xref: /openbmc/linux/arch/x86/kernel/sev.c (revision c832da79)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2019 SUSE
6  *
7  * Author: Joerg Roedel <jroedel@suse.de>
8  */
9 
10 #define pr_fmt(fmt)	"SEV: " fmt
11 
12 #include <linux/sched/debug.h>	/* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/cc_platform.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/efi.h>
23 #include <linux/platform_device.h>
24 #include <linux/io.h>
25 
26 #include <asm/cpu_entry_area.h>
27 #include <asm/stacktrace.h>
28 #include <asm/sev.h>
29 #include <asm/insn-eval.h>
30 #include <asm/fpu/xcr.h>
31 #include <asm/processor.h>
32 #include <asm/realmode.h>
33 #include <asm/setup.h>
34 #include <asm/traps.h>
35 #include <asm/svm.h>
36 #include <asm/smp.h>
37 #include <asm/cpu.h>
38 #include <asm/apic.h>
39 #include <asm/cpuid.h>
40 #include <asm/cmdline.h>
41 
42 #define DR7_RESET_VALUE        0x400
43 
44 /* AP INIT values as documented in the APM2  section "Processor Initialization State" */
45 #define AP_INIT_CS_LIMIT		0xffff
46 #define AP_INIT_DS_LIMIT		0xffff
47 #define AP_INIT_LDTR_LIMIT		0xffff
48 #define AP_INIT_GDTR_LIMIT		0xffff
49 #define AP_INIT_IDTR_LIMIT		0xffff
50 #define AP_INIT_TR_LIMIT		0xffff
51 #define AP_INIT_RFLAGS_DEFAULT		0x2
52 #define AP_INIT_DR6_DEFAULT		0xffff0ff0
53 #define AP_INIT_GPAT_DEFAULT		0x0007040600070406ULL
54 #define AP_INIT_XCR0_DEFAULT		0x1
55 #define AP_INIT_X87_FTW_DEFAULT		0x5555
56 #define AP_INIT_X87_FCW_DEFAULT		0x0040
57 #define AP_INIT_CR0_DEFAULT		0x60000010
58 #define AP_INIT_MXCSR_DEFAULT		0x1f80
59 
60 /* For early boot hypervisor communication in SEV-ES enabled guests */
61 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
62 
63 /*
64  * Needs to be in the .data section because we need it NULL before bss is
65  * cleared
66  */
67 static struct ghcb *boot_ghcb __section(".data");
68 
69 /* Bitmap of SEV features supported by the hypervisor */
70 static u64 sev_hv_features __ro_after_init;
71 
72 /* #VC handler runtime per-CPU data */
73 struct sev_es_runtime_data {
74 	struct ghcb ghcb_page;
75 
76 	/*
77 	 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
78 	 * It is needed when an NMI happens while the #VC handler uses the real
79 	 * GHCB, and the NMI handler itself is causing another #VC exception. In
80 	 * that case the GHCB content of the first handler needs to be backed up
81 	 * and restored.
82 	 */
83 	struct ghcb backup_ghcb;
84 
85 	/*
86 	 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
87 	 * There is no need for it to be atomic, because nothing is written to
88 	 * the GHCB between the read and the write of ghcb_active. So it is safe
89 	 * to use it when a nested #VC exception happens before the write.
90 	 *
91 	 * This is necessary for example in the #VC->NMI->#VC case when the NMI
92 	 * happens while the first #VC handler uses the GHCB. When the NMI code
93 	 * raises a second #VC handler it might overwrite the contents of the
94 	 * GHCB written by the first handler. To avoid this the content of the
95 	 * GHCB is saved and restored when the GHCB is detected to be in use
96 	 * already.
97 	 */
98 	bool ghcb_active;
99 	bool backup_ghcb_active;
100 
101 	/*
102 	 * Cached DR7 value - write it on DR7 writes and return it on reads.
103 	 * That value will never make it to the real hardware DR7 as debugging
104 	 * is currently unsupported in SEV-ES guests.
105 	 */
106 	unsigned long dr7;
107 };
108 
109 struct ghcb_state {
110 	struct ghcb *ghcb;
111 };
112 
113 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
114 DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
115 
116 static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
117 
118 struct sev_config {
119 	__u64 debug		: 1,
120 	      __reserved	: 63;
121 };
122 
123 static struct sev_config sev_cfg __read_mostly;
124 
125 static __always_inline bool on_vc_stack(struct pt_regs *regs)
126 {
127 	unsigned long sp = regs->sp;
128 
129 	/* User-mode RSP is not trusted */
130 	if (user_mode(regs))
131 		return false;
132 
133 	/* SYSCALL gap still has user-mode RSP */
134 	if (ip_within_syscall_gap(regs))
135 		return false;
136 
137 	return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
138 }
139 
140 /*
141  * This function handles the case when an NMI is raised in the #VC
142  * exception handler entry code, before the #VC handler has switched off
143  * its IST stack. In this case, the IST entry for #VC must be adjusted,
144  * so that any nested #VC exception will not overwrite the stack
145  * contents of the interrupted #VC handler.
146  *
147  * The IST entry is adjusted unconditionally so that it can be also be
148  * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
149  * nested sev_es_ist_exit() call may adjust back the IST entry too
150  * early.
151  *
152  * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
153  * on the NMI IST stack, as they are only called from NMI handling code
154  * right now.
155  */
156 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
157 {
158 	unsigned long old_ist, new_ist;
159 
160 	/* Read old IST entry */
161 	new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
162 
163 	/*
164 	 * If NMI happened while on the #VC IST stack, set the new IST
165 	 * value below regs->sp, so that the interrupted stack frame is
166 	 * not overwritten by subsequent #VC exceptions.
167 	 */
168 	if (on_vc_stack(regs))
169 		new_ist = regs->sp;
170 
171 	/*
172 	 * Reserve additional 8 bytes and store old IST value so this
173 	 * adjustment can be unrolled in __sev_es_ist_exit().
174 	 */
175 	new_ist -= sizeof(old_ist);
176 	*(unsigned long *)new_ist = old_ist;
177 
178 	/* Set new IST entry */
179 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
180 }
181 
182 void noinstr __sev_es_ist_exit(void)
183 {
184 	unsigned long ist;
185 
186 	/* Read IST entry */
187 	ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
188 
189 	if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
190 		return;
191 
192 	/* Read back old IST entry and write it to the TSS */
193 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
194 }
195 
196 /*
197  * Nothing shall interrupt this code path while holding the per-CPU
198  * GHCB. The backup GHCB is only for NMIs interrupting this path.
199  *
200  * Callers must disable local interrupts around it.
201  */
202 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
203 {
204 	struct sev_es_runtime_data *data;
205 	struct ghcb *ghcb;
206 
207 	WARN_ON(!irqs_disabled());
208 
209 	data = this_cpu_read(runtime_data);
210 	ghcb = &data->ghcb_page;
211 
212 	if (unlikely(data->ghcb_active)) {
213 		/* GHCB is already in use - save its contents */
214 
215 		if (unlikely(data->backup_ghcb_active)) {
216 			/*
217 			 * Backup-GHCB is also already in use. There is no way
218 			 * to continue here so just kill the machine. To make
219 			 * panic() work, mark GHCBs inactive so that messages
220 			 * can be printed out.
221 			 */
222 			data->ghcb_active        = false;
223 			data->backup_ghcb_active = false;
224 
225 			instrumentation_begin();
226 			panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
227 			instrumentation_end();
228 		}
229 
230 		/* Mark backup_ghcb active before writing to it */
231 		data->backup_ghcb_active = true;
232 
233 		state->ghcb = &data->backup_ghcb;
234 
235 		/* Backup GHCB content */
236 		*state->ghcb = *ghcb;
237 	} else {
238 		state->ghcb = NULL;
239 		data->ghcb_active = true;
240 	}
241 
242 	return ghcb;
243 }
244 
245 static inline u64 sev_es_rd_ghcb_msr(void)
246 {
247 	return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
248 }
249 
250 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
251 {
252 	u32 low, high;
253 
254 	low  = (u32)(val);
255 	high = (u32)(val >> 32);
256 
257 	native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
258 }
259 
260 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
261 				unsigned char *buffer)
262 {
263 	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
264 }
265 
266 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
267 {
268 	char buffer[MAX_INSN_SIZE];
269 	int insn_bytes;
270 
271 	insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
272 	if (insn_bytes == 0) {
273 		/* Nothing could be copied */
274 		ctxt->fi.vector     = X86_TRAP_PF;
275 		ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
276 		ctxt->fi.cr2        = ctxt->regs->ip;
277 		return ES_EXCEPTION;
278 	} else if (insn_bytes == -EINVAL) {
279 		/* Effective RIP could not be calculated */
280 		ctxt->fi.vector     = X86_TRAP_GP;
281 		ctxt->fi.error_code = 0;
282 		ctxt->fi.cr2        = 0;
283 		return ES_EXCEPTION;
284 	}
285 
286 	if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
287 		return ES_DECODE_FAILED;
288 
289 	if (ctxt->insn.immediate.got)
290 		return ES_OK;
291 	else
292 		return ES_DECODE_FAILED;
293 }
294 
295 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
296 {
297 	char buffer[MAX_INSN_SIZE];
298 	int res, ret;
299 
300 	res = vc_fetch_insn_kernel(ctxt, buffer);
301 	if (res) {
302 		ctxt->fi.vector     = X86_TRAP_PF;
303 		ctxt->fi.error_code = X86_PF_INSTR;
304 		ctxt->fi.cr2        = ctxt->regs->ip;
305 		return ES_EXCEPTION;
306 	}
307 
308 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
309 	if (ret < 0)
310 		return ES_DECODE_FAILED;
311 	else
312 		return ES_OK;
313 }
314 
315 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
316 {
317 	if (user_mode(ctxt->regs))
318 		return __vc_decode_user_insn(ctxt);
319 	else
320 		return __vc_decode_kern_insn(ctxt);
321 }
322 
323 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
324 				   char *dst, char *buf, size_t size)
325 {
326 	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
327 
328 	/*
329 	 * This function uses __put_user() independent of whether kernel or user
330 	 * memory is accessed. This works fine because __put_user() does no
331 	 * sanity checks of the pointer being accessed. All that it does is
332 	 * to report when the access failed.
