xref: /openbmc/linux/arch/x86/kernel/sev.c (revision c0891ac1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2019 SUSE
6  *
7  * Author: Joerg Roedel <jroedel@suse.de>
8  */
9 
10 #define pr_fmt(fmt)	"SEV: " fmt
11 
12 #include <linux/sched/debug.h>	/* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/mem_encrypt.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/sev.h>
25 #include <asm/insn-eval.h>
26 #include <asm/fpu/internal.h>
27 #include <asm/processor.h>
28 #include <asm/realmode.h>
29 #include <asm/traps.h>
30 #include <asm/svm.h>
31 #include <asm/smp.h>
32 #include <asm/cpu.h>
33 
34 #define DR7_RESET_VALUE        0x400
35 
36 /* For early boot hypervisor communication in SEV-ES enabled guests */
37 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
38 
39 /*
40  * Needs to be in the .data section because we need it NULL before bss is
41  * cleared
42  */
43 static struct ghcb __initdata *boot_ghcb;
44 
45 /* #VC handler runtime per-CPU data */
46 struct sev_es_runtime_data {
47 	struct ghcb ghcb_page;
48 
49 	/* Physical storage for the per-CPU IST stack of the #VC handler */
50 	char ist_stack[EXCEPTION_STKSZ] __aligned(PAGE_SIZE);
51 
52 	/*
53 	 * Physical storage for the per-CPU fall-back stack of the #VC handler.
54 	 * The fall-back stack is used when it is not safe to switch back to the
55 	 * interrupted stack in the #VC entry code.
56 	 */
57 	char fallback_stack[EXCEPTION_STKSZ] __aligned(PAGE_SIZE);
58 
59 	/*
60 	 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
61 	 * It is needed when an NMI happens while the #VC handler uses the real
62 	 * GHCB, and the NMI handler itself is causing another #VC exception. In
63 	 * that case the GHCB content of the first handler needs to be backed up
64 	 * and restored.
65 	 */
66 	struct ghcb backup_ghcb;
67 
68 	/*
69 	 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
70 	 * There is no need for it to be atomic, because nothing is written to
71 	 * the GHCB between the read and the write of ghcb_active. So it is safe
72 	 * to use it when a nested #VC exception happens before the write.
73 	 *
74 	 * This is necessary for example in the #VC->NMI->#VC case when the NMI
75 	 * happens while the first #VC handler uses the GHCB. When the NMI code
76 	 * raises a second #VC handler it might overwrite the contents of the
77 	 * GHCB written by the first handler. To avoid this the content of the
78 	 * GHCB is saved and restored when the GHCB is detected to be in use
79 	 * already.
80 	 */
81 	bool ghcb_active;
82 	bool backup_ghcb_active;
83 
84 	/*
85 	 * Cached DR7 value - write it on DR7 writes and return it on reads.
86 	 * That value will never make it to the real hardware DR7 as debugging
87 	 * is currently unsupported in SEV-ES guests.
88 	 */
89 	unsigned long dr7;
90 };
91 
92 struct ghcb_state {
93 	struct ghcb *ghcb;
94 };
95 
96 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
97 DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
98 
99 /* Needed in vc_early_forward_exception */
100 void do_early_exception(struct pt_regs *regs, int trapnr);
101 
102 static void __init setup_vc_stacks(int cpu)
103 {
104 	struct sev_es_runtime_data *data;
105 	struct cpu_entry_area *cea;
106 	unsigned long vaddr;
107 	phys_addr_t pa;
108 
109 	data = per_cpu(runtime_data, cpu);
110 	cea  = get_cpu_entry_area(cpu);
111 
112 	/* Map #VC IST stack */
113 	vaddr = CEA_ESTACK_BOT(&cea->estacks, VC);
114 	pa    = __pa(data->ist_stack);
115 	cea_set_pte((void *)vaddr, pa, PAGE_KERNEL);
116 
117 	/* Map VC fall-back stack */
118 	vaddr = CEA_ESTACK_BOT(&cea->estacks, VC2);
119 	pa    = __pa(data->fallback_stack);
120 	cea_set_pte((void *)vaddr, pa, PAGE_KERNEL);
121 }
122 
123 static __always_inline bool on_vc_stack(struct pt_regs *regs)
124 {
125 	unsigned long sp = regs->sp;
126 
127 	/* User-mode RSP is not trusted */
128 	if (user_mode(regs))
129 		return false;
130 
131 	/* SYSCALL gap still has user-mode RSP */
132 	if (ip_within_syscall_gap(regs))
133 		return false;
134 
135 	return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
136 }
137 
138 /*
139  * This function handles the case when an NMI is raised in the #VC
140  * exception handler entry code, before the #VC handler has switched off
141  * its IST stack. In this case, the IST entry for #VC must be adjusted,
142  * so that any nested #VC exception will not overwrite the stack
143  * contents of the interrupted #VC handler.
144  *
145  * The IST entry is adjusted unconditionally so that it can be also be
146  * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
147  * nested sev_es_ist_exit() call may adjust back the IST entry too
148  * early.
149  *
150  * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
151  * on the NMI IST stack, as they are only called from NMI handling code
152  * right now.
