #VC exceptions. 179 */ 180 if (on_vc_stack(regs)) 181 new_ist = regs->sp; 182 183 /* 184 * Reserve additional 8 bytes and store old IST value so this 185 * adjustment can be unrolled in __sev_es_ist_exit(). 186 */ 187 new_ist -= sizeof(old_ist); 188 *(unsigned long *)new_ist = old_ist; 189 190 /* Set new IST entry */ 191 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist); 192 } 193 194 void noinstr __sev_es_ist_exit(void) 195 { 196 unsigned long ist; 197 198 /* Read IST entry */ 199 ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]); 200 201 if (WARN_ON(ist == __this_cpu_ist_top_va(VC))) 202 return; 203 204 /* Read back old IST entry and write it to the TSS */ 205 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist); 206 } 207 208 /* 209 * Nothing shall interrupt this code path while holding the per-CPU 210 * GHCB. The backup GHCB is only for NMIs interrupting this path. 211 * 212 * Callers must disable local interrupts around it. 213 */ 214 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state) 215 { 216 struct sev_es_runtime_data *data; 217 struct ghcb *ghcb; 218 219 WARN_ON(!irqs_disabled()); 220 221 data = this_cpu_read(runtime_data); 222 ghcb = &data->ghcb_page; 223 224 if (unlikely(data->ghcb_active)) { 225 /* GHCB is already in use - save its contents */ 226 227 if (unlikely(data->backup_ghcb_active)) { 228 /* 229 * Backup-GHCB is also already in use. There is no way 230 * to continue here so just kill the machine. To make 231 * panic() work, mark GHCBs inactive so that messages 232 * can be printed out. 233 */ 234 data->ghcb_active = false; 235 data->backup_ghcb_active = false; 236 237 instrumentation_begin(); 238 panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use"); 239 instrumentation_end(); 240 } 241 242 /* Mark backup_ghcb active before writing to it */ 243 data->backup_ghcb_active = true; 244 245 state->ghcb = &data->backup_ghcb; 246 247 /* Backup GHCB content */ 248 *state->ghcb = *ghcb; 249 } else { 250 state->ghcb = NULL; 251 data->ghcb_active = true; 252 } 253 254 return ghcb; 255 } 256 257 static inline u64 sev_es_rd_ghcb_msr(void) 258 { 259 return __rdmsr(MSR_AMD64_SEV_ES_GHCB); 260 } 261 262 static __always_inline void sev_es_wr_ghcb_msr(u64 val) 263 { 264 u32 low, high; 265 266 low = (u32)(val); 267 high = (u32)(val >> 32); 268 269 native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high); 270 } 271 272 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt, 273 unsigned char *buffer) 274 { 275 return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE); 276 } 277 278 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt) 279 { 280 char buffer[MAX_INSN_SIZE]; 281 int insn_bytes; 282 283 insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer); 284 if (insn_bytes == 0) { 285 /* Nothing could be copied */ 286 ctxt->fi.vector = X86_TRAP_PF; 287 ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER; 288 ctxt->fi.cr2 = ctxt->regs->ip; 289 return ES_EXCEPTION; 290 } else if (insn_bytes == -EINVAL) { 291 /* Effective RIP could not be calculated */ 292 ctxt->fi.vector = X86_TRAP_GP; 293 ctxt->fi.error_code = 0; 294 ctxt->fi.cr2 = 0; 295 return ES_EXCEPTION; 296 } 297 298 if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes)) 299 return ES_DECODE_FAILED; 300 301 if (ctxt->insn.immediate.got) 302 return ES_OK; 303 else 304 return ES_DECODE_FAILED; 305 } 306 307 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt) 308 { 309 char buffer[MAX_INSN_SIZE]; 310 int res, ret; 311 312 res = vc_fetch_insn_kernel(ctxt, buffer); 313 if (res) { 314 ctxt->fi.vector = X86_TRAP_PF; 315 ctxt->fi.error_code = X86_PF_INSTR; 316 ctxt->fi.cr2 = ctxt->regs->ip; 317 return ES_EXCEPTION; 318 } 319 320 ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64); 321 if (ret < 0) 322 return ES_DECODE_FAILED; 323 else 324 return ES_OK; 325 } 326 327 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt) 328 { 329 if (user_mode(ctxt->regs)) 330 return __vc_decode_user_insn(ctxt); 331 else 332 return __vc_decode_kern_insn(ctxt); 333 } 334 335 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt, 336 char *dst, char *buf, size_t size) 337 { 338 unsigned long error_code = X86_PF_PROT | X86_PF_WRITE; 339 340 /* 341 * This function uses __put_user() independent of whether kernel or user 342 * memory is accessed. This works fine because __put_user() does no 343 * sanity checks of the pointer being accessed. All that it does is 344 * to report when the access failed. 345 * 346 * Also, this function runs in atomic context, so __put_user() is not 347 * allowed to sleep. The page-fault handler detects that it is running 348 * in atomic context and will not try to take mmap_sem and handle the 349 * fault, so additional pagefault_enable()/disable() calls are not 350 * needed. 351 * 352 * The access can't be done via copy_to_user() here because 353 * vc_write_mem() must not use string instructions to access unsafe 354 * memory. The reason is that MOVS is emulated by the #VC handler by 355 * splitting the move up into a read and a write and taking a nested #VC 356 * exception on whatever of them is the MMIO access. Using string 357 * instructions here would cause infinite nesting. 358 */ 359 switch (size) { 360 case 1: { 361 u8 d1; 362 u8 __user *target = (u8 __user *)dst; 363 364 memcpy(&d1, buf, 1); 365 if (__put_user(d1, target)) 366 goto fault; 367 break; 368 } 369 case 2: { 370 u16 d2; 371 u16 __user *target = (u16 __user *)dst; 372 373 memcpy(&d2, buf, 2); 374 if (__put_user(d2, target)) 375 goto fault; 376 break; 377 } 378 case 4: { 379 u32 d4; 380 u32 __user *target = (u32 __user *)dst; 381 382 memcpy(&d4, buf, 4); 383 if (__put_user(d4, target)) 384 goto fault; 385 break; 386 } 387 case 8: { 388 u64 d8; 389 u64 __user *target = (u64 __user *)dst; 390 391 memcpy(&d8, buf, 8); 392 if (__put_user(d8, target)) 393 goto fault; 394 break; 395 } 396 default: 397 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size); 398 return ES_UNSUPPORTED; 399 } 400 401 return ES_OK; 402 403 fault: 404 if (user_mode(ctxt->regs)) 405 error_code |= X86_PF_USER; 406 407 ctxt->fi.vector = X86_TRAP_PF; 408 ctxt->fi.error_code = error_code; 409 ctxt->fi.cr2 = (unsigned long)dst; 410 411 return ES_EXCEPTION; 412 } 413 414 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt, 415 char *src, char *buf, size_t size) 416 { 417 unsigned long error_code = X86_PF_PROT; 418 419 /* 420 * This function uses __get_user() independent of whether kernel or user 421 * memory is accessed. This works fine because __get_user() does no 422 * sanity checks of the pointer being accessed. All that it does is 423 * to report when the access failed. 424 * 425 * Also, this function runs in atomic context, so __get_user() is not 426 * allowed to sleep. The page-fault handler detects that it is running 427 * in atomic context and will not try to take mmap_sem and handle the 428 * fault, so additional pagefault_enable()/disable() calls are not 429 * needed. 