333 	 *
334 	 * Also, this function runs in atomic context, so __put_user() is not
335 	 * allowed to sleep. The page-fault handler detects that it is running
336 	 * in atomic context and will not try to take mmap_sem and handle the
337 	 * fault, so additional pagefault_enable()/disable() calls are not
338 	 * needed.
339 	 *
340 	 * The access can't be done via copy_to_user() here because
341 	 * vc_write_mem() must not use string instructions to access unsafe
342 	 * memory. The reason is that MOVS is emulated by the #VC handler by
343 	 * splitting the move up into a read and a write and taking a nested #VC
344 	 * exception on whatever of them is the MMIO access. Using string
345 	 * instructions here would cause infinite nesting.
346 	 */
347 	switch (size) {
348 	case 1: {
349 		u8 d1;
350 		u8 __user *target = (u8 __user *)dst;
351 
352 		memcpy(&d1, buf, 1);
353 		if (__put_user(d1, target))
354 			goto fault;
355 		break;
356 	}
357 	case 2: {
358 		u16 d2;
359 		u16 __user *target = (u16 __user *)dst;
360 
361 		memcpy(&d2, buf, 2);
362 		if (__put_user(d2, target))
363 			goto fault;
364 		break;
365 	}
366 	case 4: {
367 		u32 d4;
368 		u32 __user *target = (u32 __user *)dst;
369 
370 		memcpy(&d4, buf, 4);
371 		if (__put_user(d4, target))
372 			goto fault;
373 		break;
374 	}
375 	case 8: {
376 		u64 d8;
377 		u64 __user *target = (u64 __user *)dst;
378 
379 		memcpy(&d8, buf, 8);
380 		if (__put_user(d8, target))
381 			goto fault;
382 		break;
383 	}
384 	default:
385 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
386 		return ES_UNSUPPORTED;
387 	}
388 
389 	return ES_OK;
390 
391 fault:
392 	if (user_mode(ctxt->regs))
393 		error_code |= X86_PF_USER;
394 
395 	ctxt->fi.vector = X86_TRAP_PF;
396 	ctxt->fi.error_code = error_code;
397 	ctxt->fi.cr2 = (unsigned long)dst;
398 
399 	return ES_EXCEPTION;
400 }
401 
402 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
403 				  char *src, char *buf, size_t size)
404 {
405 	unsigned long error_code = X86_PF_PROT;
406 
407 	/*
408 	 * This function uses __get_user() independent of whether kernel or user
409 	 * memory is accessed. This works fine because __get_user() does no
410 	 * sanity checks of the pointer being accessed. All that it does is
411 	 * to report when the access failed.
412 	 *
413 	 * Also, this function runs in atomic context, so __get_user() is not
414 	 * allowed to sleep. The page-fault handler detects that it is running
415 	 * in atomic context and will not try to take mmap_sem and handle the
416 	 * fault, so additional pagefault_enable()/disable() calls are not
417 	 * needed.
418 	 *
419 	 * The access can't be done via copy_from_user() here because
420 	 * vc_read_mem() must not use string instructions to access unsafe
421 	 * memory. The reason is that MOVS is emulated by the #VC handler by
422 	 * splitting the move up into a read and a write and taking a nested #VC
423 	 * exception on whatever of them is the MMIO access. Using string
424 	 * instructions here would cause infinite nesting.
425 	 */
426 	switch (size) {
427 	case 1: {
428 		u8 d1;
429 		u8 __user *s = (u8 __user *)src;
430 
431 		if (__get_user(d1, s))
432 			goto fault;
433 		memcpy(buf, &d1, 1);
434 		break;
435 	}
436 	case 2: {
437 		u16 d2;
438 		u16 __user *s = (u16 __user *)src;
439 
440 		if (__get_user(d2, s))
441 			goto fault;
442 		memcpy(buf, &d2, 2);
443 		break;
444 	}
445 	case 4: {
446 		u32 d4;
447 		u32 __user *s = (u32 __user *)src;
448 
449 		if (__get_user(d4, s))
450 			goto fault;
451 		memcpy(buf, &d4, 4);
452 		break;
453 	}
454 	case 8: {
455 		u64 d8;
456 		u64 __user *s = (u64 __user *)src;
457 		if (__get_user(d8, s))
458 			goto fault;
459 		memcpy(buf, &d8, 8);
460 		break;
461 	}
462 	default:
463 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
464 		return ES_UNSUPPORTED;
465 	}
466 
467 	return ES_OK;
468 
469 fault:
470 	if (user_mode(ctxt->regs))
471 		error_code |= X86_PF_USER;
472 
473 	ctxt->fi.vector = X86_TRAP_PF;
474 	ctxt->fi.error_code = error_code;
475 	ctxt->fi.cr2 = (unsigned long)src;
476 
477 	return ES_EXCEPTION;
478 }
479 
480 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
481 					   unsigned long vaddr, phys_addr_t *paddr)
482 {
483 	unsigned long va = (unsigned long)vaddr;
484 	unsigned int level;
485 	phys_addr_t pa;
486 	pgd_t *pgd;
487 	pte_t *pte;
488 
489 	pgd = __va(read_cr3_pa());
490 	pgd = &pgd[pgd_index(va)];
491 	pte = lookup_address_in_pgd(pgd, va, &level);
492 	if (!pte) {
493 		ctxt->fi.vector     = X86_TRAP_PF;
494 		ctxt->fi.cr2        = vaddr;
495 		ctxt->fi.error_code = 0;
496 
497 		if (user_mode(ctxt->regs))
498 			ctxt->fi.error_code |= X86_PF_USER;
499 
500 		return ES_EXCEPTION;
501 	}
502 
503 	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
504 		/* Emulated MMIO to/from encrypted memory not supported */
505 		return ES_UNSUPPORTED;
506 
507 	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
508 	pa |= va & ~page_level_mask(level);
509 
510 	*paddr = pa;
511 
512 	return ES_OK;
513 }
514 
515 /* Include code shared with pre-decompression boot stage */
516 #include "sev-shared.c"
517 
518 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
519 {
520 	struct sev_es_runtime_data *data;
521 	struct ghcb *ghcb;
522 
523 	WARN_ON(!irqs_disabled());
524 
525 	data = this_cpu_read(runtime_data);
526 	ghcb = &data->ghcb_page;
527 
528 	if (state->ghcb) {
529 		/* Restore GHCB from Backup */
530 		*ghcb = *state->ghcb;
531 		data->backup_ghcb_active = false;
532 		state->ghcb = NULL;
533 	} else {
534 		/*
535 		 * Invalidate the GHCB so a VMGEXIT instruction issued
536 		 * from userspace won't appear to be valid.
537 		 */
538 		vc_ghcb_invalidate(ghcb);
539 		data->ghcb_active = false;
540 	}
541 }
542 
543 void noinstr __sev_es_nmi_complete(void)
544 {
545 	struct ghcb_state state;
546 	struct ghcb *ghcb;
547 
548 	ghcb = __sev_get_ghcb(&state);
549 
550 	vc_ghcb_invalidate(ghcb);
551 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
552 	ghcb_set_sw_exit_info_1(ghcb, 0);
553 	ghcb_set_sw_exit_info_2(ghcb, 0);
554 
555 	sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
556 	VMGEXIT();
557 
558 	__sev_put_ghcb(&state);
559 }
560 
561 static u64 __init get_secrets_page(void)
562 {
563 	u64 pa_data = boot_params.cc_blob_address;
564 	struct cc_blob_sev_info info;
565 	void *map;
566 
567 	/*
568 	 * The CC blob contains the address of the secrets page, check if the
569 	 * blob is present.