153  */
154 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
155 {
156 	unsigned long old_ist, new_ist;
157 
158 	/* Read old IST entry */
159 	new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
160 
161 	/*
162 	 * If NMI happened while on the #VC IST stack, set the new IST
163 	 * value below regs->sp, so that the interrupted stack frame is
164 	 * not overwritten by subsequent #VC exceptions.
165 	 */
166 	if (on_vc_stack(regs))
167 		new_ist = regs->sp;
168 
169 	/*
170 	 * Reserve additional 8 bytes and store old IST value so this
171 	 * adjustment can be unrolled in __sev_es_ist_exit().
172 	 */
173 	new_ist -= sizeof(old_ist);
174 	*(unsigned long *)new_ist = old_ist;
175 
176 	/* Set new IST entry */
177 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
178 }
179 
180 void noinstr __sev_es_ist_exit(void)
181 {
182 	unsigned long ist;
183 
184 	/* Read IST entry */
185 	ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
186 
187 	if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
188 		return;
189 
190 	/* Read back old IST entry and write it to the TSS */
191 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
192 }
193 
194 /*
195  * Nothing shall interrupt this code path while holding the per-CPU
196  * GHCB. The backup GHCB is only for NMIs interrupting this path.
197  *
198  * Callers must disable local interrupts around it.
199  */
200 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
201 {
202 	struct sev_es_runtime_data *data;
203 	struct ghcb *ghcb;
204 
205 	WARN_ON(!irqs_disabled());
206 
207 	data = this_cpu_read(runtime_data);
208 	ghcb = &data->ghcb_page;
209 
210 	if (unlikely(data->ghcb_active)) {
211 		/* GHCB is already in use - save its contents */
212 
213 		if (unlikely(data->backup_ghcb_active)) {
214 			/*
215 			 * Backup-GHCB is also already in use. There is no way
216 			 * to continue here so just kill the machine. To make
217 			 * panic() work, mark GHCBs inactive so that messages
218 			 * can be printed out.
219 			 */
220 			data->ghcb_active        = false;
221 			data->backup_ghcb_active = false;
222 
223 			instrumentation_begin();
224 			panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
225 			instrumentation_end();
226 		}
227 
228 		/* Mark backup_ghcb active before writing to it */
229 		data->backup_ghcb_active = true;
230 
231 		state->ghcb = &data->backup_ghcb;
232 
233 		/* Backup GHCB content */
234 		*state->ghcb = *ghcb;
235 	} else {
236 		state->ghcb = NULL;
237 		data->ghcb_active = true;
238 	}
239 
240 	return ghcb;
241 }
242 
243 /* Needed in vc_early_forward_exception */
244 void do_early_exception(struct pt_regs *regs, int trapnr);
245 
246 static inline u64 sev_es_rd_ghcb_msr(void)
247 {
248 	return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
249 }
250 
251 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
252 {
253 	u32 low, high;
254 
255 	low  = (u32)(val);
256 	high = (u32)(val >> 32);
257 
258 	native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
259 }
260 
261 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
262 				unsigned char *buffer)
263 {
264 	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
265 }
266 
267 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
268 {
269 	char buffer[MAX_INSN_SIZE];
270 	int insn_bytes;
271 
272 	insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
273 	if (insn_bytes == 0) {
274 		/* Nothing could be copied */
275 		ctxt->fi.vector     = X86_TRAP_PF;
276 		ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
277 		ctxt->fi.cr2        = ctxt->regs->ip;
278 		return ES_EXCEPTION;
279 	} else if (insn_bytes == -EINVAL) {
280 		/* Effective RIP could not be calculated */
281 		ctxt->fi.vector     = X86_TRAP_GP;
282 		ctxt->fi.error_code = 0;
283 		ctxt->fi.cr2        = 0;
284 		return ES_EXCEPTION;
285 	}
286 
287 	if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
288 		return ES_DECODE_FAILED;
289 
290 	if (ctxt->insn.immediate.got)
291 		return ES_OK;
292 	else
293 		return ES_DECODE_FAILED;
294 }
295 
296 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
297 {
298 	char buffer[MAX_INSN_SIZE];
299 	int res, ret;
300 
301 	res = vc_fetch_insn_kernel(ctxt, buffer);
302 	if (res) {
303 		ctxt->fi.vector     = X86_TRAP_PF;
304 		ctxt->fi.error_code = X86_PF_INSTR;
305 		ctxt->fi.cr2        = ctxt->regs->ip;
306 		return ES_EXCEPTION;
307 	}
308 
309 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
310 	if (ret < 0)
311 		return ES_DECODE_FAILED;
312 	else
313 		return ES_OK;
314 }
315 
316 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
317 {
318 	if (user_mode(ctxt->regs))
319 		return __vc_decode_user_insn(ctxt);
320 	else
321 		return __vc_decode_kern_insn(ctxt);
322 }
323 
324 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
325 				   char *dst, char *buf, size_t size)
326 {
327 	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
328 	char __user *target = (char __user *)dst;
329 	u64 d8;
330 	u32 d4;
331 	u16 d2;
332 	u8  d1;
333 
334 	/*
335 	 * This function uses __put_user() independent of whether kernel or user
336 	 * memory is accessed. This works fine because __put_user() does no
337 	 * sanity checks of the pointer being accessed. All that it does is
338 	 * to report when the access failed.
