xref: /openbmc/linux/arch/x86/kernel/sev.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2019 SUSE
6  *
7  * Author: Joerg Roedel <jroedel@suse.de>
8  */
9 
10 #define pr_fmt(fmt)	"SEV: " fmt
11 
12 #include <linux/sched/debug.h>	/* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/cc_platform.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/sev.h>
25 #include <asm/insn-eval.h>
26 #include <asm/fpu/xcr.h>
27 #include <asm/processor.h>
28 #include <asm/realmode.h>
29 #include <asm/setup.h>
30 #include <asm/traps.h>
31 #include <asm/svm.h>
32 #include <asm/smp.h>
33 #include <asm/cpu.h>
34 
35 #define DR7_RESET_VALUE        0x400
36 
37 /* For early boot hypervisor communication in SEV-ES enabled guests */
38 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
39 
40 /*
41  * Needs to be in the .data section because we need it NULL before bss is
42  * cleared
43  */
44 static struct ghcb __initdata *boot_ghcb;
45 
46 /* #VC handler runtime per-CPU data */
47 struct sev_es_runtime_data {
48 	struct ghcb ghcb_page;
49 
50 	/*
51 	 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
52 	 * It is needed when an NMI happens while the #VC handler uses the real
53 	 * GHCB, and the NMI handler itself is causing another #VC exception. In
54 	 * that case the GHCB content of the first handler needs to be backed up
55 	 * and restored.
56 	 */
57 	struct ghcb backup_ghcb;
58 
59 	/*
60 	 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
61 	 * There is no need for it to be atomic, because nothing is written to
62 	 * the GHCB between the read and the write of ghcb_active. So it is safe
63 	 * to use it when a nested #VC exception happens before the write.
64 	 *
65 	 * This is necessary for example in the #VC->NMI->#VC case when the NMI
66 	 * happens while the first #VC handler uses the GHCB. When the NMI code
67 	 * raises a second #VC handler it might overwrite the contents of the
68 	 * GHCB written by the first handler. To avoid this the content of the
69 	 * GHCB is saved and restored when the GHCB is detected to be in use
70 	 * already.
71 	 */
72 	bool ghcb_active;
73 	bool backup_ghcb_active;
74 
75 	/*
76 	 * Cached DR7 value - write it on DR7 writes and return it on reads.
77 	 * That value will never make it to the real hardware DR7 as debugging
78 	 * is currently unsupported in SEV-ES guests.
79 	 */
80 	unsigned long dr7;
81 };
82 
83 struct ghcb_state {
84 	struct ghcb *ghcb;
85 };
86 
87 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
88 DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
89 
90 static __always_inline bool on_vc_stack(struct pt_regs *regs)
91 {
92 	unsigned long sp = regs->sp;
93 
94 	/* User-mode RSP is not trusted */
95 	if (user_mode(regs))
96 		return false;
97 
98 	/* SYSCALL gap still has user-mode RSP */
99 	if (ip_within_syscall_gap(regs))
100 		return false;
101 
102 	return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
103 }
104 
105 /*
106  * This function handles the case when an NMI is raised in the #VC
107  * exception handler entry code, before the #VC handler has switched off
108  * its IST stack. In this case, the IST entry for #VC must be adjusted,
109  * so that any nested #VC exception will not overwrite the stack
110  * contents of the interrupted #VC handler.
111  *
112  * The IST entry is adjusted unconditionally so that it can be also be
113  * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
114  * nested sev_es_ist_exit() call may adjust back the IST entry too
115  * early.
116  *
117  * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
118  * on the NMI IST stack, as they are only called from NMI handling code
119  * right now.
120  */
121 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
122 {
123 	unsigned long old_ist, new_ist;
124 
125 	/* Read old IST entry */
126 	new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
127 
128 	/*
129 	 * If NMI happened while on the #VC IST stack, set the new IST
130 	 * value below regs->sp, so that the interrupted stack frame is
131 	 * not overwritten by subsequent #VC exceptions.
132 	 */
133 	if (on_vc_stack(regs))
134 		new_ist = regs->sp;
135 
136 	/*
137 	 * Reserve additional 8 bytes and store old IST value so this
138 	 * adjustment can be unrolled in __sev_es_ist_exit().
139 	 */
140 	new_ist -= sizeof(old_ist);
141 	*(unsigned long *)new_ist = old_ist;
142 
143 	/* Set new IST entry */
144 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
145 }
146 
147 void noinstr __sev_es_ist_exit(void)
148 {
149 	unsigned long ist;
150 
151 	/* Read IST entry */
152 	ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
153 
154 	if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
155 		return;
156 
157 	/* Read back old IST entry and write it to the TSS */
158 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
159 }
160 
161 /*
162  * Nothing shall interrupt this code path while holding the per-CPU
163  * GHCB. The backup GHCB is only for NMIs interrupting this path.
164  *
165  * Callers must disable local interrupts around it.
166  */
167 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
168 {
169 	struct sev_es_runtime_data *data;
170 	struct ghcb *ghcb;
171 
172 	WARN_ON(!irqs_disabled());
173 
174 	data = this_cpu_read(runtime_data);
175 	ghcb = &data->ghcb_page;
176 
177 	if (unlikely(data->ghcb_active)) {
178 		/* GHCB is already in use - save its contents */
179 
180 		if (unlikely(data->backup_ghcb_active)) {
181 			/*
182 			 * Backup-GHCB is also already in use. There is no way
183 			 * to continue here so just kill the machine. To make
184 			 * panic() work, mark GHCBs inactive so that messages
185 			 * can be printed out.