430 * 431 * The access can't be done via copy_from_user() here because 432 * vc_read_mem() must not use string instructions to access unsafe 433 * memory. The reason is that MOVS is emulated by the #VC handler by 434 * splitting the move up into a read and a write and taking a nested #VC 435 * exception on whatever of them is the MMIO access. Using string 436 * instructions here would cause infinite nesting. 437 */ 438 switch (size) { 439 case 1: { 440 u8 d1; 441 u8 __user *s = (u8 __user *)src; 442 443 if (__get_user(d1, s)) 444 goto fault; 445 memcpy(buf, &d1, 1); 446 break; 447 } 448 case 2: { 449 u16 d2; 450 u16 __user *s = (u16 __user *)src; 451 452 if (__get_user(d2, s)) 453 goto fault; 454 memcpy(buf, &d2, 2); 455 break; 456 } 457 case 4: { 458 u32 d4; 459 u32 __user *s = (u32 __user *)src; 460 461 if (__get_user(d4, s)) 462 goto fault; 463 memcpy(buf, &d4, 4); 464 break; 465 } 466 case 8: { 467 u64 d8; 468 u64 __user *s = (u64 __user *)src; 469 if (__get_user(d8, s)) 470 goto fault; 471 memcpy(buf, &d8, 8); 472 break; 473 } 474 default: 475 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size); 476 return ES_UNSUPPORTED; 477 } 478 479 return ES_OK; 480 481 fault: 482 if (user_mode(ctxt->regs)) 483 error_code |= X86_PF_USER; 484 485 ctxt->fi.vector = X86_TRAP_PF; 486 ctxt->fi.error_code = error_code; 487 ctxt->fi.cr2 = (unsigned long)src; 488 489 return ES_EXCEPTION; 490 } 491 492 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt, 493 unsigned long vaddr, phys_addr_t *paddr) 494 { 495 unsigned long va = (unsigned long)vaddr; 496 unsigned int level; 497 phys_addr_t pa; 498 pgd_t *pgd; 499 pte_t *pte; 500 501 pgd = __va(read_cr3_pa()); 502 pgd = &pgd[pgd_index(va)]; 503 pte = lookup_address_in_pgd(pgd, va, &level); 504 if (!pte) { 505 ctxt->fi.vector = X86_TRAP_PF; 506 ctxt->fi.cr2 = vaddr; 507 ctxt->fi.error_code = 0; 508 509 if (user_mode(ctxt->regs)) 510 ctxt->fi.error_code |= X86_PF_USER; 511 512 return ES_EXCEPTION; 513 } 514 515 if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC)) 516 /* Emulated MMIO to/from encrypted memory not supported */ 517 return ES_UNSUPPORTED; 518 519 pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; 520 pa |= va & ~page_level_mask(level); 521 522 *paddr = pa; 523 524 return ES_OK; 525 } 526 527 /* Include code shared with pre-decompression boot stage */ 528 #include "sev-shared.c" 529 530 static noinstr void __sev_put_ghcb(struct ghcb_state *state) 531 { 532 struct sev_es_runtime_data *data; 533 struct ghcb *ghcb; 534 535 WARN_ON(!irqs_disabled()); 536 537 data = this_cpu_read(runtime_data); 538 ghcb = &data->ghcb_page; 539 540 if (state->ghcb) { 541 /* Restore GHCB from Backup */ 542 *ghcb = *state->ghcb; 543 data->backup_ghcb_active = false; 544 state->ghcb = NULL; 545 } else { 546 /* 547 * Invalidate the GHCB so a VMGEXIT instruction issued 548 * from userspace won't appear to be valid. 549 */ 550 vc_ghcb_invalidate(ghcb); 551 data->ghcb_active = false; 552 } 553 } 554 555 void noinstr __sev_es_nmi_complete(void) 556 { 557 struct ghcb_state state; 558 struct ghcb *ghcb; 559 560 ghcb = __sev_get_ghcb(&state); 561 562 vc_ghcb_invalidate(ghcb); 563 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE); 564 ghcb_set_sw_exit_info_1(ghcb, 0); 565 ghcb_set_sw_exit_info_2(ghcb, 0); 566 567 sev_es_wr_ghcb_msr(__pa_nodebug(ghcb)); 568 VMGEXIT(); 569 570 __sev_put_ghcb(&state); 571 } 572 573 static u64 __init get_secrets_page(void) 574 { 575 u64 pa_data = boot_params.cc_blob_address; 576 struct cc_blob_sev_info info; 577 void *map; 578 579 /* 580 * The CC blob contains the address of the secrets page, check if the 581 * blob is present. 582 */ 583 if (!pa_data) 584 return 0; 585 586 map = early_memremap(pa_data, sizeof(info)); 587 if (!map) { 588 pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n"); 589 return 0; 590 } 591 memcpy(&info, map, sizeof(info)); 592 early_memunmap(map, sizeof(info)); 593 594 /* smoke-test the secrets page passed */ 595 if (!info.secrets_phys || info.secrets_len != PAGE_SIZE) 596 return 0; 597 598 return info.secrets_phys; 599 } 600 601 static u64 __init get_snp_jump_table_addr(void) 602 { 603 struct snp_secrets_page_layout *layout; 604 void __iomem *mem; 605 u64 pa, addr; 606 607 pa = get_secrets_page(); 608 if (!pa) 609 return 0; 610 611 mem = ioremap_encrypted(pa, PAGE_SIZE); 612 if (!mem) { 613 pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n"); 614 return 0; 615 } 616 617 layout = (__force struct snp_secrets_page_layout *)mem; 618 619 addr = layout->os_area.ap_jump_table_pa; 620 iounmap(mem); 621 622 return addr; 623 } 624 625 static u64 __init get_jump_table_addr(void) 626 { 627 struct ghcb_state state; 628 unsigned long flags; 629 struct ghcb *ghcb; 630 u64 ret = 0; 631 632 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) 633 return get_snp_jump_table_addr(); 634 635 local_irq_save(flags); 636 637 ghcb = __sev_get_ghcb(&state); 638 639 vc_ghcb_invalidate(ghcb); 640 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE); 641 ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE); 642 ghcb_set_sw_exit_info_2(ghcb, 0); 643 644 sev_es_wr_ghcb_msr(__pa(ghcb)); 645 VMGEXIT(); 646 647 if (ghcb_sw_exit_info_1_is_valid(ghcb) && 648 ghcb_sw_exit_info_2_is_valid(ghcb)) 649 ret = ghcb->save.sw_exit_info_2; 650 651 __sev_put_ghcb(&state); 652 653 local_irq_restore(flags); 654 655 return ret; 656 } 657 658 static void early_set_pages_state(unsigned long vaddr, unsigned long paddr, 659 unsigned long npages, enum psc_op op) 660 { 661 unsigned long paddr_end; 662 u64 val; 663 int ret; 664 665 vaddr = vaddr & PAGE_MASK; 666 667 paddr = paddr & PAGE_MASK; 668 paddr_end = paddr + (npages << PAGE_SHIFT); 669 670 while (paddr < paddr_end) { 671 if (op == SNP_PAGE_STATE_SHARED) { 672 /* Page validation must be rescinded before changing to shared */ 673 ret = pvalidate(vaddr, RMP_PG_SIZE_4K, false); 674 if (WARN(ret, "Failed to validate address 0x%lx ret %d", paddr, ret)) 675 goto e_term; 676 } 677 678 /* 679 * Use the MSR protocol because this function can be called before 680 * the GHCB is established. 681 */ 682 sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op)); 683 VMGEXIT(); 684 685 val = sev_es_rd_ghcb_msr(); 686 687 if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP, 688 "Wrong PSC response code: 0x%x\n", 689 (unsigned int)GHCB_RESP_CODE(val))) 690 goto e_term; 691 692 if (WARN(GHCB_MSR_PSC_RESP_VAL(val), 693 "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n", 694 op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared", 695 paddr, GHCB_MSR_PSC_RESP_VAL(val))) 696 goto e_term; 697 698 if (op == SNP_PAGE_STATE_PRIVATE) { 699 /* Page validation must be performed after changing to private */ 700 ret = pvalidate(vaddr, RMP_PG_SIZE_4K, true); 701 if (WARN(ret, "Failed to validate address 0x%lx ret %d", paddr, ret)) 702 goto e_term; 703 } 704 705 vaddr += PAGE_SIZE; 706 paddr += PAGE_SIZE; 707 } 708 709 return; 710 711 e_term: 712 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC); 713 } 714 715 void __init early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr, 716 unsigned long npages) 717 { 718 /* 719 * This can be invoked in early boot while running identity mapped, so 720 * use an open coded check for SNP instead of using cc_platform_has(). 