339 	 *
340 	 * Also, this function runs in atomic context, so __put_user() is not
341 	 * allowed to sleep. The page-fault handler detects that it is running
342 	 * in atomic context and will not try to take mmap_sem and handle the
343 	 * fault, so additional pagefault_enable()/disable() calls are not
344 	 * needed.
345 	 *
346 	 * The access can't be done via copy_to_user() here because
347 	 * vc_write_mem() must not use string instructions to access unsafe
348 	 * memory. The reason is that MOVS is emulated by the #VC handler by
349 	 * splitting the move up into a read and a write and taking a nested #VC
350 	 * exception on whatever of them is the MMIO access. Using string
351 	 * instructions here would cause infinite nesting.
352 	 */
353 	switch (size) {
354 	case 1:
355 		memcpy(&d1, buf, 1);
356 		if (__put_user(d1, target))
357 			goto fault;
358 		break;
359 	case 2:
360 		memcpy(&d2, buf, 2);
361 		if (__put_user(d2, target))
362 			goto fault;
363 		break;
364 	case 4:
365 		memcpy(&d4, buf, 4);
366 		if (__put_user(d4, target))
367 			goto fault;
368 		break;
369 	case 8:
370 		memcpy(&d8, buf, 8);
371 		if (__put_user(d8, target))
372 			goto fault;
373 		break;
374 	default:
375 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
376 		return ES_UNSUPPORTED;
377 	}
378 
379 	return ES_OK;
380 
381 fault:
382 	if (user_mode(ctxt->regs))
383 		error_code |= X86_PF_USER;
384 
385 	ctxt->fi.vector = X86_TRAP_PF;
386 	ctxt->fi.error_code = error_code;
387 	ctxt->fi.cr2 = (unsigned long)dst;
388 
389 	return ES_EXCEPTION;
390 }
391 
392 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
393 				  char *src, char *buf, size_t size)
394 {
395 	unsigned long error_code = X86_PF_PROT;
396 	char __user *s = (char __user *)src;
397 	u64 d8;
398 	u32 d4;
399 	u16 d2;
400 	u8  d1;
401 
402 	/*
403 	 * This function uses __get_user() independent of whether kernel or user
404 	 * memory is accessed. This works fine because __get_user() does no
405 	 * sanity checks of the pointer being accessed. All that it does is
406 	 * to report when the access failed.
407 	 *
408 	 * Also, this function runs in atomic context, so __get_user() is not
409 	 * allowed to sleep. The page-fault handler detects that it is running
410 	 * in atomic context and will not try to take mmap_sem and handle the
411 	 * fault, so additional pagefault_enable()/disable() calls are not
412 	 * needed.
413 	 *
414 	 * The access can't be done via copy_from_user() here because
415 	 * vc_read_mem() must not use string instructions to access unsafe
416 	 * memory. The reason is that MOVS is emulated by the #VC handler by
417 	 * splitting the move up into a read and a write and taking a nested #VC
418 	 * exception on whatever of them is the MMIO access. Using string
419 	 * instructions here would cause infinite nesting.
420 	 */
421 	switch (size) {
422 	case 1:
423 		if (__get_user(d1, s))
424 			goto fault;
425 		memcpy(buf, &d1, 1);
426 		break;
427 	case 2:
428 		if (__get_user(d2, s))
429 			goto fault;
430 		memcpy(buf, &d2, 2);
431 		break;
432 	case 4:
433 		if (__get_user(d4, s))
434 			goto fault;
435 		memcpy(buf, &d4, 4);
436 		break;
437 	case 8:
438 		if (__get_user(d8, s))
439 			goto fault;
440 		memcpy(buf, &d8, 8);
441 		break;
442 	default:
443 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
444 		return ES_UNSUPPORTED;
445 	}
446 
447 	return ES_OK;
448 
449 fault:
450 	if (user_mode(ctxt->regs))
451 		error_code |= X86_PF_USER;
452 
453 	ctxt->fi.vector = X86_TRAP_PF;
454 	ctxt->fi.error_code = error_code;
455 	ctxt->fi.cr2 = (unsigned long)src;
456 
457 	return ES_EXCEPTION;
458 }
459 
460 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
461 					   unsigned long vaddr, phys_addr_t *paddr)
462 {
463 	unsigned long va = (unsigned long)vaddr;
464 	unsigned int level;
465 	phys_addr_t pa;
466 	pgd_t *pgd;
467 	pte_t *pte;
468 
469 	pgd = __va(read_cr3_pa());
470 	pgd = &pgd[pgd_index(va)];
471 	pte = lookup_address_in_pgd(pgd, va, &level);
472 	if (!pte) {
473 		ctxt->fi.vector     = X86_TRAP_PF;
474 		ctxt->fi.cr2        = vaddr;
475 		ctxt->fi.error_code = 0;
476 
477 		if (user_mode(ctxt->regs))
478 			ctxt->fi.error_code |= X86_PF_USER;
479 
480 		return ES_EXCEPTION;
481 	}
482 
483 	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
484 		/* Emulated MMIO to/from encrypted memory not supported */
485 		return ES_UNSUPPORTED;
486 
487 	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
488 	pa |= va & ~page_level_mask(level);
489 
490 	*paddr = pa;
491 
492 	return ES_OK;
493 }
494 
495 /* Include code shared with pre-decompression boot stage */
496 #include "sev-shared.c"
497 
498 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
499 {
500 	struct sev_es_runtime_data *data;
501 	struct ghcb *ghcb;
502 
503 	WARN_ON(!irqs_disabled());
504 
505 	data = this_cpu_read(runtime_data);
506 	ghcb = &data->ghcb_page;
507 
508 	if (state->ghcb) {
509 		/* Restore GHCB from Backup */
510 		*ghcb = *state->ghcb;
511 		data->backup_ghcb_active = false;
512 		state->ghcb = NULL;
513 	} else {
514 		/*
515 		 * Invalidate the GHCB so a VMGEXIT instruction issued
516 		 * from userspace won't appear to be valid.