186 			 */
187 			data->ghcb_active        = false;
188 			data->backup_ghcb_active = false;
189 
190 			instrumentation_begin();
191 			panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
192 			instrumentation_end();
193 		}
194 
195 		/* Mark backup_ghcb active before writing to it */
196 		data->backup_ghcb_active = true;
197 
198 		state->ghcb = &data->backup_ghcb;
199 
200 		/* Backup GHCB content */
201 		*state->ghcb = *ghcb;
202 	} else {
203 		state->ghcb = NULL;
204 		data->ghcb_active = true;
205 	}
206 
207 	return ghcb;
208 }
209 
210 static inline u64 sev_es_rd_ghcb_msr(void)
211 {
212 	return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
213 }
214 
215 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
216 {
217 	u32 low, high;
218 
219 	low  = (u32)(val);
220 	high = (u32)(val >> 32);
221 
222 	native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
223 }
224 
225 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
226 				unsigned char *buffer)
227 {
228 	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
229 }
230 
231 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
232 {
233 	char buffer[MAX_INSN_SIZE];
234 	int insn_bytes;
235 
236 	insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
237 	if (insn_bytes == 0) {
238 		/* Nothing could be copied */
239 		ctxt->fi.vector     = X86_TRAP_PF;
240 		ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
241 		ctxt->fi.cr2        = ctxt->regs->ip;
242 		return ES_EXCEPTION;
243 	} else if (insn_bytes == -EINVAL) {
244 		/* Effective RIP could not be calculated */
245 		ctxt->fi.vector     = X86_TRAP_GP;
246 		ctxt->fi.error_code = 0;
247 		ctxt->fi.cr2        = 0;
248 		return ES_EXCEPTION;
249 	}
250 
251 	if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
252 		return ES_DECODE_FAILED;
253 
254 	if (ctxt->insn.immediate.got)
255 		return ES_OK;
256 	else
257 		return ES_DECODE_FAILED;
258 }
259 
260 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
261 {
262 	char buffer[MAX_INSN_SIZE];
263 	int res, ret;
264 
265 	res = vc_fetch_insn_kernel(ctxt, buffer);
266 	if (res) {
267 		ctxt->fi.vector     = X86_TRAP_PF;
268 		ctxt->fi.error_code = X86_PF_INSTR;
269 		ctxt->fi.cr2        = ctxt->regs->ip;
270 		return ES_EXCEPTION;
271 	}
272 
273 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
274 	if (ret < 0)
275 		return ES_DECODE_FAILED;
276 	else
277 		return ES_OK;
278 }
279 
280 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
281 {
282 	if (user_mode(ctxt->regs))
283 		return __vc_decode_user_insn(ctxt);
284 	else
285 		return __vc_decode_kern_insn(ctxt);
286 }
287 
288 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
289 				   char *dst, char *buf, size_t size)
290 {
291 	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
292 
293 	/*
294 	 * This function uses __put_user() independent of whether kernel or user
295 	 * memory is accessed. This works fine because __put_user() does no
296 	 * sanity checks of the pointer being accessed. All that it does is
297 	 * to report when the access failed.
298 	 *
299 	 * Also, this function runs in atomic context, so __put_user() is not
300 	 * allowed to sleep. The page-fault handler detects that it is running
301 	 * in atomic context and will not try to take mmap_sem and handle the
302 	 * fault, so additional pagefault_enable()/disable() calls are not
303 	 * needed.
304 	 *
305 	 * The access can't be done via copy_to_user() here because
306 	 * vc_write_mem() must not use string instructions to access unsafe
307 	 * memory. The reason is that MOVS is emulated by the #VC handler by
308 	 * splitting the move up into a read and a write and taking a nested #VC
309 	 * exception on whatever of them is the MMIO access. Using string
310 	 * instructions here would cause infinite nesting.
311 	 */
312 	switch (size) {
313 	case 1: {
314 		u8 d1;
315 		u8 __user *target = (u8 __user *)dst;
316 
317 		memcpy(&d1, buf, 1);
318 		if (__put_user(d1, target))
319 			goto fault;
320 		break;
321 	}
322 	case 2: {
323 		u16 d2;
324 		u16 __user *target = (u16 __user *)dst;
325 
326 		memcpy(&d2, buf, 2);
327 		if (__put_user(d2, target))
328 			goto fault;
329 		break;
330 	}
331 	case 4: {
332 		u32 d4;
333 		u32 __user *target = (u32 __user *)dst;
334 
335 		memcpy(&d4, buf, 4);
336 		if (__put_user(d4, target))
337 			goto fault;
338 		break;
339 	}
340 	case 8: {
341 		u64 d8;
342 		u64 __user *target = (u64 __user *)dst;
343 
344 		memcpy(&d8, buf, 8);
345 		if (__put_user(d8, target))
346 			goto fault;
347 		break;
348 	}
349 	default:
350 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
351 		return ES_UNSUPPORTED;
352 	}
353 
354 	return ES_OK;
355 
356 fault:
357 	if (user_mode(ctxt->regs))
358 		error_code |= X86_PF_USER;
359 
360 	ctxt->fi.vector = X86_TRAP_PF;
361 	ctxt->fi.error_code = error_code;
362 	ctxt->fi.cr2 = (unsigned long)dst;
363 
364 	return ES_EXCEPTION;
365 }
366 
367 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
368 				  char *src, char *buf, size_t size)
369 {
370 	unsigned long error_code = X86_PF_PROT;
371 
372 	/*
373 	 * This function uses __get_user() independent of whether kernel or user
374 	 * memory is accessed. This works fine because __get_user() does no
375 	 * sanity checks of the pointer being accessed. All that it does is
376 	 * to report when the access failed.