721 * This eliminates worries about jump tables or checking boot_cpu_data 722 * in the cc_platform_has() function. 723 */ 724 if (!(sev_status & MSR_AMD64_SEV_SNP_ENABLED)) 725 return; 726 727 /* 728 * Ask the hypervisor to mark the memory pages as private in the RMP 729 * table. 730 */ 731 early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_PRIVATE); 732 } 733 734 void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr, 735 unsigned long npages) 736 { 737 /* 738 * This can be invoked in early boot while running identity mapped, so 739 * use an open coded check for SNP instead of using cc_platform_has(). 740 * This eliminates worries about jump tables or checking boot_cpu_data 741 * in the cc_platform_has() function. 742 */ 743 if (!(sev_status & MSR_AMD64_SEV_SNP_ENABLED)) 744 return; 745 746 /* Ask hypervisor to mark the memory pages shared in the RMP table. */ 747 early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_SHARED); 748 } 749 750 void __init snp_prep_memory(unsigned long paddr, unsigned int sz, enum psc_op op) 751 { 752 unsigned long vaddr, npages; 753 754 vaddr = (unsigned long)__va(paddr); 755 npages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 756 757 if (op == SNP_PAGE_STATE_PRIVATE) 758 early_snp_set_memory_private(vaddr, paddr, npages); 759 else if (op == SNP_PAGE_STATE_SHARED) 760 early_snp_set_memory_shared(vaddr, paddr, npages); 761 else 762 WARN(1, "invalid memory op %d\n", op); 763 } 764 765 static unsigned long __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr, 766 unsigned long vaddr_end, int op) 767 { 768 struct ghcb_state state; 769 bool use_large_entry; 770 struct psc_hdr *hdr; 771 struct psc_entry *e; 772 unsigned long flags; 773 unsigned long pfn; 774 struct ghcb *ghcb; 775 int i; 776 777 hdr = &data->hdr; 778 e = data->entries; 779 780 memset(data, 0, sizeof(*data)); 781 i = 0; 782 783 while (vaddr < vaddr_end && i < ARRAY_SIZE(data->entries)) { 784 hdr->end_entry = i; 785 786 if (is_vmalloc_addr((void *)vaddr)) { 787 pfn = vmalloc_to_pfn((void *)vaddr); 788 use_large_entry = false; 789 } else { 790 pfn = __pa(vaddr) >> PAGE_SHIFT; 791 use_large_entry = true; 792 } 793 794 e->gfn = pfn; 795 e->operation = op; 796 797 if (use_large_entry && IS_ALIGNED(vaddr, PMD_SIZE) && 798 (vaddr_end - vaddr) >= PMD_SIZE) { 799 e->pagesize = RMP_PG_SIZE_2M; 800 vaddr += PMD_SIZE; 801 } else { 802 e->pagesize = RMP_PG_SIZE_4K; 803 vaddr += PAGE_SIZE; 804 } 805 806 e++; 807 i++; 808 } 809 810 /* Page validation must be rescinded before changing to shared */ 811 if (op == SNP_PAGE_STATE_SHARED) 812 pvalidate_pages(data); 813 814 local_irq_save(flags); 815 816 if (sev_cfg.ghcbs_initialized) 817 ghcb = __sev_get_ghcb(&state); 818 else 819 ghcb = boot_ghcb; 820 821 /* Invoke the hypervisor to perform the page state changes */ 822 if (!ghcb || vmgexit_psc(ghcb, data)) 823 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC); 824 825 if (sev_cfg.ghcbs_initialized) 826 __sev_put_ghcb(&state); 827 828 local_irq_restore(flags); 829 830 /* Page validation must be performed after changing to private */ 831 if (op == SNP_PAGE_STATE_PRIVATE) 832 pvalidate_pages(data); 833 834 return vaddr; 835 } 836 837 static void set_pages_state(unsigned long vaddr, unsigned long npages, int op) 838 { 839 struct snp_psc_desc desc; 840 unsigned long vaddr_end; 841 842 /* Use the MSR protocol when a GHCB is not available. */ 843 if (!boot_ghcb) 844 return early_set_pages_state(vaddr, __pa(vaddr), npages, op); 845 846 vaddr = vaddr & PAGE_MASK; 847 vaddr_end = vaddr + (npages << PAGE_SHIFT); 848 849 while (vaddr < vaddr_end) 850 vaddr = __set_pages_state(&desc, vaddr, vaddr_end, op); 851 } 852 853 void snp_set_memory_shared(unsigned long vaddr, unsigned long npages) 854 { 855 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) 856 return; 857 858 set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED); 859 } 860 861 void snp_set_memory_private(unsigned long vaddr, unsigned long npages) 862 { 863 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) 864 return; 865 866 set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE); 867 } 868 869 void snp_accept_memory(phys_addr_t start, phys_addr_t end) 870 { 871 unsigned long vaddr; 872 unsigned int npages; 873 874 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) 875 return; 876 877 vaddr = (unsigned long)__va(start); 878 npages = (end - start) >> PAGE_SHIFT; 879 880 set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE); 881 } 882 883 static int snp_set_vmsa(void *va, bool vmsa) 884 { 885 u64 attrs; 886 887 /* 888 * Running at VMPL0 allows the kernel to change the VMSA bit for a page 889 * using the RMPADJUST instruction. However, for the instruction to 890 * succeed it must target the permissions of a lesser privileged 891 * (higher numbered) VMPL level, so use VMPL1 (refer to the RMPADJUST 892 * instruction in the AMD64 APM Volume 3). 893 */ 894 attrs = 1; 895 if (vmsa) 896 attrs |= RMPADJUST_VMSA_PAGE_BIT; 897 898 return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs); 899 } 900 901 #define __ATTR_BASE (SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK) 902 #define INIT_CS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK) 903 #define INIT_DS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_WRITE_MASK) 904 905 #define INIT_LDTR_ATTRIBS (SVM_SELECTOR_P_MASK | 2) 906 #define INIT_TR_ATTRIBS (SVM_SELECTOR_P_MASK | 3) 907 908 static void *snp_alloc_vmsa_page(void) 909 { 910 struct page *p; 911 912 /* 913 * Allocate VMSA page to work around the SNP erratum where the CPU will 914 * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB) 915 * collides with the RMP entry of VMSA page. The recommended workaround 916 * is to not use a large page. 917 * 918 * Allocate an 8k page which is also 8k-aligned. 919 */ 920 p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1); 921 if (!p) 922 return NULL; 923 924 split_page(p, 1); 925 926 /* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */ 927 __free_page(p); 928 929 return page_address(p + 1); 930 } 931 932 static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa) 933 { 934 int err; 935 936 err = snp_set_vmsa(vmsa, false); 937 if (err) 938 pr_err("clear VMSA page failed (%u), leaking page\n", err); 939 else 940 free_page((unsigned long)vmsa); 941 } 942 943 static int wakeup_cpu_via_vmgexit(int apic_id, unsigned long start_ip) 944 { 945 struct sev_es_save_area *cur_vmsa, *vmsa; 946 struct ghcb_state state; 947 unsigned long flags; 948 struct ghcb *ghcb; 949 u8 sipi_vector; 950 int cpu, ret; 951 u64 cr4; 952 953 /* 954 * The hypervisor SNP feature support check has happened earlier, just check 955 * the AP_CREATION one here. 956 */ 957 if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION)) 958 return -EOPNOTSUPP; 959 960 /* 961 * Verify the desired start IP against the known trampoline start IP 962 * to catch any future new trampolines that may be introduced that 963 * would require a new protected guest entry point. 