517 		 */
518 		vc_ghcb_invalidate(ghcb);
519 		data->ghcb_active = false;
520 	}
521 }
522 
523 void noinstr __sev_es_nmi_complete(void)
524 {
525 	struct ghcb_state state;
526 	struct ghcb *ghcb;
527 
528 	ghcb = __sev_get_ghcb(&state);
529 
530 	vc_ghcb_invalidate(ghcb);
531 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
532 	ghcb_set_sw_exit_info_1(ghcb, 0);
533 	ghcb_set_sw_exit_info_2(ghcb, 0);
534 
535 	sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
536 	VMGEXIT();
537 
538 	__sev_put_ghcb(&state);
539 }
540 
541 static u64 get_jump_table_addr(void)
542 {
543 	struct ghcb_state state;
544 	unsigned long flags;
545 	struct ghcb *ghcb;
546 	u64 ret = 0;
547 
548 	local_irq_save(flags);
549 
550 	ghcb = __sev_get_ghcb(&state);
551 
552 	vc_ghcb_invalidate(ghcb);
553 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
554 	ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
555 	ghcb_set_sw_exit_info_2(ghcb, 0);
556 
557 	sev_es_wr_ghcb_msr(__pa(ghcb));
558 	VMGEXIT();
559 
560 	if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
561 	    ghcb_sw_exit_info_2_is_valid(ghcb))
562 		ret = ghcb->save.sw_exit_info_2;
563 
564 	__sev_put_ghcb(&state);
565 
566 	local_irq_restore(flags);
567 
568 	return ret;
569 }
570 
571 int sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
572 {
573 	u16 startup_cs, startup_ip;
574 	phys_addr_t jump_table_pa;
575 	u64 jump_table_addr;
576 	u16 __iomem *jump_table;
577 
578 	jump_table_addr = get_jump_table_addr();
579 
580 	/* On UP guests there is no jump table so this is not a failure */
581 	if (!jump_table_addr)
582 		return 0;
583 
584 	/* Check if AP Jump Table is page-aligned */
585 	if (jump_table_addr & ~PAGE_MASK)
586 		return -EINVAL;
587 
588 	jump_table_pa = jump_table_addr & PAGE_MASK;
589 
590 	startup_cs = (u16)(rmh->trampoline_start >> 4);
591 	startup_ip = (u16)(rmh->sev_es_trampoline_start -
592 			   rmh->trampoline_start);
593 
594 	jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
595 	if (!jump_table)
596 		return -EIO;
597 
598 	writew(startup_ip, &jump_table[0]);
599 	writew(startup_cs, &jump_table[1]);
600 
601 	iounmap(jump_table);
602 
603 	return 0;
604 }
605 
606 /*
607  * This is needed by the OVMF UEFI firmware which will use whatever it finds in
608  * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
609  * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
610  */
611 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
612 {
613 	struct sev_es_runtime_data *data;
614 	unsigned long address, pflags;
615 	int cpu;
616 	u64 pfn;
617 
618 	if (!sev_es_active())
619 		return 0;
620 
621 	pflags = _PAGE_NX | _PAGE_RW;
622 
623 	for_each_possible_cpu(cpu) {
624 		data = per_cpu(runtime_data, cpu);
625 
626 		address = __pa(&data->ghcb_page);
627 		pfn = address >> PAGE_SHIFT;
628 
629 		if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
630 			return 1;
631 	}
632 
633 	return 0;
634 }
635 
636 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
637 {
638 	struct pt_regs *regs = ctxt->regs;
639 	enum es_result ret;
640 	u64 exit_info_1;
641 
642 	/* Is it a WRMSR? */
643 	exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
644 
645 	ghcb_set_rcx(ghcb, regs->cx);
646 	if (exit_info_1) {
647 		ghcb_set_rax(ghcb, regs->ax);
648 		ghcb_set_rdx(ghcb, regs->dx);
649 	}
650 
651 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
652 
653 	if ((ret == ES_OK) && (!exit_info_1)) {
654 		regs->ax = ghcb->save.rax;
655 		regs->dx = ghcb->save.rdx;
656 	}
657 
658 	return ret;
659 }
660 
661 /*
662  * This function runs on the first #VC exception after the kernel
663  * switched to virtual addresses.