377 	 *
378 	 * Also, this function runs in atomic context, so __get_user() is not
379 	 * allowed to sleep. The page-fault handler detects that it is running
380 	 * in atomic context and will not try to take mmap_sem and handle the
381 	 * fault, so additional pagefault_enable()/disable() calls are not
382 	 * needed.
383 	 *
384 	 * The access can't be done via copy_from_user() here because
385 	 * vc_read_mem() must not use string instructions to access unsafe
386 	 * memory. The reason is that MOVS is emulated by the #VC handler by
387 	 * splitting the move up into a read and a write and taking a nested #VC
388 	 * exception on whatever of them is the MMIO access. Using string
389 	 * instructions here would cause infinite nesting.
390 	 */
391 	switch (size) {
392 	case 1: {
393 		u8 d1;
394 		u8 __user *s = (u8 __user *)src;
395 
396 		if (__get_user(d1, s))
397 			goto fault;
398 		memcpy(buf, &d1, 1);
399 		break;
400 	}
401 	case 2: {
402 		u16 d2;
403 		u16 __user *s = (u16 __user *)src;
404 
405 		if (__get_user(d2, s))
406 			goto fault;
407 		memcpy(buf, &d2, 2);
408 		break;
409 	}
410 	case 4: {
411 		u32 d4;
412 		u32 __user *s = (u32 __user *)src;
413 
414 		if (__get_user(d4, s))
415 			goto fault;
416 		memcpy(buf, &d4, 4);
417 		break;
418 	}
419 	case 8: {
420 		u64 d8;
421 		u64 __user *s = (u64 __user *)src;
422 		if (__get_user(d8, s))
423 			goto fault;
424 		memcpy(buf, &d8, 8);
425 		break;
426 	}
427 	default:
428 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
429 		return ES_UNSUPPORTED;
430 	}
431 
432 	return ES_OK;
433 
434 fault:
435 	if (user_mode(ctxt->regs))
436 		error_code |= X86_PF_USER;
437 
438 	ctxt->fi.vector = X86_TRAP_PF;
439 	ctxt->fi.error_code = error_code;
440 	ctxt->fi.cr2 = (unsigned long)src;
441 
442 	return ES_EXCEPTION;
443 }
444 
445 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
446 					   unsigned long vaddr, phys_addr_t *paddr)
447 {
448 	unsigned long va = (unsigned long)vaddr;
449 	unsigned int level;
450 	phys_addr_t pa;
451 	pgd_t *pgd;
452 	pte_t *pte;
453 
454 	pgd = __va(read_cr3_pa());
455 	pgd = &pgd[pgd_index(va)];
456 	pte = lookup_address_in_pgd(pgd, va, &level);
457 	if (!pte) {
458 		ctxt->fi.vector     = X86_TRAP_PF;
459 		ctxt->fi.cr2        = vaddr;
460 		ctxt->fi.error_code = 0;
461 
462 		if (user_mode(ctxt->regs))
463 			ctxt->fi.error_code |= X86_PF_USER;
464 
465 		return ES_EXCEPTION;
466 	}
467 
468 	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
469 		/* Emulated MMIO to/from encrypted memory not supported */
470 		return ES_UNSUPPORTED;
471 
472 	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
473 	pa |= va & ~page_level_mask(level);
474 
475 	*paddr = pa;
476 
477 	return ES_OK;
478 }
479 
480 /* Include code shared with pre-decompression boot stage */
481 #include "sev-shared.c"
482 
483 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
484 {
485 	struct sev_es_runtime_data *data;
486 	struct ghcb *ghcb;
487 
488 	WARN_ON(!irqs_disabled());
489 
490 	data = this_cpu_read(runtime_data);
491 	ghcb = &data->ghcb_page;
492 
493 	if (state->ghcb) {
494 		/* Restore GHCB from Backup */
495 		*ghcb = *state->ghcb;
496 		data->backup_ghcb_active = false;
497 		state->ghcb = NULL;
498 	} else {
499 		/*
500 		 * Invalidate the GHCB so a VMGEXIT instruction issued
501 		 * from userspace won't appear to be valid.