964 */ 965 if (WARN_ONCE(start_ip != real_mode_header->trampoline_start, 966 "Unsupported SNP start_ip: %lx\n", start_ip)) 967 return -EINVAL; 968 969 /* Override start_ip with known protected guest start IP */ 970 start_ip = real_mode_header->sev_es_trampoline_start; 971 972 /* Find the logical CPU for the APIC ID */ 973 for_each_present_cpu(cpu) { 974 if (arch_match_cpu_phys_id(cpu, apic_id)) 975 break; 976 } 977 if (cpu >= nr_cpu_ids) 978 return -EINVAL; 979 980 cur_vmsa = per_cpu(sev_vmsa, cpu); 981 982 /* 983 * A new VMSA is created each time because there is no guarantee that 984 * the current VMSA is the kernels or that the vCPU is not running. If 985 * an attempt was done to use the current VMSA with a running vCPU, a 986 * #VMEXIT of that vCPU would wipe out all of the settings being done 987 * here. 988 */ 989 vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page(); 990 if (!vmsa) 991 return -ENOMEM; 992 993 /* CR4 should maintain the MCE value */ 994 cr4 = native_read_cr4() & X86_CR4_MCE; 995 996 /* Set the CS value based on the start_ip converted to a SIPI vector */ 997 sipi_vector = (start_ip >> 12); 998 vmsa->cs.base = sipi_vector << 12; 999 vmsa->cs.limit = AP_INIT_CS_LIMIT; 1000 vmsa->cs.attrib = INIT_CS_ATTRIBS; 1001 vmsa->cs.selector = sipi_vector << 8; 1002 1003 /* Set the RIP value based on start_ip */ 1004 vmsa->rip = start_ip & 0xfff; 1005 1006 /* Set AP INIT defaults as documented in the APM */ 1007 vmsa->ds.limit = AP_INIT_DS_LIMIT; 1008 vmsa->ds.attrib = INIT_DS_ATTRIBS; 1009 vmsa->es = vmsa->ds; 1010 vmsa->fs = vmsa->ds; 1011 vmsa->gs = vmsa->ds; 1012 vmsa->ss = vmsa->ds; 1013 1014 vmsa->gdtr.limit = AP_INIT_GDTR_LIMIT; 1015 vmsa->ldtr.limit = AP_INIT_LDTR_LIMIT; 1016 vmsa->ldtr.attrib = INIT_LDTR_ATTRIBS; 1017 vmsa->idtr.limit = AP_INIT_IDTR_LIMIT; 1018 vmsa->tr.limit = AP_INIT_TR_LIMIT; 1019 vmsa->tr.attrib = INIT_TR_ATTRIBS; 1020 1021 vmsa->cr4 = cr4; 1022 vmsa->cr0 = AP_INIT_CR0_DEFAULT; 1023 vmsa->dr7 = DR7_RESET_VALUE; 1024 vmsa->dr6 = AP_INIT_DR6_DEFAULT; 1025 vmsa->rflags = AP_INIT_RFLAGS_DEFAULT; 1026 vmsa->g_pat = AP_INIT_GPAT_DEFAULT; 1027 vmsa->xcr0 = AP_INIT_XCR0_DEFAULT; 1028 vmsa->mxcsr = AP_INIT_MXCSR_DEFAULT; 1029 vmsa->x87_ftw = AP_INIT_X87_FTW_DEFAULT; 1030 vmsa->x87_fcw = AP_INIT_X87_FCW_DEFAULT; 1031 1032 /* SVME must be set. */ 1033 vmsa->efer = EFER_SVME; 1034 1035 /* 1036 * Set the SNP-specific fields for this VMSA: 1037 * VMPL level 1038 * SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits) 1039 */ 1040 vmsa->vmpl = 0; 1041 vmsa->sev_features = sev_status >> 2; 1042 1043 /* Switch the page over to a VMSA page now that it is initialized */ 1044 ret = snp_set_vmsa(vmsa, true); 1045 if (ret) { 1046 pr_err("set VMSA page failed (%u)\n", ret); 1047 free_page((unsigned long)vmsa); 1048 1049 return -EINVAL; 1050 } 1051 1052 /* Issue VMGEXIT AP Creation NAE event */ 1053 local_irq_save(flags); 1054 1055 ghcb = __sev_get_ghcb(&state); 1056 1057 vc_ghcb_invalidate(ghcb); 1058 ghcb_set_rax(ghcb, vmsa->sev_features); 1059 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION); 1060 ghcb_set_sw_exit_info_1(ghcb, ((u64)apic_id << 32) | SVM_VMGEXIT_AP_CREATE); 1061 ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa)); 1062 1063 sev_es_wr_ghcb_msr(__pa(ghcb)); 1064 VMGEXIT(); 1065 1066 if (!ghcb_sw_exit_info_1_is_valid(ghcb) || 1067 lower_32_bits(ghcb->save.sw_exit_info_1)) { 1068 pr_err("SNP AP Creation error\n"); 1069 ret = -EINVAL; 1070 } 1071 1072 __sev_put_ghcb(&state); 1073 1074 local_irq_restore(flags); 1075 1076 /* Perform cleanup if there was an error */ 1077 if (ret) { 1078 snp_cleanup_vmsa(vmsa); 1079 vmsa = NULL; 1080 } 1081 1082 /* Free up any previous VMSA page */ 1083 if (cur_vmsa) 1084 snp_cleanup_vmsa(cur_vmsa); 1085 1086 /* Record the current VMSA page */ 1087 per_cpu(sev_vmsa, cpu) = vmsa; 1088 1089 return ret; 1090 } 1091 1092 void __init snp_set_wakeup_secondary_cpu(void) 1093 { 1094 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) 1095 return; 1096 1097 /* 1098 * Always set this override if SNP is enabled. This makes it the 1099 * required method to start APs under SNP. If the hypervisor does 1100 * not support AP creation, then no APs will be started. 1101 */ 1102 apic_update_callback(wakeup_secondary_cpu, wakeup_cpu_via_vmgexit); 1103 } 1104 1105 int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh) 1106 { 1107 u16 startup_cs, startup_ip; 1108 phys_addr_t jump_table_pa; 1109 u64 jump_table_addr; 1110 u16 __iomem *jump_table; 1111 1112 jump_table_addr = get_jump_table_addr(); 1113 1114 /* On UP guests there is no jump table so this is not a failure */ 1115 if (!jump_table_addr) 1116 return 0; 1117 1118 /* Check if AP Jump Table is page-aligned */ 1119 if (jump_table_addr & ~PAGE_MASK) 1120 return -EINVAL; 1121 1122 jump_table_pa = jump_table_addr & PAGE_MASK; 1123 1124 startup_cs = (u16)(rmh->trampoline_start >> 4); 1125 startup_ip = (u16)(rmh->sev_es_trampoline_start - 1126 rmh->trampoline_start); 1127 1128 jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE); 1129 if (!jump_table) 1130 return -EIO; 1131 1132 writew(startup_ip, &jump_table[0]); 1133 writew(startup_cs, &jump_table[1]); 1134 1135 iounmap(jump_table); 1136 1137 return 0; 1138 } 1139 1140 /* 1141 * This is needed by the OVMF UEFI firmware which will use whatever it finds in 1142 * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu 1143 * runtime GHCBs used by the kernel are also mapped in the EFI page-table. 1144 */ 1145 int __init sev_es_efi_map_ghcbs(pgd_t *pgd) 1146 { 1147 struct sev_es_runtime_data *data; 1148 unsigned long address, pflags; 1149 int cpu; 1150 u64 pfn; 1151 1152 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT)) 1153 return 0; 1154 1155 pflags = _PAGE_NX | _PAGE_RW; 1156 1157 for_each_possible_cpu(cpu) { 1158 data = per_cpu(runtime_data, cpu); 1159 1160 address = __pa(&data->ghcb_page); 1161 pfn = address >> PAGE_SHIFT; 1162 1163 if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags)) 1164 return 1; 1165 } 1166 1167 return 0; 1168 } 1169 1170 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt) 1171 { 1172 struct pt_regs *regs = ctxt->regs; 1173 enum es_result ret; 1174 u64 exit_info_1; 1175 1176 /* Is it a WRMSR? */ 1177 exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0; 1178 1179 ghcb_set_rcx(ghcb, regs->cx); 1180 if (exit_info_1) { 1181 ghcb_set_rax(ghcb, regs->ax); 1182 ghcb_set_rdx(ghcb, regs->dx); 1183 } 1184 1185 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0); 1186 1187 if ((ret == ES_OK) && (!exit_info_1)) { 1188 regs->ax = ghcb->save.rax; 1189 regs->dx = ghcb->save.rdx; 1190 } 1191 1192 return ret; 1193 } 1194 1195 static void snp_register_per_cpu_ghcb(void) 1196 { 1197 struct sev_es_runtime_data *data; 1198 struct ghcb *ghcb; 1199 1200 data = this_cpu_read(runtime_data); 1201 ghcb = &data->ghcb_page; 1202 1203 snp_register_ghcb_early(__pa(ghcb)); 1204 } 1205 1206 void setup_ghcb(void) 1207 { 1208 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT)) 1209 return; 1210 1211 /* First make sure the hypervisor talks a supported protocol. */ 1212 if (!sev_es_negotiate_protocol()) 1213 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ); 1214 1215 /* 1216 * Check whether the runtime #VC exception handler is active. It uses 1217 * the per-CPU GHCB page which is set up by sev_es_init_vc_handling(). 