664  */
665 static bool __init sev_es_setup_ghcb(void)
666 {
667 	/* First make sure the hypervisor talks a supported protocol. */
668 	if (!sev_es_negotiate_protocol())
669 		return false;
670 
671 	/*
672 	 * Clear the boot_ghcb. The first exception comes in before the bss
673 	 * section is cleared.
674 	 */
675 	memset(&boot_ghcb_page, 0, PAGE_SIZE);
676 
677 	/* Alright - Make the boot-ghcb public */
678 	boot_ghcb = &boot_ghcb_page;
679 
680 	return true;
681 }
682 
683 #ifdef CONFIG_HOTPLUG_CPU
684 static void sev_es_ap_hlt_loop(void)
685 {
686 	struct ghcb_state state;
687 	struct ghcb *ghcb;
688 
689 	ghcb = __sev_get_ghcb(&state);
690 
691 	while (true) {
692 		vc_ghcb_invalidate(ghcb);
693 		ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
694 		ghcb_set_sw_exit_info_1(ghcb, 0);
695 		ghcb_set_sw_exit_info_2(ghcb, 0);
696 
697 		sev_es_wr_ghcb_msr(__pa(ghcb));
698 		VMGEXIT();
699 
700 		/* Wakeup signal? */
701 		if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
702 		    ghcb->save.sw_exit_info_2)
703 			break;
704 	}
705 
706 	__sev_put_ghcb(&state);
707 }
708 
709 /*
710  * Play_dead handler when running under SEV-ES. This is needed because
711  * the hypervisor can't deliver an SIPI request to restart the AP.
712  * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
713  * hypervisor wakes it up again.
714  */
715 static void sev_es_play_dead(void)
716 {
717 	play_dead_common();
718 
719 	/* IRQs now disabled */
720 
721 	sev_es_ap_hlt_loop();
722 
723 	/*
724 	 * If we get here, the VCPU was woken up again. Jump to CPU
725 	 * startup code to get it back online.
726 	 */
727 	start_cpu0();
728 }
729 #else  /* CONFIG_HOTPLUG_CPU */
730 #define sev_es_play_dead	native_play_dead
731 #endif /* CONFIG_HOTPLUG_CPU */
732 
733 #ifdef CONFIG_SMP
734 static void __init sev_es_setup_play_dead(void)
735 {
736 	smp_ops.play_dead = sev_es_play_dead;
737 }
738 #else
739 static inline void sev_es_setup_play_dead(void) { }
740 #endif
741 
742 static void __init alloc_runtime_data(int cpu)
743 {
744 	struct sev_es_runtime_data *data;
745 
746 	data = memblock_alloc(sizeof(*data), PAGE_SIZE);
747 	if (!data)
748 		panic("Can't allocate SEV-ES runtime data");
749 
750 	per_cpu(runtime_data, cpu) = data;
751 }
752 
753 static void __init init_ghcb(int cpu)
754 {
755 	struct sev_es_runtime_data *data;
756 	int err;
757 
758 	data = per_cpu(runtime_data, cpu);
759 
760 	err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
761 					 sizeof(data->ghcb_page));
762 	if (err)
763 		panic("Can't map GHCBs unencrypted");
764 
765 	memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
766 
767 	data->ghcb_active = false;
768 	data->backup_ghcb_active = false;
769 }
770 
771 void __init sev_es_init_vc_handling(void)
772 {
773 	int cpu;
774 
775 	BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
776 
777 	if (!sev_es_active())
778 		return;
779 
780 	if (!sev_es_check_cpu_features())
781 		panic("SEV-ES CPU Features missing");
782 
783 	/* Enable SEV-ES special handling */
784 	static_branch_enable(&sev_es_enable_key);
785 
786 	/* Initialize per-cpu GHCB pages */
787 	for_each_possible_cpu(cpu) {
788 		alloc_runtime_data(cpu);
789 		init_ghcb(cpu);
790 		setup_vc_stacks(cpu);
791 	}
792 
793 	sev_es_setup_play_dead();
794 
795 	/* Secondary CPUs use the runtime #VC handler */
796 	initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
797 }
798 
799 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
800 {
801 	int trapnr = ctxt->fi.vector;
802 
803 	if (trapnr == X86_TRAP_PF)
804 		native_write_cr2(ctxt->fi.cr2);
805 
806 	ctxt->regs->orig_ax = ctxt->fi.error_code;
807 	do_early_exception(ctxt->regs, trapnr);
808 }
809 
810 static long *vc_insn_get_reg(struct es_em_ctxt *ctxt)
811 {
812 	long *reg_array;
813 	int offset;
814 
815 	reg_array = (long *)ctxt->regs;
816 	offset    = insn_get_modrm_reg_off(&ctxt->insn, ctxt->regs);
817 
818 	if (offset < 0)