502 		 */
503 		vc_ghcb_invalidate(ghcb);
504 		data->ghcb_active = false;
505 	}
506 }
507 
508 void noinstr __sev_es_nmi_complete(void)
509 {
510 	struct ghcb_state state;
511 	struct ghcb *ghcb;
512 
513 	ghcb = __sev_get_ghcb(&state);
514 
515 	vc_ghcb_invalidate(ghcb);
516 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
517 	ghcb_set_sw_exit_info_1(ghcb, 0);
518 	ghcb_set_sw_exit_info_2(ghcb, 0);
519 
520 	sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
521 	VMGEXIT();
522 
523 	__sev_put_ghcb(&state);
524 }
525 
526 static u64 get_jump_table_addr(void)
527 {
528 	struct ghcb_state state;
529 	unsigned long flags;
530 	struct ghcb *ghcb;
531 	u64 ret = 0;
532 
533 	local_irq_save(flags);
534 
535 	ghcb = __sev_get_ghcb(&state);
536 
537 	vc_ghcb_invalidate(ghcb);
538 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
539 	ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
540 	ghcb_set_sw_exit_info_2(ghcb, 0);
541 
542 	sev_es_wr_ghcb_msr(__pa(ghcb));
543 	VMGEXIT();
544 
545 	if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
546 	    ghcb_sw_exit_info_2_is_valid(ghcb))
547 		ret = ghcb->save.sw_exit_info_2;
548 
549 	__sev_put_ghcb(&state);
550 
551 	local_irq_restore(flags);
552 
553 	return ret;
554 }
555 
556 int sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
557 {
558 	u16 startup_cs, startup_ip;
559 	phys_addr_t jump_table_pa;
560 	u64 jump_table_addr;
561 	u16 __iomem *jump_table;
562 
563 	jump_table_addr = get_jump_table_addr();
564 
565 	/* On UP guests there is no jump table so this is not a failure */
566 	if (!jump_table_addr)
567 		return 0;
568 
569 	/* Check if AP Jump Table is page-aligned */
570 	if (jump_table_addr & ~PAGE_MASK)
571 		return -EINVAL;
572 
573 	jump_table_pa = jump_table_addr & PAGE_MASK;
574 
575 	startup_cs = (u16)(rmh->trampoline_start >> 4);
576 	startup_ip = (u16)(rmh->sev_es_trampoline_start -
577 			   rmh->trampoline_start);
578 
579 	jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
580 	if (!jump_table)
581 		return -EIO;
582 
583 	writew(startup_ip, &jump_table[0]);
584 	writew(startup_cs, &jump_table[1]);
585 
586 	iounmap(jump_table);
587 
588 	return 0;
589 }
590 
591 /*
592  * This is needed by the OVMF UEFI firmware which will use whatever it finds in
593  * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
594  * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
595  */
596 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
597 {
598 	struct sev_es_runtime_data *data;
599 	unsigned long address, pflags;
600 	int cpu;
601 	u64 pfn;
602 
603 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
604 		return 0;
605 
606 	pflags = _PAGE_NX | _PAGE_RW;
607 
608 	for_each_possible_cpu(cpu) {
609 		data = per_cpu(runtime_data, cpu);
610 
611 		address = __pa(&data->ghcb_page);
612 		pfn = address >> PAGE_SHIFT;
613 
614 		if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
615 			return 1;
616 	}
617 
618 	return 0;
619 }
620 
621 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
622 {
623 	struct pt_regs *regs = ctxt->regs;
624 	enum es_result ret;
625 	u64 exit_info_1;
626 
627 	/* Is it a WRMSR? */
628 	exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
629 
630 	ghcb_set_rcx(ghcb, regs->cx);
631 	if (exit_info_1) {
632 		ghcb_set_rax(ghcb, regs->ax);
633 		ghcb_set_rdx(ghcb, regs->dx);
634 	}
635 
636 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_MSR,
637 				  exit_info_1, 0);
638 
639 	if ((ret == ES_OK) && (!exit_info_1)) {
640 		regs->ax = ghcb->save.rax;
641 		regs->dx = ghcb->save.rdx;
642 	}
643 
644 	return ret;
645 }
646 
647 /*
648  * This function runs on the first #VC exception after the kernel
649  * switched to virtual addresses.
650  */
651 static bool __init sev_es_setup_ghcb(void)
652 {
653 	/* First make sure the hypervisor talks a supported protocol. */
654 	if (!sev_es_negotiate_protocol())
655 		return false;
656 
657 	/*
658 	 * Clear the boot_ghcb. The first exception comes in before the bss
659 	 * section is cleared.
660 	 */
661 	memset(&boot_ghcb_page, 0, PAGE_SIZE);
662 
663 	/* Alright - Make the boot-ghcb public */
664 	boot_ghcb = &boot_ghcb_page;
665 
666 	return true;
667 }
668 
669 #ifdef CONFIG_HOTPLUG_CPU
670 static void sev_es_ap_hlt_loop(void)
671 {
672 	struct ghcb_state state;
673 	struct ghcb *ghcb;
674 
675 	ghcb = __sev_get_ghcb(&state);
676 
677 	while (true) {
678 		vc_ghcb_invalidate(ghcb);
679 		ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
680 		ghcb_set_sw_exit_info_1(ghcb, 0);
681 		ghcb_set_sw_exit_info_2(ghcb, 0);
682 
683 		sev_es_wr_ghcb_msr(__pa(ghcb));
684 		VMGEXIT();
685 
686 		/* Wakeup signal? */
687 		if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
688 		    ghcb->save.sw_exit_info_2)
689 			break;
690 	}
691 
692 	__sev_put_ghcb(&state);
693 }
694 
695 /*
696  * Play_dead handler when running under SEV-ES. This is needed because
697  * the hypervisor can't deliver an SIPI request to restart the AP.
698  * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
699  * hypervisor wakes it up again.
700  */
701 static void sev_es_play_dead(void)
702 {
703 	play_dead_common();
704 
705 	/* IRQs now disabled */
706 
707 	sev_es_ap_hlt_loop();
708 
709 	/*
710 	 * If we get here, the VCPU was woken up again. Jump to CPU
711 	 * startup code to get it back online.