1218 * 1219 * If SNP is active, register the per-CPU GHCB page so that the runtime 1220 * exception handler can use it. 1221 */ 1222 if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) { 1223 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) 1224 snp_register_per_cpu_ghcb(); 1225 1226 sev_cfg.ghcbs_initialized = true; 1227 1228 return; 1229 } 1230 1231 /* 1232 * Clear the boot_ghcb. The first exception comes in before the bss 1233 * section is cleared. 1234 */ 1235 memset(&boot_ghcb_page, 0, PAGE_SIZE); 1236 1237 /* Alright - Make the boot-ghcb public */ 1238 boot_ghcb = &boot_ghcb_page; 1239 1240 /* SNP guest requires that GHCB GPA must be registered. */ 1241 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) 1242 snp_register_ghcb_early(__pa(&boot_ghcb_page)); 1243 } 1244 1245 #ifdef CONFIG_HOTPLUG_CPU 1246 static void sev_es_ap_hlt_loop(void) 1247 { 1248 struct ghcb_state state; 1249 struct ghcb *ghcb; 1250 1251 ghcb = __sev_get_ghcb(&state); 1252 1253 while (true) { 1254 vc_ghcb_invalidate(ghcb); 1255 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP); 1256 ghcb_set_sw_exit_info_1(ghcb, 0); 1257 ghcb_set_sw_exit_info_2(ghcb, 0); 1258 1259 sev_es_wr_ghcb_msr(__pa(ghcb)); 1260 VMGEXIT(); 1261 1262 /* Wakeup signal? */ 1263 if (ghcb_sw_exit_info_2_is_valid(ghcb) && 1264 ghcb->save.sw_exit_info_2) 1265 break; 1266 } 1267 1268 __sev_put_ghcb(&state); 1269 } 1270 1271 /* 1272 * Play_dead handler when running under SEV-ES. This is needed because 1273 * the hypervisor can't deliver an SIPI request to restart the AP. 1274 * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the 1275 * hypervisor wakes it up again. 1276 */ 1277 static void sev_es_play_dead(void) 1278 { 1279 play_dead_common(); 1280 1281 /* IRQs now disabled */ 1282 1283 sev_es_ap_hlt_loop(); 1284 1285 /* 1286 * If we get here, the VCPU was woken up again. Jump to CPU 1287 * startup code to get it back online. 1288 */ 1289 soft_restart_cpu(); 1290 } 1291 #else /* CONFIG_HOTPLUG_CPU */ 1292 #define sev_es_play_dead native_play_dead 1293 #endif /* CONFIG_HOTPLUG_CPU */ 1294 1295 #ifdef CONFIG_SMP 1296 static void __init sev_es_setup_play_dead(void) 1297 { 1298 smp_ops.play_dead = sev_es_play_dead; 1299 } 1300 #else 1301 static inline void sev_es_setup_play_dead(void) { } 1302 #endif 1303 1304 static void __init alloc_runtime_data(int cpu) 1305 { 1306 struct sev_es_runtime_data *data; 1307 1308 data = memblock_alloc(sizeof(*data), PAGE_SIZE); 1309 if (!data) 1310 panic("Can't allocate SEV-ES runtime data"); 1311 1312 per_cpu(runtime_data, cpu) = data; 1313 } 1314 1315 static void __init init_ghcb(int cpu) 1316 { 1317 struct sev_es_runtime_data *data; 1318 int err; 1319 1320 data = per_cpu(runtime_data, cpu); 1321 1322 err = early_set_memory_decrypted((unsigned long)&data->ghcb_page, 1323 sizeof(data->ghcb_page)); 1324 if (err) 1325 panic("Can't map GHCBs unencrypted"); 1326 1327 memset(&data->ghcb_page, 0, sizeof(data->ghcb_page)); 1328 1329 data->ghcb_active = false; 1330 data->backup_ghcb_active = false; 1331 } 1332 1333 void __init sev_es_init_vc_handling(void) 1334 { 1335 int cpu; 1336 1337 BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE); 1338 1339 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT)) 1340 return; 1341 1342 if (!sev_es_check_cpu_features()) 1343 panic("SEV-ES CPU Features missing"); 1344 1345 /* 1346 * SNP is supported in v2 of the GHCB spec which mandates support for HV 1347 * features. 1348 */ 1349 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) { 1350 sev_hv_features = get_hv_features(); 1351 1352 if (!(sev_hv_features & GHCB_HV_FT_SNP)) 1353 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED); 1354 } 1355 1356 /* Initialize per-cpu GHCB pages */ 1357 for_each_possible_cpu(cpu) { 1358 alloc_runtime_data(cpu); 1359 init_ghcb(cpu); 1360 } 1361 1362 sev_es_setup_play_dead(); 1363 1364 /* Secondary CPUs use the runtime #VC handler */ 1365 initial_vc_handler = (unsigned long)kernel_exc_vmm_communication; 1366 } 1367 1368 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt) 1369 { 1370 int trapnr = ctxt->fi.vector; 1371 1372 if (trapnr == X86_TRAP_PF) 1373 native_write_cr2(ctxt->fi.cr2); 1374 1375 ctxt->regs->orig_ax = ctxt->fi.error_code; 1376 do_early_exception(ctxt->regs, trapnr); 1377 } 1378 1379 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt) 1380 { 1381 long *reg_array; 1382 int offset; 1383 1384 reg_array = (long *)ctxt->regs; 1385 offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs); 1386 1387 if (offset < 0) 1388 return NULL; 1389 1390 offset /= sizeof(long); 1391 1392 return reg_array + offset; 1393 } 1394 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt, 1395 unsigned int bytes, bool read) 1396 { 1397 u64 exit_code, exit_info_1, exit_info_2; 1398 unsigned long ghcb_pa = __pa(ghcb); 1399 enum es_result res; 1400 phys_addr_t paddr; 1401 void __user *ref; 1402 1403 ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs); 1404 if (ref == (void __user *)-1L) 1405 return ES_UNSUPPORTED; 1406 1407 exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE; 1408 1409 res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr); 1410 if (res != ES_OK) { 1411 if (res == ES_EXCEPTION && !read) 1412 ctxt->fi.error_code |= X86_PF_WRITE; 1413 1414 return res; 1415 } 1416 1417 exit_info_1 = paddr; 1418 /* Can never be greater than 8 */ 1419 exit_info_2 = bytes; 1420 1421 ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer)); 1422 1423 return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2); 1424 } 1425 1426 /* 1427 * The MOVS instruction has two memory operands, which raises the 1428 * problem that it is not known whether the access to the source or the 1429 * destination caused the #VC exception (and hence whether an MMIO read 1430 * or write operation needs to be emulated). 1431 * 1432 * Instead of playing games with walking page-tables and trying to guess 1433 * whether the source or destination is an MMIO range, split the move 1434 * into two operations, a read and a write with only one memory operand. 1435 * This will cause a nested #VC exception on the MMIO address which can 1436 * then be handled. 1437 * 1438 * This implementation has the benefit that it also supports MOVS where 1439 * source _and_ destination are MMIO regions. 1440 * 1441 * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a 1442 * rare operation. If it turns out to be a performance problem the split 1443 * operations can be moved to memcpy_fromio() and memcpy_toio(). 