570 	 */
571 	if (!pa_data)
572 		return 0;
573 
574 	map = early_memremap(pa_data, sizeof(info));
575 	if (!map) {
576 		pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n");
577 		return 0;
578 	}
579 	memcpy(&info, map, sizeof(info));
580 	early_memunmap(map, sizeof(info));
581 
582 	/* smoke-test the secrets page passed */
583 	if (!info.secrets_phys || info.secrets_len != PAGE_SIZE)
584 		return 0;
585 
586 	return info.secrets_phys;
587 }
588 
589 static u64 __init get_snp_jump_table_addr(void)
590 {
591 	struct snp_secrets_page_layout *layout;
592 	void __iomem *mem;
593 	u64 pa, addr;
594 
595 	pa = get_secrets_page();
596 	if (!pa)
597 		return 0;
598 
599 	mem = ioremap_encrypted(pa, PAGE_SIZE);
600 	if (!mem) {
601 		pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
602 		return 0;
603 	}
604 
605 	layout = (__force struct snp_secrets_page_layout *)mem;
606 
607 	addr = layout->os_area.ap_jump_table_pa;
608 	iounmap(mem);
609 
610 	return addr;
611 }
612 
613 static u64 __init get_jump_table_addr(void)
614 {
615 	struct ghcb_state state;
616 	unsigned long flags;
617 	struct ghcb *ghcb;
618 	u64 ret = 0;
619 
620 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
621 		return get_snp_jump_table_addr();
622 
623 	local_irq_save(flags);
624 
625 	ghcb = __sev_get_ghcb(&state);
626 
627 	vc_ghcb_invalidate(ghcb);
628 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
629 	ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
630 	ghcb_set_sw_exit_info_2(ghcb, 0);
631 
632 	sev_es_wr_ghcb_msr(__pa(ghcb));
633 	VMGEXIT();
634 
635 	if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
636 	    ghcb_sw_exit_info_2_is_valid(ghcb))
637 		ret = ghcb->save.sw_exit_info_2;
638 
639 	__sev_put_ghcb(&state);
640 
641 	local_irq_restore(flags);
642 
643 	return ret;
644 }
645 
646 static void pvalidate_pages(unsigned long vaddr, unsigned int npages, bool validate)
647 {
648 	unsigned long vaddr_end;
649 	int rc;
650 
651 	vaddr = vaddr & PAGE_MASK;
652 	vaddr_end = vaddr + (npages << PAGE_SHIFT);
653 
654 	while (vaddr < vaddr_end) {
655 		rc = pvalidate(vaddr, RMP_PG_SIZE_4K, validate);
656 		if (WARN(rc, "Failed to validate address 0x%lx ret %d", vaddr, rc))
657 			sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
658 
659 		vaddr = vaddr + PAGE_SIZE;
660 	}
661 }
662 
663 static void __init early_set_pages_state(unsigned long paddr, unsigned int npages, enum psc_op op)
664 {
665 	unsigned long paddr_end;
666 	u64 val;
667 
668 	paddr = paddr & PAGE_MASK;
669 	paddr_end = paddr + (npages << PAGE_SHIFT);
670 
671 	while (paddr < paddr_end) {
672 		/*
673 		 * Use the MSR protocol because this function can be called before
674 		 * the GHCB is established.
675 		 */
676 		sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
677 		VMGEXIT();
678 
679 		val = sev_es_rd_ghcb_msr();
680 
681 		if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP,
682 			 "Wrong PSC response code: 0x%x\n",
683 			 (unsigned int)GHCB_RESP_CODE(val)))
684 			goto e_term;
685 
686 		if (WARN(GHCB_MSR_PSC_RESP_VAL(val),
687 			 "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n",
688 			 op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared",
689 			 paddr, GHCB_MSR_PSC_RESP_VAL(val)))
690 			goto e_term;
691 
692 		paddr = paddr + PAGE_SIZE;
693 	}
694 
695 	return;
696 
697 e_term:
698 	sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
699 }
700 
701 void __init early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr,
702 					 unsigned int npages)
703 {
704 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
705 		return;
706 
707 	 /*
708 	  * Ask the hypervisor to mark the memory pages as private in the RMP
709 	  * table.
710 	  */
711 	early_set_pages_state(paddr, npages, SNP_PAGE_STATE_PRIVATE);
712 
713 	/* Validate the memory pages after they've been added in the RMP table. */
714 	pvalidate_pages(vaddr, npages, true);
715 }
716 
717 void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr,
718 					unsigned int npages)
719 {
720 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
721 		return;
722 
723 	/* Invalidate the memory pages before they are marked shared in the RMP table. */
724 	pvalidate_pages(vaddr, npages, false);
725 
726 	 /* Ask hypervisor to mark the memory pages shared in the RMP table. */
727 	early_set_pages_state(paddr, npages, SNP_PAGE_STATE_SHARED);
728 }
729 
730 void __init snp_prep_memory(unsigned long paddr, unsigned int sz, enum psc_op op)
731 {
732 	unsigned long vaddr, npages;
733 
734 	vaddr = (unsigned long)__va(paddr);
735 	npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
736 
737 	if (op == SNP_PAGE_STATE_PRIVATE)
738 		early_snp_set_memory_private(vaddr, paddr, npages);
739 	else if (op == SNP_PAGE_STATE_SHARED)
740 		early_snp_set_memory_shared(vaddr, paddr, npages);
741 	else
742 		WARN(1, "invalid memory op %d\n", op);
743 }
744 
745 static int vmgexit_psc(struct snp_psc_desc *desc)
746 {
747 	int cur_entry, end_entry, ret = 0;
748 	struct snp_psc_desc *data;
749 	struct ghcb_state state;
750 	struct es_em_ctxt ctxt;
751 	unsigned long flags;
752 	struct ghcb *ghcb;
753 
754 	/*
755 	 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
756 	 * a per-CPU GHCB.
757 	 */
758 	local_irq_save(flags);
759 
760 	ghcb = __sev_get_ghcb(&state);
761 	if (!ghcb) {
762 		ret = 1;
763 		goto out_unlock;
764 	}
765 
766 	/* Copy the input desc into GHCB shared buffer */
767 	data = (struct snp_psc_desc *)ghcb->shared_buffer;
768 	memcpy(ghcb->shared_buffer, desc, min_t(int, GHCB_SHARED_BUF_SIZE, sizeof(*desc)));
769 
770 	/*
771 	 * As per the GHCB specification, the hypervisor can resume the guest
772 	 * before processing all the entries. Check whether all the entries
773 	 * are processed. If not, then keep retrying. Note, the hypervisor
774 	 * will update the data memory directly to indicate the status, so
775 	 * reference the data->hdr everywhere.
776 	 *
777 	 * The strategy here is to wait for the hypervisor to change the page
778 	 * state in the RMP table before guest accesses the memory pages. If the
779 	 * page state change was not successful, then later memory access will
780 	 * result in a crash.
781 	 */
782 	cur_entry = data->hdr.cur_entry;
783 	end_entry = data->hdr.end_entry;
784 
785 	while (data->hdr.cur_entry <= data->hdr.end_entry) {
786 		ghcb_set_sw_scratch(ghcb, (u64)__pa(data));
787 
788 		/* This will advance the shared buffer data points to. */
789 		ret = sev_es_ghcb_hv_call(ghcb, &ctxt, SVM_VMGEXIT_PSC, 0, 0);
790 
791 		/*
792 		 * Page State Change VMGEXIT can pass error code through
793 		 * exit_info_2.
794 		 */
795 		if (WARN(ret || ghcb->save.sw_exit_info_2,
796 			 "SNP: PSC failed ret=%d exit_info_2=%llx\n",
797 			 ret, ghcb->save.sw_exit_info_2)) {
798 			ret = 1;
799 			goto out;
800 		}
801 
802 		/* Verify that reserved bit is not set */
803 		if (WARN(data->hdr.reserved, "Reserved bit is set in the PSC header\n")) {
804 			ret = 1;
805 			goto out;
806 		}
807 
808 		/*
809 		 * Sanity check that entry processing is not going backwards.
810 		 * This will happen only if hypervisor is tricking us.
811 		 */
812 		if (WARN(data->hdr.end_entry > end_entry || cur_entry > data->hdr.cur_entry,
813 "SNP: PSC processing going backward, end_entry %d (got %d) cur_entry %d (got %d)\n",
814 			 end_entry, data->hdr.end_entry, cur_entry, data->hdr.cur_entry)) {
815 			ret = 1;
816 			goto out;
817 		}
818 	}
819 
820 out:
821 	__sev_put_ghcb(&state);
822 
823 out_unlock:
824 	local_irq_restore(flags);
825 
826 	return ret;
827 }
828 
829 static void __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
830 			      unsigned long vaddr_end, int op)
831 {
832 	struct psc_hdr *hdr;
833 	struct psc_entry *e;
834 	unsigned long pfn;
835 	int i;
836 
837 	hdr = &data->hdr;
838 	e = data->entries;
839 
840 	memset(data, 0, sizeof(*data));
841 	i = 0;
842 
843 	while (vaddr < vaddr_end) {
844 		if (is_vmalloc_addr((void *)vaddr))
845 			pfn = vmalloc_to_pfn((void *)vaddr);
846 		else
847 			pfn = __pa(vaddr) >> PAGE_SHIFT;
848 
849 		e->gfn = pfn;
850 		e->operation = op;
851 		hdr->end_entry = i;
852 
853 		/*
854 		 * Current SNP implementation doesn't keep track of the RMP page
855 		 * size so use 4K for simplicity.