819 		return NULL;
820 
821 	offset /= sizeof(long);
822 
823 	return reg_array + offset;
824 }
825 
826 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
827 {
828 	long *reg_array;
829 	int offset;
830 
831 	reg_array = (long *)ctxt->regs;
832 	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
833 
834 	if (offset < 0)
835 		return NULL;
836 
837 	offset /= sizeof(long);
838 
839 	return reg_array + offset;
840 }
841 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
842 				 unsigned int bytes, bool read)
843 {
844 	u64 exit_code, exit_info_1, exit_info_2;
845 	unsigned long ghcb_pa = __pa(ghcb);
846 	enum es_result res;
847 	phys_addr_t paddr;
848 	void __user *ref;
849 
850 	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
851 	if (ref == (void __user *)-1L)
852 		return ES_UNSUPPORTED;
853 
854 	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
855 
856 	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
857 	if (res != ES_OK) {
858 		if (res == ES_EXCEPTION && !read)
859 			ctxt->fi.error_code |= X86_PF_WRITE;
860 
861 		return res;
862 	}
863 
864 	exit_info_1 = paddr;
865 	/* Can never be greater than 8 */
866 	exit_info_2 = bytes;
867 
868 	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
869 
870 	return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
871 }
872 
873 static enum es_result vc_handle_mmio_twobyte_ops(struct ghcb *ghcb,
874 						 struct es_em_ctxt *ctxt)
875 {
876 	struct insn *insn = &ctxt->insn;
877 	unsigned int bytes = 0;
878 	enum es_result ret;
879 	int sign_byte;
880 	long *reg_data;
881 
882 	switch (insn->opcode.bytes[1]) {
883 		/* MMIO Read w/ zero-extension */
884 	case 0xb6:
885 		bytes = 1;
886 		fallthrough;
887 	case 0xb7:
888 		if (!bytes)
889 			bytes = 2;
890 
891 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
892 		if (ret)
893 			break;
894 
895 		/* Zero extend based on operand size */
896 		reg_data = vc_insn_get_reg(ctxt);
897 		if (!reg_data)
898 			return ES_DECODE_FAILED;
899 
900 		memset(reg_data, 0, insn->opnd_bytes);
901 
902 		memcpy(reg_data, ghcb->shared_buffer, bytes);
903 		break;
904 
905 		/* MMIO Read w/ sign-extension */
906 	case 0xbe:
907 		bytes = 1;
908 		fallthrough;
909 	case 0xbf:
910 		if (!bytes)
911 			bytes = 2;
912 
913 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
914 		if (ret)
915 			break;
916 
917 		/* Sign extend based on operand size */
918 		reg_data = vc_insn_get_reg(ctxt);
919 		if (!reg_data)
920 			return ES_DECODE_FAILED;
921 
922 		if (bytes == 1) {
923 			u8 *val = (u8 *)ghcb->shared_buffer;
924 
925 			sign_byte = (*val & 0x80) ? 0xff : 0x00;
926 		} else {
927 			u16 *val = (u16 *)ghcb->shared_buffer;
928 
929 			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
930 		}
931 		memset(reg_data, sign_byte, insn->opnd_bytes);
932 
933 		memcpy(reg_data, ghcb->shared_buffer, bytes);
934 		break;
935 
936 	default:
937 		ret = ES_UNSUPPORTED;
938 	}
939 
940 	return ret;
941 }
942 
943 /*
944  * The MOVS instruction has two memory operands, which raises the
945  * problem that it is not known whether the access to the source or the
946  * destination caused the #VC exception (and hence whether an MMIO read
947  * or write operation needs to be emulated).
948  *
949  * Instead of playing games with walking page-tables and trying to guess
950  * whether the source or destination is an MMIO range, split the move
951  * into two operations, a read and a write with only one memory operand.
952  * This will cause a nested #VC exception on the MMIO address which can
953  * then be handled.
954  *
955  * This implementation has the benefit that it also supports MOVS where
956  * source _and_ destination are MMIO regions.
957  *
958  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
959  * rare operation. If it turns out to be a performance problem the split
960  * operations can be moved to memcpy_fromio() and memcpy_toio().