1444 */ 1445 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt, 1446 unsigned int bytes) 1447 { 1448 unsigned long ds_base, es_base; 1449 unsigned char *src, *dst; 1450 unsigned char buffer[8]; 1451 enum es_result ret; 1452 bool rep; 1453 int off; 1454 1455 ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS); 1456 es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES); 1457 1458 if (ds_base == -1L || es_base == -1L) { 1459 ctxt->fi.vector = X86_TRAP_GP; 1460 ctxt->fi.error_code = 0; 1461 return ES_EXCEPTION; 1462 } 1463 1464 src = ds_base + (unsigned char *)ctxt->regs->si; 1465 dst = es_base + (unsigned char *)ctxt->regs->di; 1466 1467 ret = vc_read_mem(ctxt, src, buffer, bytes); 1468 if (ret != ES_OK) 1469 return ret; 1470 1471 ret = vc_write_mem(ctxt, dst, buffer, bytes); 1472 if (ret != ES_OK) 1473 return ret; 1474 1475 if (ctxt->regs->flags & X86_EFLAGS_DF) 1476 off = -bytes; 1477 else 1478 off = bytes; 1479 1480 ctxt->regs->si += off; 1481 ctxt->regs->di += off; 1482 1483 rep = insn_has_rep_prefix(&ctxt->insn); 1484 if (rep) 1485 ctxt->regs->cx -= 1; 1486 1487 if (!rep || ctxt->regs->cx == 0) 1488 return ES_OK; 1489 else 1490 return ES_RETRY; 1491 } 1492 1493 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt) 1494 { 1495 struct insn *insn = &ctxt->insn; 1496 enum insn_mmio_type mmio; 1497 unsigned int bytes = 0; 1498 enum es_result ret; 1499 u8 sign_byte; 1500 long *reg_data; 1501 1502 mmio = insn_decode_mmio(insn, &bytes); 1503 if (mmio == INSN_MMIO_DECODE_FAILED) 1504 return ES_DECODE_FAILED; 1505 1506 if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) { 1507 reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs); 1508 if (!reg_data) 1509 return ES_DECODE_FAILED; 1510 } 1511 1512 switch (mmio) { 1513 case INSN_MMIO_WRITE: 1514 memcpy(ghcb->shared_buffer, reg_data, bytes); 1515 ret = vc_do_mmio(ghcb, ctxt, bytes, false); 1516 break; 1517 case INSN_MMIO_WRITE_IMM: 1518 memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes); 1519 ret = vc_do_mmio(ghcb, ctxt, bytes, false); 1520 break; 1521 case INSN_MMIO_READ: 1522 ret = vc_do_mmio(ghcb, ctxt, bytes, true); 1523 if (ret) 1524 break; 1525 1526 /* Zero-extend for 32-bit operation */ 1527 if (bytes == 4) 1528 *reg_data = 0; 1529 1530 memcpy(reg_data, ghcb->shared_buffer, bytes); 1531 break; 1532 case INSN_MMIO_READ_ZERO_EXTEND: 1533 ret = vc_do_mmio(ghcb, ctxt, bytes, true); 1534 if (ret) 1535 break; 1536 1537 /* Zero extend based on operand size */ 1538 memset(reg_data, 0, insn->opnd_bytes); 1539 memcpy(reg_data, ghcb->shared_buffer, bytes); 1540 break; 1541 case INSN_MMIO_READ_SIGN_EXTEND: 1542 ret = vc_do_mmio(ghcb, ctxt, bytes, true); 1543 if (ret) 1544 break; 1545 1546 if (bytes == 1) { 1547 u8 *val = (u8 *)ghcb->shared_buffer; 1548 1549 sign_byte = (*val & 0x80) ? 0xff : 0x00; 1550 } else { 1551 u16 *val = (u16 *)ghcb->shared_buffer; 1552 1553 sign_byte = (*val & 0x8000) ? 0xff : 0x00; 1554 } 1555 1556 /* Sign extend based on operand size */ 1557 memset(reg_data, sign_byte, insn->opnd_bytes); 1558 memcpy(reg_data, ghcb->shared_buffer, bytes); 1559 break; 1560 case INSN_MMIO_MOVS: 1561 ret = vc_handle_mmio_movs(ctxt, bytes); 1562 break; 1563 default: 1564 ret = ES_UNSUPPORTED; 1565 break; 1566 } 1567 1568 return ret; 1569 } 1570 1571 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb, 1572 struct es_em_ctxt *ctxt) 1573 { 1574 struct sev_es_runtime_data *data = this_cpu_read(runtime_data); 1575 long val, *reg = vc_insn_get_rm(ctxt); 1576 enum es_result ret; 1577 1578 if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP) 1579 return ES_VMM_ERROR; 1580 1581 if (!reg) 1582 return ES_DECODE_FAILED; 1583 1584 val = *reg; 1585 1586 /* Upper 32 bits must be written as zeroes */ 1587 if (val >> 32) { 1588 ctxt->fi.vector = X86_TRAP_GP; 1589 ctxt->fi.error_code = 0; 1590 return ES_EXCEPTION; 1591 } 1592 1593 /* Clear out other reserved bits and set bit 10 */ 1594 val = (val & 0xffff23ffL) | BIT(10); 1595 1596 /* Early non-zero writes to DR7 are not supported */ 1597 if (!data && (val & ~DR7_RESET_VALUE)) 1598 return ES_UNSUPPORTED; 1599 1600 /* Using a value of 0 for ExitInfo1 means RAX holds the value */ 1601 ghcb_set_rax(ghcb, val); 1602 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0); 1603 if (ret != ES_OK) 1604 return ret; 1605 1606 if (data) 1607 data->dr7 = val; 1608 1609 return ES_OK; 1610 } 1611 1612 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb, 1613 struct es_em_ctxt *ctxt) 1614 { 1615 struct sev_es_runtime_data *data = this_cpu_read(runtime_data); 1616 long *reg = vc_insn_get_rm(ctxt); 1617 1618 if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP) 1619 return ES_VMM_ERROR; 1620 1621 if (!reg) 1622 return ES_DECODE_FAILED; 1623 1624 if (data) 1625 *reg = data->dr7; 1626 else 1627 *reg = DR7_RESET_VALUE; 1628 1629 return ES_OK; 1630 } 1631 1632 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb, 1633 struct es_em_ctxt *ctxt) 1634 { 1635 return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0); 1636 } 1637 1638 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt) 1639 { 1640 enum es_result ret; 1641 1642 ghcb_set_rcx(ghcb, ctxt->regs->cx); 1643 1644 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0); 1645 if (ret != ES_OK) 1646 return ret; 1647 1648 if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb))) 1649 return ES_VMM_ERROR; 1650 1651 ctxt->regs->ax = ghcb->save.rax; 1652 ctxt->regs->dx = ghcb->save.rdx; 1653 1654 return ES_OK; 1655 } 1656 1657 static enum es_result vc_handle_monitor(struct ghcb *ghcb, 1658 struct es_em_ctxt *ctxt) 1659 { 1660 /* 1661 * Treat it as a NOP and do not leak a physical address to the 1662 * hypervisor. 1663 */ 1664 return ES_OK; 1665 } 1666 1667 static enum es_result vc_handle_mwait(struct ghcb *ghcb, 1668 struct es_em_ctxt *ctxt) 1669 { 1670 /* Treat the same as MONITOR/MONITORX */ 1671 return ES_OK; 1672 } 1673 1674 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb, 1675 struct es_em_ctxt *ctxt) 1676 { 1677 enum es_result ret; 1678 1679 ghcb_set_rax(ghcb, ctxt->regs->ax); 1680 ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0); 1681 1682 if (x86_platform.hyper.sev_es_hcall_prepare) 1683 x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs); 1684 1685 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0); 1686 if (ret != ES_OK) 1687 return ret; 1688 1689 if (!ghcb_rax_is_valid(ghcb)) 1690 return ES_VMM_ERROR; 1691 1692 ctxt->regs->ax = ghcb->save.rax; 1693 1694 /* 1695 * Call sev_es_hcall_finish() after regs->ax is already set. 1696 * This allows the hypervisor handler to overwrite it again if 1697 * necessary. 1698 */ 1699 if (x86_platform.hyper.sev_es_hcall_finish && 1700 !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs)) 1701 return ES_VMM_ERROR; 1702 1703 return ES_OK; 1704 } 1705 1706 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb, 1707 struct es_em_ctxt *ctxt) 1708 { 1709 /* 1710 * Calling ecx_alignment_check() directly does not work, because it 1711 * enables IRQs and the GHCB is active. Forward the exception and call 1712 * it later from vc_forward_exception(). 