856 		 */
857 		e->pagesize = RMP_PG_SIZE_4K;
858 
859 		vaddr = vaddr + PAGE_SIZE;
860 		e++;
861 		i++;
862 	}
863 
864 	if (vmgexit_psc(data))
865 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
866 }
867 
868 static void set_pages_state(unsigned long vaddr, unsigned int npages, int op)
869 {
870 	unsigned long vaddr_end, next_vaddr;
871 	struct snp_psc_desc *desc;
872 
873 	desc = kmalloc(sizeof(*desc), GFP_KERNEL_ACCOUNT);
874 	if (!desc)
875 		panic("SNP: failed to allocate memory for PSC descriptor\n");
876 
877 	vaddr = vaddr & PAGE_MASK;
878 	vaddr_end = vaddr + (npages << PAGE_SHIFT);
879 
880 	while (vaddr < vaddr_end) {
881 		/* Calculate the last vaddr that fits in one struct snp_psc_desc. */
882 		next_vaddr = min_t(unsigned long, vaddr_end,
883 				   (VMGEXIT_PSC_MAX_ENTRY * PAGE_SIZE) + vaddr);
884 
885 		__set_pages_state(desc, vaddr, next_vaddr, op);
886 
887 		vaddr = next_vaddr;
888 	}
889 
890 	kfree(desc);
891 }
892 
893 void snp_set_memory_shared(unsigned long vaddr, unsigned int npages)
894 {
895 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
896 		return;
897 
898 	pvalidate_pages(vaddr, npages, false);
899 
900 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
901 }
902 
903 void snp_set_memory_private(unsigned long vaddr, unsigned int npages)
904 {
905 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
906 		return;
907 
908 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
909 
910 	pvalidate_pages(vaddr, npages, true);
911 }
912 
913 static int snp_set_vmsa(void *va, bool vmsa)
914 {
915 	u64 attrs;
916 
917 	/*
918 	 * Running at VMPL0 allows the kernel to change the VMSA bit for a page
919 	 * using the RMPADJUST instruction. However, for the instruction to
920 	 * succeed it must target the permissions of a lesser privileged
921 	 * (higher numbered) VMPL level, so use VMPL1 (refer to the RMPADJUST
922 	 * instruction in the AMD64 APM Volume 3).
923 	 */
924 	attrs = 1;
925 	if (vmsa)
926 		attrs |= RMPADJUST_VMSA_PAGE_BIT;
927 
928 	return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
929 }
930 
931 #define __ATTR_BASE		(SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
932 #define INIT_CS_ATTRIBS		(__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
933 #define INIT_DS_ATTRIBS		(__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)
934 
935 #define INIT_LDTR_ATTRIBS	(SVM_SELECTOR_P_MASK | 2)
936 #define INIT_TR_ATTRIBS		(SVM_SELECTOR_P_MASK | 3)
937 
938 static void *snp_alloc_vmsa_page(void)
939 {
940 	struct page *p;
941 
942 	/*
943 	 * Allocate VMSA page to work around the SNP erratum where the CPU will
944 	 * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
945 	 * collides with the RMP entry of VMSA page. The recommended workaround
946 	 * is to not use a large page.
947 	 *
948 	 * Allocate an 8k page which is also 8k-aligned.
949 	 */
950 	p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
951 	if (!p)
952 		return NULL;
953 
954 	split_page(p, 1);
955 
956 	/* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
957 	__free_page(p);
958 
959 	return page_address(p + 1);
960 }
961 
962 static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa)
963 {
964 	int err;
965 
966 	err = snp_set_vmsa(vmsa, false);
967 	if (err)
968 		pr_err("clear VMSA page failed (%u), leaking page\n", err);
969 	else
970 		free_page((unsigned long)vmsa);
971 }
972 
973 static int wakeup_cpu_via_vmgexit(int apic_id, unsigned long start_ip)
974 {
975 	struct sev_es_save_area *cur_vmsa, *vmsa;
976 	struct ghcb_state state;
977 	unsigned long flags;
978 	struct ghcb *ghcb;
979 	u8 sipi_vector;
980 	int cpu, ret;
981 	u64 cr4;
982 
983 	/*
984 	 * The hypervisor SNP feature support check has happened earlier, just check
985 	 * the AP_CREATION one here.
986 	 */
987 	if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
988 		return -EOPNOTSUPP;
989 
990 	/*
991 	 * Verify the desired start IP against the known trampoline start IP
992 	 * to catch any future new trampolines that may be introduced that
993 	 * would require a new protected guest entry point.
994 	 */
995 	if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
996 		      "Unsupported SNP start_ip: %lx\n", start_ip))
997 		return -EINVAL;
998 
999 	/* Override start_ip with known protected guest start IP */
1000 	start_ip = real_mode_header->sev_es_trampoline_start;
1001 
1002 	/* Find the logical CPU for the APIC ID */
1003 	for_each_present_cpu(cpu) {
1004 		if (arch_match_cpu_phys_id(cpu, apic_id))
1005 			break;
1006 	}
1007 	if (cpu >= nr_cpu_ids)
1008 		return -EINVAL;
1009 
1010 	cur_vmsa = per_cpu(sev_vmsa, cpu);
1011 
1012 	/*
1013 	 * A new VMSA is created each time because there is no guarantee that
1014 	 * the current VMSA is the kernels or that the vCPU is not running. If
1015 	 * an attempt was done to use the current VMSA with a running vCPU, a
1016 	 * #VMEXIT of that vCPU would wipe out all of the settings being done
1017 	 * here.
1018 	 */
1019 	vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page();
1020 	if (!vmsa)
1021 		return -ENOMEM;
1022 
1023 	/* CR4 should maintain the MCE value */
1024 	cr4 = native_read_cr4() & X86_CR4_MCE;
1025 
1026 	/* Set the CS value based on the start_ip converted to a SIPI vector */
1027 	sipi_vector		= (start_ip >> 12);
1028 	vmsa->cs.base		= sipi_vector << 12;
1029 	vmsa->cs.limit		= AP_INIT_CS_LIMIT;
1030 	vmsa->cs.attrib		= INIT_CS_ATTRIBS;
1031 	vmsa->cs.selector	= sipi_vector << 8;
1032 
1033 	/* Set the RIP value based on start_ip */
1034 	vmsa->rip		= start_ip & 0xfff;
1035 
1036 	/* Set AP INIT defaults as documented in the APM */
1037 	vmsa->ds.limit		= AP_INIT_DS_LIMIT;
1038 	vmsa->ds.attrib		= INIT_DS_ATTRIBS;
1039 	vmsa->es		= vmsa->ds;
1040 	vmsa->fs		= vmsa->ds;
1041 	vmsa->gs		= vmsa->ds;
1042 	vmsa->ss		= vmsa->ds;
1043 
1044 	vmsa->gdtr.limit	= AP_INIT_GDTR_LIMIT;
1045 	vmsa->ldtr.limit	= AP_INIT_LDTR_LIMIT;
1046 	vmsa->ldtr.attrib	= INIT_LDTR_ATTRIBS;
1047 	vmsa->idtr.limit	= AP_INIT_IDTR_LIMIT;
1048 	vmsa->tr.limit		= AP_INIT_TR_LIMIT;
1049 	vmsa->tr.attrib		= INIT_TR_ATTRIBS;
1050 
1051 	vmsa->cr4		= cr4;
1052 	vmsa->cr0		= AP_INIT_CR0_DEFAULT;
1053 	vmsa->dr7		= DR7_RESET_VALUE;
1054 	vmsa->dr6		= AP_INIT_DR6_DEFAULT;
1055 	vmsa->rflags		= AP_INIT_RFLAGS_DEFAULT;
1056 	vmsa->g_pat		= AP_INIT_GPAT_DEFAULT;
1057 	vmsa->xcr0		= AP_INIT_XCR0_DEFAULT;
1058 	vmsa->mxcsr		= AP_INIT_MXCSR_DEFAULT;
1059 	vmsa->x87_ftw		= AP_INIT_X87_FTW_DEFAULT;
1060 	vmsa->x87_fcw		= AP_INIT_X87_FCW_DEFAULT;
1061 
1062 	/* SVME must be set. */
1063 	vmsa->efer		= EFER_SVME;
1064 
1065 	/*
1066 	 * Set the SNP-specific fields for this VMSA:
1067 	 *   VMPL level
1068 	 *   SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
1069 	 */
1070 	vmsa->vmpl		= 0;
1071 	vmsa->sev_features	= sev_status >> 2;
1072 
1073 	/* Switch the page over to a VMSA page now that it is initialized */
1074 	ret = snp_set_vmsa(vmsa, true);
1075 	if (ret) {
1076 		pr_err("set VMSA page failed (%u)\n", ret);
1077 		free_page((unsigned long)vmsa);
1078 
1079 		return -EINVAL;
1080 	}
1081 
1082 	/* Issue VMGEXIT AP Creation NAE event */
1083 	local_irq_save(flags);
1084 
1085 	ghcb = __sev_get_ghcb(&state);
1086 
1087 	vc_ghcb_invalidate(ghcb);
1088 	ghcb_set_rax(ghcb, vmsa->sev_features);
1089 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
1090 	ghcb_set_sw_exit_info_1(ghcb, ((u64)apic_id << 32) | SVM_VMGEXIT_AP_CREATE);
1091 	ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));
1092 
1093 	sev_es_wr_ghcb_msr(__pa(ghcb));
1094 	VMGEXIT();
1095 
1096 	if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
1097 	    lower_32_bits(ghcb->save.sw_exit_info_1)) {
1098 		pr_err("SNP AP Creation error\n");
1099 		ret = -EINVAL;
1100 	}
1101 
1102 	__sev_put_ghcb(&state);
1103 
1104 	local_irq_restore(flags);
1105 
1106 	/* Perform cleanup if there was an error */
1107 	if (ret) {
1108 		snp_cleanup_vmsa(vmsa);
1109 		vmsa = NULL;
1110 	}
1111 
1112 	/* Free up any previous VMSA page */
1113 	if (cur_vmsa)
1114 		snp_cleanup_vmsa(cur_vmsa);
1115 
1116 	/* Record the current VMSA page */
1117 	per_cpu(sev_vmsa, cpu) = vmsa;
1118 
1119 	return ret;
1120 }
1121 
1122 void snp_set_wakeup_secondary_cpu(void)
1123 {
1124 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1125 		return;
1126 
1127 	/*
1128 	 * Always set this override if SNP is enabled. This makes it the
1129 	 * required method to start APs under SNP. If the hypervisor does
1130 	 * not support AP creation, then no APs will be started.