712 	 */
713 	start_cpu0();
714 }
715 #else  /* CONFIG_HOTPLUG_CPU */
716 #define sev_es_play_dead	native_play_dead
717 #endif /* CONFIG_HOTPLUG_CPU */
718 
719 #ifdef CONFIG_SMP
720 static void __init sev_es_setup_play_dead(void)
721 {
722 	smp_ops.play_dead = sev_es_play_dead;
723 }
724 #else
725 static inline void sev_es_setup_play_dead(void) { }
726 #endif
727 
728 static void __init alloc_runtime_data(int cpu)
729 {
730 	struct sev_es_runtime_data *data;
731 
732 	data = memblock_alloc(sizeof(*data), PAGE_SIZE);
733 	if (!data)
734 		panic("Can't allocate SEV-ES runtime data");
735 
736 	per_cpu(runtime_data, cpu) = data;
737 }
738 
739 static void __init init_ghcb(int cpu)
740 {
741 	struct sev_es_runtime_data *data;
742 	int err;
743 
744 	data = per_cpu(runtime_data, cpu);
745 
746 	err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
747 					 sizeof(data->ghcb_page));
748 	if (err)
749 		panic("Can't map GHCBs unencrypted");
750 
751 	memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
752 
753 	data->ghcb_active = false;
754 	data->backup_ghcb_active = false;
755 }
756 
757 void __init sev_es_init_vc_handling(void)
758 {
759 	int cpu;
760 
761 	BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
762 
763 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
764 		return;
765 
766 	if (!sev_es_check_cpu_features())
767 		panic("SEV-ES CPU Features missing");
768 
769 	/* Enable SEV-ES special handling */
770 	static_branch_enable(&sev_es_enable_key);
771 
772 	/* Initialize per-cpu GHCB pages */
773 	for_each_possible_cpu(cpu) {
774 		alloc_runtime_data(cpu);
775 		init_ghcb(cpu);
776 	}
777 
778 	sev_es_setup_play_dead();
779 
780 	/* Secondary CPUs use the runtime #VC handler */
781 	initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
782 }
783 
784 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
785 {
786 	int trapnr = ctxt->fi.vector;
787 
788 	if (trapnr == X86_TRAP_PF)
789 		native_write_cr2(ctxt->fi.cr2);
790 
791 	ctxt->regs->orig_ax = ctxt->fi.error_code;
792 	do_early_exception(ctxt->regs, trapnr);
793 }
794 
795 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
796 {
797 	long *reg_array;
798 	int offset;
799 
800 	reg_array = (long *)ctxt->regs;
801 	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
802 
803 	if (offset < 0)
804 		return NULL;
805 
806 	offset /= sizeof(long);
807 
808 	return reg_array + offset;
809 }
810 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
811 				 unsigned int bytes, bool read)
812 {
813 	u64 exit_code, exit_info_1, exit_info_2;
814 	unsigned long ghcb_pa = __pa(ghcb);
815 	enum es_result res;
816 	phys_addr_t paddr;
817 	void __user *ref;
818 
819 	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
820 	if (ref == (void __user *)-1L)
821 		return ES_UNSUPPORTED;
822 
823 	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
824 
825 	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
826 	if (res != ES_OK) {
827 		if (res == ES_EXCEPTION && !read)
828 			ctxt->fi.error_code |= X86_PF_WRITE;
829 
830 		return res;
831 	}
832 
833 	exit_info_1 = paddr;
834 	/* Can never be greater than 8 */
835 	exit_info_2 = bytes;
836 
837 	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
838 
839 	return sev_es_ghcb_hv_call(ghcb, true, ctxt, exit_code, exit_info_1, exit_info_2);
840 }
841 
842 /*
843  * The MOVS instruction has two memory operands, which raises the
844  * problem that it is not known whether the access to the source or the
845  * destination caused the #VC exception (and hence whether an MMIO read
846  * or write operation needs to be emulated).
847  *
848  * Instead of playing games with walking page-tables and trying to guess
849  * whether the source or destination is an MMIO range, split the move
850  * into two operations, a read and a write with only one memory operand.
851  * This will cause a nested #VC exception on the MMIO address which can
852  * then be handled.
853  *
854  * This implementation has the benefit that it also supports MOVS where
855  * source _and_ destination are MMIO regions.
856  *
857  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
858  * rare operation. If it turns out to be a performance problem the split
859  * operations can be moved to memcpy_fromio() and memcpy_toio().