961  */
962 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
963 					  unsigned int bytes)
964 {
965 	unsigned long ds_base, es_base;
966 	unsigned char *src, *dst;
967 	unsigned char buffer[8];
968 	enum es_result ret;
969 	bool rep;
970 	int off;
971 
972 	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
973 	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
974 
975 	if (ds_base == -1L || es_base == -1L) {
976 		ctxt->fi.vector = X86_TRAP_GP;
977 		ctxt->fi.error_code = 0;
978 		return ES_EXCEPTION;
979 	}
980 
981 	src = ds_base + (unsigned char *)ctxt->regs->si;
982 	dst = es_base + (unsigned char *)ctxt->regs->di;
983 
984 	ret = vc_read_mem(ctxt, src, buffer, bytes);
985 	if (ret != ES_OK)
986 		return ret;
987 
988 	ret = vc_write_mem(ctxt, dst, buffer, bytes);
989 	if (ret != ES_OK)
990 		return ret;
991 
992 	if (ctxt->regs->flags & X86_EFLAGS_DF)
993 		off = -bytes;
994 	else
995 		off =  bytes;
996 
997 	ctxt->regs->si += off;
998 	ctxt->regs->di += off;
999 
1000 	rep = insn_has_rep_prefix(&ctxt->insn);
1001 	if (rep)
1002 		ctxt->regs->cx -= 1;
1003 
1004 	if (!rep || ctxt->regs->cx == 0)
1005 		return ES_OK;
1006 	else
1007 		return ES_RETRY;
1008 }
1009 
1010 static enum es_result vc_handle_mmio(struct ghcb *ghcb,
1011 				     struct es_em_ctxt *ctxt)
1012 {
1013 	struct insn *insn = &ctxt->insn;
1014 	unsigned int bytes = 0;
1015 	enum es_result ret;
1016 	long *reg_data;
1017 
1018 	switch (insn->opcode.bytes[0]) {
1019 	/* MMIO Write */
1020 	case 0x88:
1021 		bytes = 1;
1022 		fallthrough;
1023 	case 0x89:
1024 		if (!bytes)
1025 			bytes = insn->opnd_bytes;
1026 
1027 		reg_data = vc_insn_get_reg(ctxt);
1028 		if (!reg_data)
1029 			return ES_DECODE_FAILED;
1030 
1031 		memcpy(ghcb->shared_buffer, reg_data, bytes);
1032 
1033 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1034 		break;
1035 
1036 	case 0xc6:
1037 		bytes = 1;
1038 		fallthrough;
1039 	case 0xc7:
1040 		if (!bytes)
1041 			bytes = insn->opnd_bytes;
1042 
1043 		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1044 
1045 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1046 		break;
1047 
1048 		/* MMIO Read */
1049 	case 0x8a:
1050 		bytes = 1;
1051 		fallthrough;
1052 	case 0x8b:
1053 		if (!bytes)
1054 			bytes = insn->opnd_bytes;
1055 
1056 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1057 		if (ret)
1058 			break;
1059 
1060 		reg_data = vc_insn_get_reg(ctxt);
1061 		if (!reg_data)
1062 			return ES_DECODE_FAILED;
1063 
1064 		/* Zero-extend for 32-bit operation */
1065 		if (bytes == 4)
1066 			*reg_data = 0;
1067 
1068 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1069 		break;
1070 
1071 		/* MOVS instruction */
1072 	case 0xa4:
1073 		bytes = 1;
1074 		fallthrough;
1075 	case 0xa5:
1076 		if (!bytes)
1077 			bytes = insn->opnd_bytes;
1078 
1079 		ret = vc_handle_mmio_movs(ctxt, bytes);
1080 		break;
1081 		/* Two-Byte Opcodes */
1082 	case 0x0f:
1083 		ret = vc_handle_mmio_twobyte_ops(ghcb, ctxt);
1084 		break;
1085 	default:
1086 		ret = ES_UNSUPPORTED;
1087 	}
1088 
1089 	return ret;
1090 }
1091 
1092 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1093 					  struct es_em_ctxt *ctxt)
1094 {
1095 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1096 	long val, *reg = vc_insn_get_rm(ctxt);
1097 	enum es_result ret;
1098 
1099 	if (!reg)
1100 		return ES_DECODE_FAILED;
1101 
1102 	val = *reg;
1103 
1104 	/* Upper 32 bits must be written as zeroes */
1105 	if (val >> 32) {
1106 		ctxt->fi.vector = X86_TRAP_GP;
1107 		ctxt->fi.error_code = 0;
1108 		return ES_EXCEPTION;
1109 	}
1110 
1111 	/* Clear out other reserved bits and set bit 10 */
1112 	val = (val & 0xffff23ffL) | BIT(10);
1113 
1114 	/* Early non-zero writes to DR7 are not supported */
1115 	if (!data && (val & ~DR7_RESET_VALUE))
1116 		return ES_UNSUPPORTED;
1117 
1118 	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
1119 	ghcb_set_rax(ghcb, val);
1120 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1121 	if (ret != ES_OK)
1122 		return ret;
1123 
1124 	if (data)
1125 		data->dr7 = val;
1126 
1127 	return ES_OK;
1128 }
1129 
1130 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1131 					 struct es_em_ctxt *ctxt)
1132 {
1133 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1134 	long *reg = vc_insn_get_rm(ctxt);
1135 
1136 	if (!reg)
1137 		return ES_DECODE_FAILED;
1138 
1139 	if (data)
1140 		*reg = data->dr7;
1141 	else
1142 		*reg = DR7_RESET_VALUE;
1143 
1144 	return ES_OK;
1145 }
1146 
1147 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1148 				       struct es_em_ctxt *ctxt)
1149 {
1150 	return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1151 }
1152 
1153 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1154 {
1155 	enum es_result ret;
1156 
1157 	ghcb_set_rcx(ghcb, ctxt->regs->cx);
1158 
1159 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1160 	if (ret != ES_OK)
1161 		return ret;
1162 
1163 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1164 		return ES_VMM_ERROR;
1165 
1166 	ctxt->regs->ax = ghcb->save.rax;
1167 	ctxt->regs->dx = ghcb->save.rdx;
1168 
1169 	return ES_OK;
1170 }
1171 
1172 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1173 					struct es_em_ctxt *ctxt)
1174 {
1175 	/*
1176 	 * Treat it as a NOP and do not leak a physical address to the
1177 	 * hypervisor.