1131 	 */
1132 	apic->wakeup_secondary_cpu = wakeup_cpu_via_vmgexit;
1133 }
1134 
1135 int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
1136 {
1137 	u16 startup_cs, startup_ip;
1138 	phys_addr_t jump_table_pa;
1139 	u64 jump_table_addr;
1140 	u16 __iomem *jump_table;
1141 
1142 	jump_table_addr = get_jump_table_addr();
1143 
1144 	/* On UP guests there is no jump table so this is not a failure */
1145 	if (!jump_table_addr)
1146 		return 0;
1147 
1148 	/* Check if AP Jump Table is page-aligned */
1149 	if (jump_table_addr & ~PAGE_MASK)
1150 		return -EINVAL;
1151 
1152 	jump_table_pa = jump_table_addr & PAGE_MASK;
1153 
1154 	startup_cs = (u16)(rmh->trampoline_start >> 4);
1155 	startup_ip = (u16)(rmh->sev_es_trampoline_start -
1156 			   rmh->trampoline_start);
1157 
1158 	jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
1159 	if (!jump_table)
1160 		return -EIO;
1161 
1162 	writew(startup_ip, &jump_table[0]);
1163 	writew(startup_cs, &jump_table[1]);
1164 
1165 	iounmap(jump_table);
1166 
1167 	return 0;
1168 }
1169 
1170 /*
1171  * This is needed by the OVMF UEFI firmware which will use whatever it finds in
1172  * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
1173  * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
1174  */
1175 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
1176 {
1177 	struct sev_es_runtime_data *data;
1178 	unsigned long address, pflags;
1179 	int cpu;
1180 	u64 pfn;
1181 
1182 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1183 		return 0;
1184 
1185 	pflags = _PAGE_NX | _PAGE_RW;
1186 
1187 	for_each_possible_cpu(cpu) {
1188 		data = per_cpu(runtime_data, cpu);
1189 
1190 		address = __pa(&data->ghcb_page);
1191 		pfn = address >> PAGE_SHIFT;
1192 
1193 		if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
1194 			return 1;
1195 	}
1196 
1197 	return 0;
1198 }
1199 
1200 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1201 {
1202 	struct pt_regs *regs = ctxt->regs;
1203 	enum es_result ret;
1204 	u64 exit_info_1;
1205 
1206 	/* Is it a WRMSR? */
1207 	exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
1208 
1209 	ghcb_set_rcx(ghcb, regs->cx);
1210 	if (exit_info_1) {
1211 		ghcb_set_rax(ghcb, regs->ax);
1212 		ghcb_set_rdx(ghcb, regs->dx);
1213 	}
1214 
1215 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
1216 
1217 	if ((ret == ES_OK) && (!exit_info_1)) {
1218 		regs->ax = ghcb->save.rax;
1219 		regs->dx = ghcb->save.rdx;
1220 	}
1221 
1222 	return ret;
1223 }
1224 
1225 static void snp_register_per_cpu_ghcb(void)
1226 {
1227 	struct sev_es_runtime_data *data;
1228 	struct ghcb *ghcb;
1229 
1230 	data = this_cpu_read(runtime_data);
1231 	ghcb = &data->ghcb_page;
1232 
1233 	snp_register_ghcb_early(__pa(ghcb));
1234 }
1235 
1236 void setup_ghcb(void)
1237 {
1238 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1239 		return;
1240 
1241 	/* First make sure the hypervisor talks a supported protocol. */
1242 	if (!sev_es_negotiate_protocol())
1243 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1244 
1245 	/*
1246 	 * Check whether the runtime #VC exception handler is active. It uses
1247 	 * the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
1248 	 *
1249 	 * If SNP is active, register the per-CPU GHCB page so that the runtime
1250 	 * exception handler can use it.
1251 	 */
1252 	if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
1253 		if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1254 			snp_register_per_cpu_ghcb();
1255 
1256 		return;
1257 	}
1258 
1259 	/*
1260 	 * Clear the boot_ghcb. The first exception comes in before the bss
1261 	 * section is cleared.
1262 	 */
1263 	memset(&boot_ghcb_page, 0, PAGE_SIZE);
1264 
1265 	/* Alright - Make the boot-ghcb public */
1266 	boot_ghcb = &boot_ghcb_page;
1267 
1268 	/* SNP guest requires that GHCB GPA must be registered. */
1269 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1270 		snp_register_ghcb_early(__pa(&boot_ghcb_page));
1271 }
1272 
1273 #ifdef CONFIG_HOTPLUG_CPU
1274 static void sev_es_ap_hlt_loop(void)
1275 {
1276 	struct ghcb_state state;
1277 	struct ghcb *ghcb;
1278 
1279 	ghcb = __sev_get_ghcb(&state);
1280 
1281 	while (true) {
1282 		vc_ghcb_invalidate(ghcb);
1283 		ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
1284 		ghcb_set_sw_exit_info_1(ghcb, 0);
1285 		ghcb_set_sw_exit_info_2(ghcb, 0);
1286 
1287 		sev_es_wr_ghcb_msr(__pa(ghcb));
1288 		VMGEXIT();
1289 
1290 		/* Wakeup signal? */
1291 		if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
1292 		    ghcb->save.sw_exit_info_2)
1293 			break;
1294 	}
1295 
1296 	__sev_put_ghcb(&state);
1297 }
1298 
1299 /*
1300  * Play_dead handler when running under SEV-ES. This is needed because
1301  * the hypervisor can't deliver an SIPI request to restart the AP.
1302  * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
1303  * hypervisor wakes it up again.
1304  */
1305 static void sev_es_play_dead(void)
1306 {
1307 	play_dead_common();
1308 
1309 	/* IRQs now disabled */
1310 
1311 	sev_es_ap_hlt_loop();
1312 
1313 	/*
1314 	 * If we get here, the VCPU was woken up again. Jump to CPU
1315 	 * startup code to get it back online.
1316 	 */
1317 	start_cpu0();
1318 }
1319 #else  /* CONFIG_HOTPLUG_CPU */
1320 #define sev_es_play_dead	native_play_dead
1321 #endif /* CONFIG_HOTPLUG_CPU */
1322 
1323 #ifdef CONFIG_SMP
1324 static void __init sev_es_setup_play_dead(void)
1325 {
1326 	smp_ops.play_dead = sev_es_play_dead;
1327 }
1328 #else
1329 static inline void sev_es_setup_play_dead(void) { }
1330 #endif
1331 
1332 static void __init alloc_runtime_data(int cpu)
1333 {
1334 	struct sev_es_runtime_data *data;
1335 
1336 	data = memblock_alloc(sizeof(*data), PAGE_SIZE);
1337 	if (!data)
1338 		panic("Can't allocate SEV-ES runtime data");
1339 
1340 	per_cpu(runtime_data, cpu) = data;
1341 }
1342 
1343 static void __init init_ghcb(int cpu)
1344 {
1345 	struct sev_es_runtime_data *data;
1346 	int err;
1347 
1348 	data = per_cpu(runtime_data, cpu);
1349 
1350 	err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
1351 					 sizeof(data->ghcb_page));
1352 	if (err)
1353 		panic("Can't map GHCBs unencrypted");
1354 
1355 	memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
1356 
1357 	data->ghcb_active = false;
1358 	data->backup_ghcb_active = false;
1359 }
1360 
1361 void __init sev_es_init_vc_handling(void)
1362 {
1363 	int cpu;
1364 
1365 	BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
1366 
1367 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1368 		return;
1369 
1370 	if (!sev_es_check_cpu_features())
1371 		panic("SEV-ES CPU Features missing");
1372 
1373 	/*
1374 	 * SNP is supported in v2 of the GHCB spec which mandates support for HV
1375 	 * features.