1713 */ 1714 ctxt->fi.vector = X86_TRAP_AC; 1715 ctxt->fi.error_code = 0; 1716 return ES_EXCEPTION; 1717 } 1718 1719 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt, 1720 struct ghcb *ghcb, 1721 unsigned long exit_code) 1722 { 1723 enum es_result result; 1724 1725 switch (exit_code) { 1726 case SVM_EXIT_READ_DR7: 1727 result = vc_handle_dr7_read(ghcb, ctxt); 1728 break; 1729 case SVM_EXIT_WRITE_DR7: 1730 result = vc_handle_dr7_write(ghcb, ctxt); 1731 break; 1732 case SVM_EXIT_EXCP_BASE + X86_TRAP_AC: 1733 result = vc_handle_trap_ac(ghcb, ctxt); 1734 break; 1735 case SVM_EXIT_RDTSC: 1736 case SVM_EXIT_RDTSCP: 1737 result = vc_handle_rdtsc(ghcb, ctxt, exit_code); 1738 break; 1739 case SVM_EXIT_RDPMC: 1740 result = vc_handle_rdpmc(ghcb, ctxt); 1741 break; 1742 case SVM_EXIT_INVD: 1743 pr_err_ratelimited("#VC exception for INVD??? Seriously???\n"); 1744 result = ES_UNSUPPORTED; 1745 break; 1746 case SVM_EXIT_CPUID: 1747 result = vc_handle_cpuid(ghcb, ctxt); 1748 break; 1749 case SVM_EXIT_IOIO: 1750 result = vc_handle_ioio(ghcb, ctxt); 1751 break; 1752 case SVM_EXIT_MSR: 1753 result = vc_handle_msr(ghcb, ctxt); 1754 break; 1755 case SVM_EXIT_VMMCALL: 1756 result = vc_handle_vmmcall(ghcb, ctxt); 1757 break; 1758 case SVM_EXIT_WBINVD: 1759 result = vc_handle_wbinvd(ghcb, ctxt); 1760 break; 1761 case SVM_EXIT_MONITOR: 1762 result = vc_handle_monitor(ghcb, ctxt); 1763 break; 1764 case SVM_EXIT_MWAIT: 1765 result = vc_handle_mwait(ghcb, ctxt); 1766 break; 1767 case SVM_EXIT_NPF: 1768 result = vc_handle_mmio(ghcb, ctxt); 1769 break; 1770 default: 1771 /* 1772 * Unexpected #VC exception 1773 */ 1774 result = ES_UNSUPPORTED; 1775 } 1776 1777 return result; 1778 } 1779 1780 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt) 1781 { 1782 long error_code = ctxt->fi.error_code; 1783 int trapnr = ctxt->fi.vector; 1784 1785 ctxt->regs->orig_ax = ctxt->fi.error_code; 1786 1787 switch (trapnr) { 1788 case X86_TRAP_GP: 1789 exc_general_protection(ctxt->regs, error_code); 1790 break; 1791 case X86_TRAP_UD: 1792 exc_invalid_op(ctxt->regs); 1793 break; 1794 case X86_TRAP_PF: 1795 write_cr2(ctxt->fi.cr2); 1796 exc_page_fault(ctxt->regs, error_code); 1797 break; 1798 case X86_TRAP_AC: 1799 exc_alignment_check(ctxt->regs, error_code); 1800 break; 1801 default: 1802 pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n"); 1803 BUG(); 1804 } 1805 } 1806 1807 static __always_inline bool is_vc2_stack(unsigned long sp) 1808 { 1809 return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2)); 1810 } 1811 1812 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs) 1813 { 1814 unsigned long sp, prev_sp; 1815 1816 sp = (unsigned long)regs; 1817 prev_sp = regs->sp; 1818 1819 /* 1820 * If the code was already executing on the VC2 stack when the #VC 1821 * happened, let it proceed to the normal handling routine. This way the 1822 * code executing on the VC2 stack can cause #VC exceptions to get handled. 1823 */ 1824 return is_vc2_stack(sp) && !is_vc2_stack(prev_sp); 1825 } 1826 1827 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code) 1828 { 1829 struct ghcb_state state; 1830 struct es_em_ctxt ctxt; 1831 enum es_result result; 1832 struct ghcb *ghcb; 1833 bool ret = true; 1834 1835 ghcb = __sev_get_ghcb(&state); 1836 1837 vc_ghcb_invalidate(ghcb); 1838 result = vc_init_em_ctxt(&ctxt, regs, error_code); 1839 1840 if (result == ES_OK) 1841 result = vc_handle_exitcode(&ctxt, ghcb, error_code); 1842 1843 __sev_put_ghcb(&state); 1844 1845 /* Done - now check the result */ 1846 switch (result) { 1847 case ES_OK: 1848 vc_finish_insn(&ctxt); 1849 break; 1850 case ES_UNSUPPORTED: 1851 pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n", 1852 error_code, regs->ip); 1853 ret = false; 1854 break; 1855 case ES_VMM_ERROR: 1856 pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n", 1857 error_code, regs->ip); 1858 ret = false; 1859 break; 1860 case ES_DECODE_FAILED: 1861 pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n", 1862 error_code, regs->ip); 1863 ret = false; 1864 break; 1865 case ES_EXCEPTION: 1866 vc_forward_exception(&ctxt); 1867 break; 1868 case ES_RETRY: 1869 /* Nothing to do */ 1870 break; 1871 default: 1872 pr_emerg("Unknown result in %s():%d\n", __func__, result); 1873 /* 1874 * Emulating the instruction which caused the #VC exception 1875 * failed - can't continue so print debug information 1876 */ 1877 BUG(); 1878 } 1879 1880 return ret; 1881 } 1882 1883 static __always_inline bool vc_is_db(unsigned long error_code) 1884 { 1885 return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB; 1886 } 1887 1888 /* 1889 * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode 1890 * and will panic when an error happens. 1891 */ 1892 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication) 1893 { 1894 irqentry_state_t irq_state; 1895 1896 /* 1897 * With the current implementation it is always possible to switch to a 1898 * safe stack because #VC exceptions only happen at known places, like 1899 * intercepted instructions or accesses to MMIO areas/IO ports. They can 1900 * also happen with code instrumentation when the hypervisor intercepts 1901 * #DB, but the critical paths are forbidden to be instrumented, so #DB 1902 * exceptions currently also only happen in safe places. 1903 * 1904 * But keep this here in case the noinstr annotations are violated due 1905 * to bug elsewhere. 1906 */ 1907 if (unlikely(vc_from_invalid_context(regs))) { 1908 instrumentation_begin(); 1909 panic("Can't handle #VC exception from unsupported context\n"); 1910 instrumentation_end(); 1911 } 1912 1913 /* 1914 * Handle #DB before calling into !noinstr code to avoid recursive #DB. 1915 */ 1916 if (vc_is_db(error_code)) { 1917 exc_debug(regs); 1918 return; 1919 } 1920 1921 irq_state = irqentry_nmi_enter(regs); 1922 1923 instrumentation_begin(); 1924 1925 if (!vc_raw_handle_exception(regs, error_code)) { 1926 /* Show some debug info */ 1927 show_regs(regs); 1928 1929 /* Ask hypervisor to sev_es_terminate */ 1930 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ); 1931 1932 /* If that fails and we get here - just panic */ 1933 panic("Returned from Terminate-Request to Hypervisor\n"); 1934 } 1935 1936 instrumentation_end(); 1937 irqentry_nmi_exit(regs, irq_state); 1938 } 1939 1940 /* 1941 * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode 1942 * and will kill the current task with SIGBUS when an error happens. 