860  */
861 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
862 					  unsigned int bytes)
863 {
864 	unsigned long ds_base, es_base;
865 	unsigned char *src, *dst;
866 	unsigned char buffer[8];
867 	enum es_result ret;
868 	bool rep;
869 	int off;
870 
871 	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
872 	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
873 
874 	if (ds_base == -1L || es_base == -1L) {
875 		ctxt->fi.vector = X86_TRAP_GP;
876 		ctxt->fi.error_code = 0;
877 		return ES_EXCEPTION;
878 	}
879 
880 	src = ds_base + (unsigned char *)ctxt->regs->si;
881 	dst = es_base + (unsigned char *)ctxt->regs->di;
882 
883 	ret = vc_read_mem(ctxt, src, buffer, bytes);
884 	if (ret != ES_OK)
885 		return ret;
886 
887 	ret = vc_write_mem(ctxt, dst, buffer, bytes);
888 	if (ret != ES_OK)
889 		return ret;
890 
891 	if (ctxt->regs->flags & X86_EFLAGS_DF)
892 		off = -bytes;
893 	else
894 		off =  bytes;
895 
896 	ctxt->regs->si += off;
897 	ctxt->regs->di += off;
898 
899 	rep = insn_has_rep_prefix(&ctxt->insn);
900 	if (rep)
901 		ctxt->regs->cx -= 1;
902 
903 	if (!rep || ctxt->regs->cx == 0)
904 		return ES_OK;
905 	else
906 		return ES_RETRY;
907 }
908 
909 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
910 {
911 	struct insn *insn = &ctxt->insn;
912 	unsigned int bytes = 0;
913 	enum mmio_type mmio;
914 	enum es_result ret;
915 	u8 sign_byte;
916 	long *reg_data;
917 
918 	mmio = insn_decode_mmio(insn, &bytes);
919 	if (mmio == MMIO_DECODE_FAILED)
920 		return ES_DECODE_FAILED;
921 
922 	if (mmio != MMIO_WRITE_IMM && mmio != MMIO_MOVS) {
923 		reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
924 		if (!reg_data)
925 			return ES_DECODE_FAILED;
926 	}
927 
928 	switch (mmio) {
929 	case MMIO_WRITE:
930 		memcpy(ghcb->shared_buffer, reg_data, bytes);
931 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
932 		break;
933 	case MMIO_WRITE_IMM:
934 		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
935 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
936 		break;
937 	case MMIO_READ:
938 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
939 		if (ret)
940 			break;
941 
942 		/* Zero-extend for 32-bit operation */
943 		if (bytes == 4)
944 			*reg_data = 0;
945 
946 		memcpy(reg_data, ghcb->shared_buffer, bytes);
947 		break;
948 	case MMIO_READ_ZERO_EXTEND:
949 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
950 		if (ret)
951 			break;
952 
953 		/* Zero extend based on operand size */
954 		memset(reg_data, 0, insn->opnd_bytes);
955 		memcpy(reg_data, ghcb->shared_buffer, bytes);
956 		break;
957 	case MMIO_READ_SIGN_EXTEND:
958 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
959 		if (ret)
960 			break;
961 
962 		if (bytes == 1) {
963 			u8 *val = (u8 *)ghcb->shared_buffer;
964 
965 			sign_byte = (*val & 0x80) ? 0xff : 0x00;
966 		} else {
967 			u16 *val = (u16 *)ghcb->shared_buffer;
968 
969 			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
970 		}
971 
972 		/* Sign extend based on operand size */
973 		memset(reg_data, sign_byte, insn->opnd_bytes);
974 		memcpy(reg_data, ghcb->shared_buffer, bytes);
975 		break;
976 	case MMIO_MOVS:
977 		ret = vc_handle_mmio_movs(ctxt, bytes);
978 		break;
979 	default:
980 		ret = ES_UNSUPPORTED;
981 		break;
982 	}
983 
984 	return ret;
985 }
986 
987 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
988 					  struct es_em_ctxt *ctxt)
989 {
990 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
991 	long val, *reg = vc_insn_get_rm(ctxt);
992 	enum es_result ret;
993 
994 	if (!reg)
995 		return ES_DECODE_FAILED;
996 
997 	val = *reg;
998 
999 	/* Upper 32 bits must be written as zeroes */
1000 	if (val >> 32) {
1001 		ctxt->fi.vector = X86_TRAP_GP;
1002 		ctxt->fi.error_code = 0;
1003 		return ES_EXCEPTION;
1004 	}
1005 
1006 	/* Clear out other reserved bits and set bit 10 */
1007 	val = (val & 0xffff23ffL) | BIT(10);
1008 
1009 	/* Early non-zero writes to DR7 are not supported */
1010 	if (!data && (val & ~DR7_RESET_VALUE))
1011 		return ES_UNSUPPORTED;
1012 
1013 	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
1014 	ghcb_set_rax(ghcb, val);
1015 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1016 	if (ret != ES_OK)
1017 		return ret;
1018 
1019 	if (data)
1020 		data->dr7 = val;
1021 
1022 	return ES_OK;
1023 }
1024 
1025 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1026 					 struct es_em_ctxt *ctxt)
1027 {
1028 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1029 	long *reg = vc_insn_get_rm(ctxt);
1030 
1031 	if (!reg)
1032 		return ES_DECODE_FAILED;
1033 
1034 	if (data)
1035 		*reg = data->dr7;
1036 	else
1037 		*reg = DR7_RESET_VALUE;
1038 
1039 	return ES_OK;
1040 }
1041 
1042 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1043 				       struct es_em_ctxt *ctxt)
1044 {
1045 	return sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_WBINVD, 0, 0);
1046 }
1047 
1048 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1049 {
1050 	enum es_result ret;
1051 
1052 	ghcb_set_rcx(ghcb, ctxt->regs->cx);
1053 
1054 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_RDPMC, 0, 0);
1055 	if (ret != ES_OK)
1056 		return ret;
1057 
1058 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1059 		return ES_VMM_ERROR;
1060 
1061 	ctxt->regs->ax = ghcb->save.rax;
1062 	ctxt->regs->dx = ghcb->save.rdx;
1063 
1064 	return ES_OK;
1065 }
1066 
1067 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1068 					struct es_em_ctxt *ctxt)
1069 {
1070 	/*
1071 	 * Treat it as a NOP and do not leak a physical address to the
1072 	 * hypervisor.