1376 	 */
1377 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
1378 		sev_hv_features = get_hv_features();
1379 
1380 		if (!(sev_hv_features & GHCB_HV_FT_SNP))
1381 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
1382 	}
1383 
1384 	/* Enable SEV-ES special handling */
1385 	static_branch_enable(&sev_es_enable_key);
1386 
1387 	/* Initialize per-cpu GHCB pages */
1388 	for_each_possible_cpu(cpu) {
1389 		alloc_runtime_data(cpu);
1390 		init_ghcb(cpu);
1391 	}
1392 
1393 	sev_es_setup_play_dead();
1394 
1395 	/* Secondary CPUs use the runtime #VC handler */
1396 	initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
1397 }
1398 
1399 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
1400 {
1401 	int trapnr = ctxt->fi.vector;
1402 
1403 	if (trapnr == X86_TRAP_PF)
1404 		native_write_cr2(ctxt->fi.cr2);
1405 
1406 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1407 	do_early_exception(ctxt->regs, trapnr);
1408 }
1409 
1410 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
1411 {
1412 	long *reg_array;
1413 	int offset;
1414 
1415 	reg_array = (long *)ctxt->regs;
1416 	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
1417 
1418 	if (offset < 0)
1419 		return NULL;
1420 
1421 	offset /= sizeof(long);
1422 
1423 	return reg_array + offset;
1424 }
1425 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
1426 				 unsigned int bytes, bool read)
1427 {
1428 	u64 exit_code, exit_info_1, exit_info_2;
1429 	unsigned long ghcb_pa = __pa(ghcb);
1430 	enum es_result res;
1431 	phys_addr_t paddr;
1432 	void __user *ref;
1433 
1434 	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
1435 	if (ref == (void __user *)-1L)
1436 		return ES_UNSUPPORTED;
1437 
1438 	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
1439 
1440 	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
1441 	if (res != ES_OK) {
1442 		if (res == ES_EXCEPTION && !read)
1443 			ctxt->fi.error_code |= X86_PF_WRITE;
1444 
1445 		return res;
1446 	}
1447 
1448 	exit_info_1 = paddr;
1449 	/* Can never be greater than 8 */
1450 	exit_info_2 = bytes;
1451 
1452 	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
1453 
1454 	return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
1455 }
1456 
1457 /*
1458  * The MOVS instruction has two memory operands, which raises the
1459  * problem that it is not known whether the access to the source or the
1460  * destination caused the #VC exception (and hence whether an MMIO read
1461  * or write operation needs to be emulated).
1462  *
1463  * Instead of playing games with walking page-tables and trying to guess
1464  * whether the source or destination is an MMIO range, split the move
1465  * into two operations, a read and a write with only one memory operand.
1466  * This will cause a nested #VC exception on the MMIO address which can
1467  * then be handled.
1468  *
1469  * This implementation has the benefit that it also supports MOVS where
1470  * source _and_ destination are MMIO regions.
1471  *
1472  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
1473  * rare operation. If it turns out to be a performance problem the split
1474  * operations can be moved to memcpy_fromio() and memcpy_toio().
1475  */
1476 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
1477 					  unsigned int bytes)
1478 {
1479 	unsigned long ds_base, es_base;
1480 	unsigned char *src, *dst;
1481 	unsigned char buffer[8];
1482 	enum es_result ret;
1483 	bool rep;
1484 	int off;
1485 
1486 	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
1487 	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
1488 
1489 	if (ds_base == -1L || es_base == -1L) {
1490 		ctxt->fi.vector = X86_TRAP_GP;
1491 		ctxt->fi.error_code = 0;
1492 		return ES_EXCEPTION;
1493 	}
1494 
1495 	src = ds_base + (unsigned char *)ctxt->regs->si;
1496 	dst = es_base + (unsigned char *)ctxt->regs->di;
1497 
1498 	ret = vc_read_mem(ctxt, src, buffer, bytes);
1499 	if (ret != ES_OK)
1500 		return ret;
1501 
1502 	ret = vc_write_mem(ctxt, dst, buffer, bytes);
1503 	if (ret != ES_OK)
1504 		return ret;
1505 
1506 	if (ctxt->regs->flags & X86_EFLAGS_DF)
1507 		off = -bytes;
1508 	else
1509 		off =  bytes;
1510 
1511 	ctxt->regs->si += off;
1512 	ctxt->regs->di += off;
1513 
1514 	rep = insn_has_rep_prefix(&ctxt->insn);
1515 	if (rep)
1516 		ctxt->regs->cx -= 1;
1517 
1518 	if (!rep || ctxt->regs->cx == 0)
1519 		return ES_OK;
1520 	else
1521 		return ES_RETRY;
1522 }
1523 
1524 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1525 {
1526 	struct insn *insn = &ctxt->insn;
1527 	unsigned int bytes = 0;
1528 	enum mmio_type mmio;
1529 	enum es_result ret;
1530 	u8 sign_byte;
1531 	long *reg_data;
1532 
1533 	mmio = insn_decode_mmio(insn, &bytes);
1534 	if (mmio == MMIO_DECODE_FAILED)
1535 		return ES_DECODE_FAILED;
1536 
1537 	if (mmio != MMIO_WRITE_IMM && mmio != MMIO_MOVS) {
1538 		reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
1539 		if (!reg_data)
1540 			return ES_DECODE_FAILED;
1541 	}
1542 
1543 	switch (mmio) {
1544 	case MMIO_WRITE:
1545 		memcpy(ghcb->shared_buffer, reg_data, bytes);
1546 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1547 		break;
1548 	case MMIO_WRITE_IMM:
1549 		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1550 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1551 		break;
1552 	case MMIO_READ:
1553 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1554 		if (ret)
1555 			break;
1556 
1557 		/* Zero-extend for 32-bit operation */
1558 		if (bytes == 4)
1559 			*reg_data = 0;
1560 
1561 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1562 		break;
1563 	case MMIO_READ_ZERO_EXTEND:
1564 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1565 		if (ret)
1566 			break;
1567 
1568 		/* Zero extend based on operand size */
1569 		memset(reg_data, 0, insn->opnd_bytes);
1570 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1571 		break;
1572 	case MMIO_READ_SIGN_EXTEND:
1573 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1574 		if (ret)
1575 			break;
1576 
1577 		if (bytes == 1) {
1578 			u8 *val = (u8 *)ghcb->shared_buffer;
1579 
1580 			sign_byte = (*val & 0x80) ? 0xff : 0x00;
1581 		} else {
1582 			u16 *val = (u16 *)ghcb->shared_buffer;
1583 
1584 			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
1585 		}
1586 
1587 		/* Sign extend based on operand size */
1588 		memset(reg_data, sign_byte, insn->opnd_bytes);
1589 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1590 		break;
1591 	case MMIO_MOVS:
1592 		ret = vc_handle_mmio_movs(ctxt, bytes);
1593 		break;
1594 	default:
1595 		ret = ES_UNSUPPORTED;
1596 		break;
1597 	}
1598 
1599 	return ret;
1600 }
1601 
1602 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1603 					  struct es_em_ctxt *ctxt)
1604 {
1605 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1606 	long val, *reg = vc_insn_get_rm(ctxt);
1607 	enum es_result ret;
1608 
1609 	if (!reg)
1610 		return ES_DECODE_FAILED;
1611 
1612 	val = *reg;
1613 
1614 	/* Upper 32 bits must be written as zeroes */
1615 	if (val >> 32) {
1616 		ctxt->fi.vector = X86_TRAP_GP;
1617 		ctxt->fi.error_code = 0;
1618 		return ES_EXCEPTION;
1619 	}
1620 
1621 	/* Clear out other reserved bits and set bit 10 */
1622 	val = (val & 0xffff23ffL) | BIT(10);
1623 
1624 	/* Early non-zero writes to DR7 are not supported */
1625 	if (!data && (val & ~DR7_RESET_VALUE))
1626 		return ES_UNSUPPORTED;
1627 
1628 	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
1629 	ghcb_set_rax(ghcb, val);
1630 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1631 	if (ret != ES_OK)
1632 		return ret;
1633 
1634 	if (data)
1635 		data->dr7 = val;
1636 
1637 	return ES_OK;
1638 }
1639 
1640 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1641 					 struct es_em_ctxt *ctxt)
1642 {
1643 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1644 	long *reg = vc_insn_get_rm(ctxt);
1645 
1646 	if (!reg)
1647 		return ES_DECODE_FAILED;
1648 
1649 	if (data)
1650 		*reg = data->dr7;
1651 	else
1652 		*reg = DR7_RESET_VALUE;
1653 
1654 	return ES_OK;
1655 }
1656 
1657 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1658 				       struct es_em_ctxt *ctxt)
1659 {
1660 	return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1661 }
1662 
1663 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1664 {
1665 	enum es_result ret;
1666 
1667 	ghcb_set_rcx(ghcb, ctxt->regs->cx);
1668 
1669 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1670 	if (ret != ES_OK)
1671 		return ret;
1672 
1673 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1674 		return ES_VMM_ERROR;
1675 
1676 	ctxt->regs->ax = ghcb->save.rax;
1677 	ctxt->regs->dx = ghcb->save.rdx;
1678 
1679 	return ES_OK;
1680 }
1681 
1682 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1683 					struct es_em_ctxt *ctxt)
1684 {
1685 	/*
1686 	 * Treat it as a NOP and do not leak a physical address to the
1687 	 * hypervisor.