1943 */ 1944 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication) 1945 { 1946 /* 1947 * Handle #DB before calling into !noinstr code to avoid recursive #DB. 1948 */ 1949 if (vc_is_db(error_code)) { 1950 noist_exc_debug(regs); 1951 return; 1952 } 1953 1954 irqentry_enter_from_user_mode(regs); 1955 instrumentation_begin(); 1956 1957 if (!vc_raw_handle_exception(regs, error_code)) { 1958 /* 1959 * Do not kill the machine if user-space triggered the 1960 * exception. Send SIGBUS instead and let user-space deal with 1961 * it. 1962 */ 1963 force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0); 1964 } 1965 1966 instrumentation_end(); 1967 irqentry_exit_to_user_mode(regs); 1968 } 1969 1970 bool __init handle_vc_boot_ghcb(struct pt_regs *regs) 1971 { 1972 unsigned long exit_code = regs->orig_ax; 1973 struct es_em_ctxt ctxt; 1974 enum es_result result; 1975 1976 vc_ghcb_invalidate(boot_ghcb); 1977 1978 result = vc_init_em_ctxt(&ctxt, regs, exit_code); 1979 if (result == ES_OK) 1980 result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code); 1981 1982 /* Done - now check the result */ 1983 switch (result) { 1984 case ES_OK: 1985 vc_finish_insn(&ctxt); 1986 break; 1987 case ES_UNSUPPORTED: 1988 early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n", 1989 exit_code, regs->ip); 1990 goto fail; 1991 case ES_VMM_ERROR: 1992 early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n", 1993 exit_code, regs->ip); 1994 goto fail; 1995 case ES_DECODE_FAILED: 1996 early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n", 1997 exit_code, regs->ip); 1998 goto fail; 1999 case ES_EXCEPTION: 2000 vc_early_forward_exception(&ctxt); 2001 break; 2002 case ES_RETRY: 2003 /* Nothing to do */ 2004 break; 2005 default: 2006 BUG(); 2007 } 2008 2009 return true; 2010 2011 fail: 2012 show_regs(regs); 2013 2014 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ); 2015 } 2016 2017 /* 2018 * Initial set up of SNP relies on information provided by the 2019 * Confidential Computing blob, which can be passed to the kernel 2020 * in the following ways, depending on how it is booted: 2021 * 2022 * - when booted via the boot/decompress kernel: 2023 * - via boot_params 2024 * 2025 * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH): 2026 * - via a setup_data entry, as defined by the Linux Boot Protocol 2027 * 2028 * Scan for the blob in that order. 2029 */ 2030 static __init struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp) 2031 { 2032 struct cc_blob_sev_info *cc_info; 2033 2034 /* Boot kernel would have passed the CC blob via boot_params. */ 2035 if (bp->cc_blob_address) { 2036 cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address; 2037 goto found_cc_info; 2038 } 2039 2040 /* 2041 * If kernel was booted directly, without the use of the 2042 * boot/decompression kernel, the CC blob may have been passed via 2043 * setup_data instead. 2044 */ 2045 cc_info = find_cc_blob_setup_data(bp); 2046 if (!cc_info) 2047 return NULL; 2048 2049 found_cc_info: 2050 if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC) 2051 snp_abort(); 2052 2053 return cc_info; 2054 } 2055 2056 bool __init snp_init(struct boot_params *bp) 2057 { 2058 struct cc_blob_sev_info *cc_info; 2059 2060 if (!bp) 2061 return false; 2062 2063 cc_info = find_cc_blob(bp); 2064 if (!cc_info) 2065 return false; 2066 2067 setup_cpuid_table(cc_info); 2068 2069 /* 2070 * The CC blob will be used later to access the secrets page. Cache 2071 * it here like the boot kernel does. 2072 */ 2073 bp->cc_blob_address = (u32)(unsigned long)cc_info; 2074 2075 return true; 2076 } 2077 2078 void __init __noreturn snp_abort(void) 2079 { 2080 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED); 2081 } 2082 2083 static void dump_cpuid_table(void) 2084 { 2085 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table(); 2086 int i = 0; 2087 2088 pr_info("count=%d reserved=0x%x reserved2=0x%llx\n", 2089 cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2); 2090 2091 for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) { 2092 const struct snp_cpuid_fn *fn = &cpuid_table->fn[i]; 2093 2094 pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n", 2095 i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx, 2096 fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved); 2097 } 2098 } 2099 2100 /* 2101 * It is useful from an auditing/testing perspective to provide an easy way 2102 * for the guest owner to know that the CPUID table has been initialized as 2103 * expected, but that initialization happens too early in boot to print any 2104 * sort of indicator, and there's not really any other good place to do it, 2105 * so do it here. 2106 */ 2107 static int __init report_cpuid_table(void) 2108 { 2109 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table(); 2110 2111 if (!cpuid_table->count) 2112 return 0; 2113 2114 pr_info("Using SNP CPUID table, %d entries present.\n", 2115 cpuid_table->count); 2116 2117 if (sev_cfg.debug) 2118 dump_cpuid_table(); 2119 2120 return 0; 2121 } 2122 arch_initcall(report_cpuid_table); 2123 2124 static int __init init_sev_config(char *str) 2125 { 2126 char *s; 2127 2128 while ((s = strsep(&str, ","))) { 2129 if (!strcmp(s, "debug")) { 2130 sev_cfg.debug = true; 2131 continue; 2132 } 2133 2134 pr_info("SEV command-line option '%s' was not recognized\n", s); 2135 } 2136 2137 return 1; 2138 } 2139 __setup("sev=", init_sev_config); 2140 2141 int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, struct snp_guest_request_ioctl *rio) 2142 { 2143 struct ghcb_state state; 2144 struct es_em_ctxt ctxt; 2145 unsigned long flags; 2146 struct ghcb *ghcb; 2147 int ret; 2148 2149 rio->exitinfo2 = SEV_RET_NO_FW_CALL; 2150 2151 /* 2152 * __sev_get_ghcb() needs to run with IRQs disabled because it is using 2153 * a per-CPU GHCB. 2154 */ 2155 local_irq_save(flags); 2156 2157 ghcb = __sev_get_ghcb(&state); 2158 if (!ghcb) { 2159 ret = -EIO; 2160 goto e_restore_irq; 2161 } 2162 2163 vc_ghcb_invalidate(ghcb); 2164 2165 if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) { 2166 ghcb_set_rax(ghcb, input->data_gpa); 2167 ghcb_set_rbx(ghcb, input->data_npages); 2168 } 2169 2170 ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa); 2171 if (ret) 2172 goto e_put; 2173 2174 rio->exitinfo2 = ghcb->save.sw_exit_info_2; 2175 switch (rio->exitinfo2) { 2176 case 0: 2177 break; 2178 2179 case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_BUSY): 2180 ret = -EAGAIN; 2181 break; 2182 2183 case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN): 2184 /* Number of expected pages are returned in RBX */ 2185 if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) { 2186 input->data_npages = ghcb_get_rbx(ghcb); 2187 ret = -ENOSPC; 2188 break; 2189 } 2190 fallthrough; 2191 default: 2192 ret = -EIO; 2193 break; 2194 } 2195 2196 e_put: 2197 __sev_put_ghcb(&state); 2198 e_restore_irq: 2199 local_irq_restore(flags); 2200 2201 return ret; 2202 } 2203 EXPORT_SYMBOL_GPL(snp_issue_guest_request); 2204 2205 static struct platform_device sev_guest_device = { 2206 .name = "sev-guest", 2207 .id = -1, 2208 }; 2209 2210 static int __init snp_init_platform_device(void) 2211 { 2212 struct sev_guest_platform_data data; 2213 u64 gpa; 2214 2215 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) 2216 return -ENODEV; 2217 2218 gpa = get_secrets_page(); 2219 if (!gpa) 2220 return -ENODEV; 2221 2222 data.secrets_gpa = gpa; 2223 if (platform_device_add_data(&sev_guest_device, &data, sizeof(data))) 2224 return -ENODEV; 2225 2226 if (platform_device_register(&sev_guest_device)) 2227 return -ENODEV; 2228 2229 pr_info("SNP guest platform device initialized.\n"); 2230 return 0; 2231 } 2232 device_initcall(snp_init_platform_device); 2233