1073 	 */
1074 	return ES_OK;
1075 }
1076 
1077 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1078 				      struct es_em_ctxt *ctxt)
1079 {
1080 	/* Treat the same as MONITOR/MONITORX */
1081 	return ES_OK;
1082 }
1083 
1084 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1085 					struct es_em_ctxt *ctxt)
1086 {
1087 	enum es_result ret;
1088 
1089 	ghcb_set_rax(ghcb, ctxt->regs->ax);
1090 	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1091 
1092 	if (x86_platform.hyper.sev_es_hcall_prepare)
1093 		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1094 
1095 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1096 	if (ret != ES_OK)
1097 		return ret;
1098 
1099 	if (!ghcb_rax_is_valid(ghcb))
1100 		return ES_VMM_ERROR;
1101 
1102 	ctxt->regs->ax = ghcb->save.rax;
1103 
1104 	/*
1105 	 * Call sev_es_hcall_finish() after regs->ax is already set.
1106 	 * This allows the hypervisor handler to overwrite it again if
1107 	 * necessary.
1108 	 */
1109 	if (x86_platform.hyper.sev_es_hcall_finish &&
1110 	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1111 		return ES_VMM_ERROR;
1112 
1113 	return ES_OK;
1114 }
1115 
1116 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1117 					struct es_em_ctxt *ctxt)
1118 {
1119 	/*
1120 	 * Calling ecx_alignment_check() directly does not work, because it
1121 	 * enables IRQs and the GHCB is active. Forward the exception and call
1122 	 * it later from vc_forward_exception().
1123 	 */
1124 	ctxt->fi.vector = X86_TRAP_AC;
1125 	ctxt->fi.error_code = 0;
1126 	return ES_EXCEPTION;
1127 }
1128 
1129 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1130 					 struct ghcb *ghcb,
1131 					 unsigned long exit_code)
1132 {
1133 	enum es_result result;
1134 
1135 	switch (exit_code) {
1136 	case SVM_EXIT_READ_DR7:
1137 		result = vc_handle_dr7_read(ghcb, ctxt);
1138 		break;
1139 	case SVM_EXIT_WRITE_DR7:
1140 		result = vc_handle_dr7_write(ghcb, ctxt);
1141 		break;
1142 	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1143 		result = vc_handle_trap_ac(ghcb, ctxt);
1144 		break;
1145 	case SVM_EXIT_RDTSC:
1146 	case SVM_EXIT_RDTSCP:
1147 		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1148 		break;
1149 	case SVM_EXIT_RDPMC:
1150 		result = vc_handle_rdpmc(ghcb, ctxt);
1151 		break;
1152 	case SVM_EXIT_INVD:
1153 		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1154 		result = ES_UNSUPPORTED;
1155 		break;
1156 	case SVM_EXIT_CPUID:
1157 		result = vc_handle_cpuid(ghcb, ctxt);
1158 		break;
1159 	case SVM_EXIT_IOIO:
1160 		result = vc_handle_ioio(ghcb, ctxt);
1161 		break;
1162 	case SVM_EXIT_MSR:
1163 		result = vc_handle_msr(ghcb, ctxt);
1164 		break;
1165 	case SVM_EXIT_VMMCALL:
1166 		result = vc_handle_vmmcall(ghcb, ctxt);
1167 		break;
1168 	case SVM_EXIT_WBINVD:
1169 		result = vc_handle_wbinvd(ghcb, ctxt);
1170 		break;
1171 	case SVM_EXIT_MONITOR:
1172 		result = vc_handle_monitor(ghcb, ctxt);
1173 		break;
1174 	case SVM_EXIT_MWAIT:
1175 		result = vc_handle_mwait(ghcb, ctxt);
1176 		break;
1177 	case SVM_EXIT_NPF:
1178 		result = vc_handle_mmio(ghcb, ctxt);
1179 		break;
1180 	default:
1181 		/*
1182 		 * Unexpected #VC exception
1183 		 */
1184 		result = ES_UNSUPPORTED;
1185 	}
1186 
1187 	return result;
1188 }
1189 
1190 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1191 {
1192 	long error_code = ctxt->fi.error_code;
1193 	int trapnr = ctxt->fi.vector;
1194 
1195 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1196 
1197 	switch (trapnr) {
1198 	case X86_TRAP_GP:
1199 		exc_general_protection(ctxt->regs, error_code);
1200 		break;
1201 	case X86_TRAP_UD:
1202 		exc_invalid_op(ctxt->regs);
1203 		break;
1204 	case X86_TRAP_PF:
1205 		write_cr2(ctxt->fi.cr2);
1206 		exc_page_fault(ctxt->regs, error_code);
1207 		break;
1208 	case X86_TRAP_AC:
1209 		exc_alignment_check(ctxt->regs, error_code);
1210 		break;
1211 	default:
1212 		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1213 		BUG();
1214 	}
1215 }
1216 
1217 static __always_inline bool is_vc2_stack(unsigned long sp)
1218 {
1219 	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1220 }
1221 
1222 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
1223 {
1224 	unsigned long sp, prev_sp;
1225 
1226 	sp      = (unsigned long)regs;
1227 	prev_sp = regs->sp;
1228 
1229 	/*
1230 	 * If the code was already executing on the VC2 stack when the #VC
1231 	 * happened, let it proceed to the normal handling routine. This way the
1232 	 * code executing on the VC2 stack can cause #VC exceptions to get handled.