1688 	 */
1689 	return ES_OK;
1690 }
1691 
1692 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1693 				      struct es_em_ctxt *ctxt)
1694 {
1695 	/* Treat the same as MONITOR/MONITORX */
1696 	return ES_OK;
1697 }
1698 
1699 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1700 					struct es_em_ctxt *ctxt)
1701 {
1702 	enum es_result ret;
1703 
1704 	ghcb_set_rax(ghcb, ctxt->regs->ax);
1705 	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1706 
1707 	if (x86_platform.hyper.sev_es_hcall_prepare)
1708 		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1709 
1710 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1711 	if (ret != ES_OK)
1712 		return ret;
1713 
1714 	if (!ghcb_rax_is_valid(ghcb))
1715 		return ES_VMM_ERROR;
1716 
1717 	ctxt->regs->ax = ghcb->save.rax;
1718 
1719 	/*
1720 	 * Call sev_es_hcall_finish() after regs->ax is already set.
1721 	 * This allows the hypervisor handler to overwrite it again if
1722 	 * necessary.
1723 	 */
1724 	if (x86_platform.hyper.sev_es_hcall_finish &&
1725 	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1726 		return ES_VMM_ERROR;
1727 
1728 	return ES_OK;
1729 }
1730 
1731 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1732 					struct es_em_ctxt *ctxt)
1733 {
1734 	/*
1735 	 * Calling ecx_alignment_check() directly does not work, because it
1736 	 * enables IRQs and the GHCB is active. Forward the exception and call
1737 	 * it later from vc_forward_exception().
1738 	 */
1739 	ctxt->fi.vector = X86_TRAP_AC;
1740 	ctxt->fi.error_code = 0;
1741 	return ES_EXCEPTION;
1742 }
1743 
1744 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1745 					 struct ghcb *ghcb,
1746 					 unsigned long exit_code)
1747 {
1748 	enum es_result result;
1749 
1750 	switch (exit_code) {
1751 	case SVM_EXIT_READ_DR7:
1752 		result = vc_handle_dr7_read(ghcb, ctxt);
1753 		break;
1754 	case SVM_EXIT_WRITE_DR7:
1755 		result = vc_handle_dr7_write(ghcb, ctxt);
1756 		break;
1757 	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1758 		result = vc_handle_trap_ac(ghcb, ctxt);
1759 		break;
1760 	case SVM_EXIT_RDTSC:
1761 	case SVM_EXIT_RDTSCP:
1762 		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1763 		break;
1764 	case SVM_EXIT_RDPMC:
1765 		result = vc_handle_rdpmc(ghcb, ctxt);
1766 		break;
1767 	case SVM_EXIT_INVD:
1768 		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1769 		result = ES_UNSUPPORTED;
1770 		break;
1771 	case SVM_EXIT_CPUID:
1772 		result = vc_handle_cpuid(ghcb, ctxt);
1773 		break;
1774 	case SVM_EXIT_IOIO:
1775 		result = vc_handle_ioio(ghcb, ctxt);
1776 		break;
1777 	case SVM_EXIT_MSR:
1778 		result = vc_handle_msr(ghcb, ctxt);
1779 		break;
1780 	case SVM_EXIT_VMMCALL:
1781 		result = vc_handle_vmmcall(ghcb, ctxt);
1782 		break;
1783 	case SVM_EXIT_WBINVD:
1784 		result = vc_handle_wbinvd(ghcb, ctxt);
1785 		break;
1786 	case SVM_EXIT_MONITOR:
1787 		result = vc_handle_monitor(ghcb, ctxt);
1788 		break;
1789 	case SVM_EXIT_MWAIT:
1790 		result = vc_handle_mwait(ghcb, ctxt);
1791 		break;
1792 	case SVM_EXIT_NPF:
1793 		result = vc_handle_mmio(ghcb, ctxt);
1794 		break;
1795 	default:
1796 		/*
1797 		 * Unexpected #VC exception
1798 		 */
1799 		result = ES_UNSUPPORTED;
1800 	}
1801 
1802 	return result;
1803 }
1804 
1805 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1806 {
1807 	long error_code = ctxt->fi.error_code;
1808 	int trapnr = ctxt->fi.vector;
1809 
1810 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1811 
1812 	switch (trapnr) {
1813 	case X86_TRAP_GP:
1814 		exc_general_protection(ctxt->regs, error_code);
1815 		break;
1816 	case X86_TRAP_UD:
1817 		exc_invalid_op(ctxt->regs);
1818 		break;
1819 	case X86_TRAP_PF:
1820 		write_cr2(ctxt->fi.cr2);
1821 		exc_page_fault(ctxt->regs, error_code);
1822 		break;
1823 	case X86_TRAP_AC:
1824 		exc_alignment_check(ctxt->regs, error_code);
1825 		break;
1826 	default:
1827 		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1828 		BUG();
1829 	}
1830 }
1831 
1832 static __always_inline bool is_vc2_stack(unsigned long sp)
1833 {
1834 	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1835 }
1836 
1837 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
1838 {
1839 	unsigned long sp, prev_sp;
1840 
1841 	sp      = (unsigned long)regs;
1842 	prev_sp = regs->sp;
1843 
1844 	/*
1845 	 * If the code was already executing on the VC2 stack when the #VC
1846 	 * happened, let it proceed to the normal handling routine. This way the
1847 	 * code executing on the VC2 stack can cause #VC exceptions to get handled.
1848 	 */
1849 	return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
1850 }
1851 
1852 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1853 {
1854 	struct ghcb_state state;
1855 	struct es_em_ctxt ctxt;
1856 	enum es_result result;
1857 	struct ghcb *ghcb;
1858 	bool ret = true;
1859 
1860 	ghcb = __sev_get_ghcb(&state);
1861 
1862 	vc_ghcb_invalidate(ghcb);
1863 	result = vc_init_em_ctxt(&ctxt, regs, error_code);
1864 
1865 	if (result == ES_OK)
1866 		result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1867 
1868 	__sev_put_ghcb(&state);
1869 
1870 	/* Done - now check the result */
1871 	switch (result) {
1872 	case ES_OK:
1873 		vc_finish_insn(&ctxt);
1874 		break;
1875 	case ES_UNSUPPORTED:
1876 		pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
1877 				   error_code, regs->ip);
1878 		ret = false;
1879 		break;
1880 	case ES_VMM_ERROR:
1881 		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1882 				   error_code, regs->ip);
1883 		ret = false;
1884 		break;
1885 	case ES_DECODE_FAILED:
1886 		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1887 				   error_code, regs->ip);
1888 		ret = false;
1889 		break;
1890 	case ES_EXCEPTION:
1891 		vc_forward_exception(&ctxt);
1892 		break;
1893 	case ES_RETRY:
1894 		/* Nothing to do */
1895 		break;
1896 	default:
1897 		pr_emerg("Unknown result in %s():%d\n", __func__, result);
1898 		/*
1899 		 * Emulating the instruction which caused the #VC exception
1900 		 * failed - can't continue so print debug information
1901 		 */
1902 		BUG();
1903 	}
1904 
1905 	return ret;
1906 }
1907 
1908 static __always_inline bool vc_is_db(unsigned long error_code)
1909 {
1910 	return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1911 }
1912 
1913 /*
1914  * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1915  * and will panic when an error happens.
1916  */
1917 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1918 {
1919 	irqentry_state_t irq_state;
1920 
1921 	/*
1922 	 * With the current implementation it is always possible to switch to a
1923 	 * safe stack because #VC exceptions only happen at known places, like
1924 	 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1925 	 * also happen with code instrumentation when the hypervisor intercepts
1926 	 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1927 	 * exceptions currently also only happen in safe places.
1928 	 *
1929 	 * But keep this here in case the noinstr annotations are violated due
1930 	 * to bug elsewhere.
1931 	 */
1932 	if (unlikely(vc_from_invalid_context(regs))) {
1933 		instrumentation_begin();
1934 		panic("Can't handle #VC exception from unsupported context\n");
1935 		instrumentation_end();
1936 	}
1937 
1938 	/*
1939 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1940 	 */
1941 	if (vc_is_db(error_code)) {
1942 		exc_debug(regs);
1943 		return;
1944 	}
1945 
1946 	irq_state = irqentry_nmi_enter(regs);
1947 
1948 	instrumentation_begin();
1949 
1950 	if (!vc_raw_handle_exception(regs, error_code)) {
1951 		/* Show some debug info */
1952 		show_regs(regs);
1953 
1954 		/* Ask hypervisor to sev_es_terminate */
1955 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1956 
1957 		/* If that fails and we get here - just panic */
1958 		panic("Returned from Terminate-Request to Hypervisor\n");
1959 	}
1960 
1961 	instrumentation_end();
1962 	irqentry_nmi_exit(regs, irq_state);
1963 }
1964 
1965 /*
1966  * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1967  * and will kill the current task with SIGBUS when an error happens.
1968  */
1969 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1970 {
1971 	/*
1972 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1973 	 */
1974 	if (vc_is_db(error_code)) {
1975 		noist_exc_debug(regs);
1976 		return;
1977 	}
1978 
1979 	irqentry_enter_from_user_mode(regs);
1980 	instrumentation_begin();
1981 
1982 	if (!vc_raw_handle_exception(regs, error_code)) {
1983 		/*
1984 		 * Do not kill the machine if user-space triggered the
1985 		 * exception. Send SIGBUS instead and let user-space deal with
1986 		 * it.
1987 		 */
1988 		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1989 	}
1990 
1991 	instrumentation_end();
1992 	irqentry_exit_to_user_mode(regs);
1993 }
1994 
1995 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1996 {
1997 	unsigned long exit_code = regs->orig_ax;
1998 	struct es_em_ctxt ctxt;
1999 	enum es_result result;
2000 
2001 	vc_ghcb_invalidate(boot_ghcb);
2002 
2003 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
2004 	if (result == ES_OK)
2005 		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
2006 
2007 	/* Done - now check the result */
2008 	switch (result) {
2009 	case ES_OK:
2010 		vc_finish_insn(&ctxt);
2011 		break;
2012 	case ES_UNSUPPORTED:
2013 		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
2014 				exit_code, regs->ip);
2015 		goto fail;
2016 	case ES_VMM_ERROR:
2017 		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
2018 				exit_code, regs->ip);
2019 		goto fail;
2020 	case ES_DECODE_FAILED:
2021 		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
2022 				exit_code, regs->ip);
2023 		goto fail;
2024 	case ES_EXCEPTION:
2025 		vc_early_forward_exception(&ctxt);
2026 		break;
2027 	case ES_RETRY:
2028 		/* Nothing to do */
2029 		break;
2030 	default:
2031 		BUG();
2032 	}
2033 
2034 	return true;
2035 
2036 fail:
2037 	show_regs(regs);
2038 
2039 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
2040 }
2041 
2042 /*
2043  * Initial set up of SNP relies on information provided by the
2044  * Confidential Computing blob, which can be passed to the kernel
2045  * in the following ways, depending on how it is booted:
2046  *
2047  * - when booted via the boot/decompress kernel:
2048  *   - via boot_params
2049  *
2050  * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH):
2051  *   - via a setup_data entry, as defined by the Linux Boot Protocol
2052  *
2053  * Scan for the blob in that order.
2054  */
2055 static __init struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
2056 {
2057 	struct cc_blob_sev_info *cc_info;
2058 
2059 	/* Boot kernel would have passed the CC blob via boot_params. */
2060 	if (bp->cc_blob_address) {
2061 		cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address;
2062 		goto found_cc_info;
2063 	}
2064 
2065 	/*
2066 	 * If kernel was booted directly, without the use of the
2067 	 * boot/decompression kernel, the CC blob may have been passed via
2068 	 * setup_data instead.
2069 	 */
2070 	cc_info = find_cc_blob_setup_data(bp);
2071 	if (!cc_info)
2072 		return NULL;
2073 
2074 found_cc_info:
2075 	if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
2076 		snp_abort();
2077 
2078 	return cc_info;
2079 }
2080 
2081 bool __init snp_init(struct boot_params *bp)
2082 {
2083 	struct cc_blob_sev_info *cc_info;
2084 
2085 	if (!bp)
2086 		return false;
2087 
2088 	cc_info = find_cc_blob(bp);
2089 	if (!cc_info)
2090 		return false;
2091 
2092 	setup_cpuid_table(cc_info);
2093 
2094 	/*
2095 	 * The CC blob will be used later to access the secrets page. Cache
2096 	 * it here like the boot kernel does.
2097 	 */
2098 	bp->cc_blob_address = (u32)(unsigned long)cc_info;
2099 
2100 	return true;
2101 }
2102 
2103 void __init snp_abort(void)
2104 {
2105 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
2106 }
2107 
2108 static void dump_cpuid_table(void)
2109 {
2110 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2111 	int i = 0;
2112 
2113 	pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
2114 		cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);
2115 
2116 	for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
2117 		const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
2118 
2119 		pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
2120 			i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
2121 			fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
2122 	}
2123 }
2124 
2125 /*
2126  * It is useful from an auditing/testing perspective to provide an easy way
2127  * for the guest owner to know that the CPUID table has been initialized as
2128  * expected, but that initialization happens too early in boot to print any
2129  * sort of indicator, and there's not really any other good place to do it,
2130  * so do it here.
2131  */
2132 static int __init report_cpuid_table(void)
2133 {
2134 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2135 
2136 	if (!cpuid_table->count)
2137 		return 0;
2138 
2139 	pr_info("Using SNP CPUID table, %d entries present.\n",
2140 		cpuid_table->count);
2141 
2142 	if (sev_cfg.debug)
2143 		dump_cpuid_table();
2144 
2145 	return 0;
2146 }
2147 arch_initcall(report_cpuid_table);
2148 
2149 static int __init init_sev_config(char *str)
2150 {
2151 	char *s;
2152 
2153 	while ((s = strsep(&str, ","))) {
2154 		if (!strcmp(s, "debug")) {
2155 			sev_cfg.debug = true;
2156 			continue;
2157 		}
2158 
2159 		pr_info("SEV command-line option '%s' was not recognized\n", s);
2160 	}
2161 
2162 	return 1;
2163 }
2164 __setup("sev=", init_sev_config);
2165 
2166 int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, unsigned long *fw_err)
2167 {
2168 	struct ghcb_state state;
2169 	struct es_em_ctxt ctxt;
2170 	unsigned long flags;
2171 	struct ghcb *ghcb;
2172 	int ret;
2173 
2174 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2175 		return -ENODEV;
2176 
2177 	if (!fw_err)
2178 		return -EINVAL;
2179 
2180 	/*
2181 	 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
2182 	 * a per-CPU GHCB.
2183 	 */
2184 	local_irq_save(flags);
2185 
2186 	ghcb = __sev_get_ghcb(&state);
2187 	if (!ghcb) {
2188 		ret = -EIO;
2189 		goto e_restore_irq;
2190 	}
2191 
2192 	vc_ghcb_invalidate(ghcb);
2193 
2194 	if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2195 		ghcb_set_rax(ghcb, input->data_gpa);
2196 		ghcb_set_rbx(ghcb, input->data_npages);
2197 	}
2198 
2199 	ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa);
2200 	if (ret)
2201 		goto e_put;
2202 
2203 	if (ghcb->save.sw_exit_info_2) {
2204 		/* Number of expected pages are returned in RBX */
2205 		if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST &&
2206 		    ghcb->save.sw_exit_info_2 == SNP_GUEST_REQ_INVALID_LEN)
2207 			input->data_npages = ghcb_get_rbx(ghcb);
2208 
2209 		*fw_err = ghcb->save.sw_exit_info_2;
2210 
2211 		ret = -EIO;
2212 	}
2213 
2214 e_put:
2215 	__sev_put_ghcb(&state);
2216 e_restore_irq:
2217 	local_irq_restore(flags);
2218 
2219 	return ret;
2220 }
2221 EXPORT_SYMBOL_GPL(snp_issue_guest_request);
2222 
2223 static struct platform_device sev_guest_device = {
2224 	.name		= "sev-guest",
2225 	.id		= -1,
2226 };
2227 
2228 static int __init snp_init_platform_device(void)
2229 {
2230 	struct sev_guest_platform_data data;
2231 	u64 gpa;
2232 
2233 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2234 		return -ENODEV;
2235 
2236 	gpa = get_secrets_page();
2237 	if (!gpa)
2238 		return -ENODEV;
2239 
2240 	data.secrets_gpa = gpa;
2241 	if (platform_device_add_data(&sev_guest_device, &data, sizeof(data)))
2242 		return -ENODEV;
2243 
2244 	if (platform_device_register(&sev_guest_device))
2245 		return -ENODEV;
2246 
2247 	pr_info("SNP guest platform device initialized.\n");
2248 	return 0;
2249 }
2250 device_initcall(snp_init_platform_device);
2251