1233 	 */
1234 	return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
1235 }
1236 
1237 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1238 {
1239 	struct ghcb_state state;
1240 	struct es_em_ctxt ctxt;
1241 	enum es_result result;
1242 	struct ghcb *ghcb;
1243 	bool ret = true;
1244 
1245 	ghcb = __sev_get_ghcb(&state);
1246 
1247 	vc_ghcb_invalidate(ghcb);
1248 	result = vc_init_em_ctxt(&ctxt, regs, error_code);
1249 
1250 	if (result == ES_OK)
1251 		result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1252 
1253 	__sev_put_ghcb(&state);
1254 
1255 	/* Done - now check the result */
1256 	switch (result) {
1257 	case ES_OK:
1258 		vc_finish_insn(&ctxt);
1259 		break;
1260 	case ES_UNSUPPORTED:
1261 		pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
1262 				   error_code, regs->ip);
1263 		ret = false;
1264 		break;
1265 	case ES_VMM_ERROR:
1266 		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1267 				   error_code, regs->ip);
1268 		ret = false;
1269 		break;
1270 	case ES_DECODE_FAILED:
1271 		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1272 				   error_code, regs->ip);
1273 		ret = false;
1274 		break;
1275 	case ES_EXCEPTION:
1276 		vc_forward_exception(&ctxt);
1277 		break;
1278 	case ES_RETRY:
1279 		/* Nothing to do */
1280 		break;
1281 	default:
1282 		pr_emerg("Unknown result in %s():%d\n", __func__, result);
1283 		/*
1284 		 * Emulating the instruction which caused the #VC exception
1285 		 * failed - can't continue so print debug information
1286 		 */
1287 		BUG();
1288 	}
1289 
1290 	return ret;
1291 }
1292 
1293 static __always_inline bool vc_is_db(unsigned long error_code)
1294 {
1295 	return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1296 }
1297 
1298 /*
1299  * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1300  * and will panic when an error happens.
1301  */
1302 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1303 {
1304 	irqentry_state_t irq_state;
1305 
1306 	/*
1307 	 * With the current implementation it is always possible to switch to a
1308 	 * safe stack because #VC exceptions only happen at known places, like
1309 	 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1310 	 * also happen with code instrumentation when the hypervisor intercepts
1311 	 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1312 	 * exceptions currently also only happen in safe places.
1313 	 *
1314 	 * But keep this here in case the noinstr annotations are violated due
1315 	 * to bug elsewhere.
1316 	 */
1317 	if (unlikely(vc_from_invalid_context(regs))) {
1318 		instrumentation_begin();
1319 		panic("Can't handle #VC exception from unsupported context\n");
1320 		instrumentation_end();
1321 	}
1322 
1323 	/*
1324 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1325 	 */
1326 	if (vc_is_db(error_code)) {
1327 		exc_debug(regs);
1328 		return;
1329 	}
1330 
1331 	irq_state = irqentry_nmi_enter(regs);
1332 
1333 	instrumentation_begin();
1334 
1335 	if (!vc_raw_handle_exception(regs, error_code)) {
1336 		/* Show some debug info */
1337 		show_regs(regs);
1338 
1339 		/* Ask hypervisor to sev_es_terminate */
1340 		sev_es_terminate(GHCB_SEV_ES_GEN_REQ);
1341 
1342 		/* If that fails and we get here - just panic */
1343 		panic("Returned from Terminate-Request to Hypervisor\n");
1344 	}
1345 
1346 	instrumentation_end();
1347 	irqentry_nmi_exit(regs, irq_state);
1348 }
1349 
1350 /*
1351  * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1352  * and will kill the current task with SIGBUS when an error happens.
1353  */
1354 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1355 {
1356 	/*
1357 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1358 	 */
1359 	if (vc_is_db(error_code)) {
1360 		noist_exc_debug(regs);
1361 		return;
1362 	}
1363 
1364 	irqentry_enter_from_user_mode(regs);
1365 	instrumentation_begin();
1366 
1367 	if (!vc_raw_handle_exception(regs, error_code)) {
1368 		/*
1369 		 * Do not kill the machine if user-space triggered the
1370 		 * exception. Send SIGBUS instead and let user-space deal with
1371 		 * it.
1372 		 */
1373 		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1374 	}
1375 
1376 	instrumentation_end();
1377 	irqentry_exit_to_user_mode(regs);
1378 }
1379 
1380 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1381 {
1382 	unsigned long exit_code = regs->orig_ax;
1383 	struct es_em_ctxt ctxt;
1384 	enum es_result result;
1385 
1386 	/* Do initial setup or terminate the guest */
1387 	if (unlikely(boot_ghcb == NULL && !sev_es_setup_ghcb()))
1388 		sev_es_terminate(GHCB_SEV_ES_GEN_REQ);
1389 
1390 	vc_ghcb_invalidate(boot_ghcb);
1391 
1392 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
1393 	if (result == ES_OK)
1394 		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
1395 
1396 	/* Done - now check the result */
1397 	switch (result) {
1398 	case ES_OK:
1399 		vc_finish_insn(&ctxt);
1400 		break;
1401 	case ES_UNSUPPORTED:
1402 		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1403 				exit_code, regs->ip);
1404 		goto fail;
1405 	case ES_VMM_ERROR:
1406 		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1407 				exit_code, regs->ip);
1408 		goto fail;
1409 	case ES_DECODE_FAILED:
1410 		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1411 				exit_code, regs->ip);
1412 		goto fail;
1413 	case ES_EXCEPTION:
1414 		vc_early_forward_exception(&ctxt);
1415 		break;
1416 	case ES_RETRY:
1417 		/* Nothing to do */
1418 		break;
1419 	default:
1420 		BUG();
1421 	}
1422 
1423 	return true;
1424 
1425 fail:
1426 	show_regs(regs);
1427 
1428 	while (true)
1429 		halt();
1430 }
1431