1178 	 */
1179 	return ES_OK;
1180 }
1181 
1182 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1183 				      struct es_em_ctxt *ctxt)
1184 {
1185 	/* Treat the same as MONITOR/MONITORX */
1186 	return ES_OK;
1187 }
1188 
1189 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1190 					struct es_em_ctxt *ctxt)
1191 {
1192 	enum es_result ret;
1193 
1194 	ghcb_set_rax(ghcb, ctxt->regs->ax);
1195 	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1196 
1197 	if (x86_platform.hyper.sev_es_hcall_prepare)
1198 		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1199 
1200 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1201 	if (ret != ES_OK)
1202 		return ret;
1203 
1204 	if (!ghcb_rax_is_valid(ghcb))
1205 		return ES_VMM_ERROR;
1206 
1207 	ctxt->regs->ax = ghcb->save.rax;
1208 
1209 	/*
1210 	 * Call sev_es_hcall_finish() after regs->ax is already set.
1211 	 * This allows the hypervisor handler to overwrite it again if
1212 	 * necessary.
1213 	 */
1214 	if (x86_platform.hyper.sev_es_hcall_finish &&
1215 	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1216 		return ES_VMM_ERROR;
1217 
1218 	return ES_OK;
1219 }
1220 
1221 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1222 					struct es_em_ctxt *ctxt)
1223 {
1224 	/*
1225 	 * Calling ecx_alignment_check() directly does not work, because it
1226 	 * enables IRQs and the GHCB is active. Forward the exception and call
1227 	 * it later from vc_forward_exception().
1228 	 */
1229 	ctxt->fi.vector = X86_TRAP_AC;
1230 	ctxt->fi.error_code = 0;
1231 	return ES_EXCEPTION;
1232 }
1233 
1234 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1235 					 struct ghcb *ghcb,
1236 					 unsigned long exit_code)
1237 {
1238 	enum es_result result;
1239 
1240 	switch (exit_code) {
1241 	case SVM_EXIT_READ_DR7:
1242 		result = vc_handle_dr7_read(ghcb, ctxt);
1243 		break;
1244 	case SVM_EXIT_WRITE_DR7:
1245 		result = vc_handle_dr7_write(ghcb, ctxt);
1246 		break;
1247 	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1248 		result = vc_handle_trap_ac(ghcb, ctxt);
1249 		break;
1250 	case SVM_EXIT_RDTSC:
1251 	case SVM_EXIT_RDTSCP:
1252 		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1253 		break;
1254 	case SVM_EXIT_RDPMC:
1255 		result = vc_handle_rdpmc(ghcb, ctxt);
1256 		break;
1257 	case SVM_EXIT_INVD:
1258 		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1259 		result = ES_UNSUPPORTED;
1260 		break;
1261 	case SVM_EXIT_CPUID:
1262 		result = vc_handle_cpuid(ghcb, ctxt);
1263 		break;
1264 	case SVM_EXIT_IOIO:
1265 		result = vc_handle_ioio(ghcb, ctxt);
1266 		break;
1267 	case SVM_EXIT_MSR:
1268 		result = vc_handle_msr(ghcb, ctxt);
1269 		break;
1270 	case SVM_EXIT_VMMCALL:
1271 		result = vc_handle_vmmcall(ghcb, ctxt);
1272 		break;
1273 	case SVM_EXIT_WBINVD:
1274 		result = vc_handle_wbinvd(ghcb, ctxt);
1275 		break;
1276 	case SVM_EXIT_MONITOR:
1277 		result = vc_handle_monitor(ghcb, ctxt);
1278 		break;
1279 	case SVM_EXIT_MWAIT:
1280 		result = vc_handle_mwait(ghcb, ctxt);
1281 		break;
1282 	case SVM_EXIT_NPF:
1283 		result = vc_handle_mmio(ghcb, ctxt);
1284 		break;
1285 	default:
1286 		/*
1287 		 * Unexpected #VC exception
1288 		 */
1289 		result = ES_UNSUPPORTED;
1290 	}
1291 
1292 	return result;
1293 }
1294 
1295 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1296 {
1297 	long error_code = ctxt->fi.error_code;
1298 	int trapnr = ctxt->fi.vector;
1299 
1300 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1301 
1302 	switch (trapnr) {
1303 	case X86_TRAP_GP:
1304 		exc_general_protection(ctxt->regs, error_code);
1305 		break;
1306 	case X86_TRAP_UD:
1307 		exc_invalid_op(ctxt->regs);
1308 		break;
1309 	case X86_TRAP_PF:
1310 		write_cr2(ctxt->fi.cr2);
1311 		exc_page_fault(ctxt->regs, error_code);
1312 		break;
1313 	case X86_TRAP_AC:
1314 		exc_alignment_check(ctxt->regs, error_code);
1315 		break;
1316 	default:
1317 		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1318 		BUG();
1319 	}
1320 }
1321 
1322 static __always_inline bool on_vc_fallback_stack(struct pt_regs *regs)
1323 {
1324 	unsigned long sp = (unsigned long)regs;
1325 
1326 	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1327 }
1328 
1329 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1330 {
1331 	struct ghcb_state state;
1332 	struct es_em_ctxt ctxt;
1333 	enum es_result result;
1334 	struct ghcb *ghcb;
1335 	bool ret = true;
1336 
1337 	ghcb = __sev_get_ghcb(&state);
1338 
1339 	vc_ghcb_invalidate(ghcb);
1340 	result = vc_init_em_ctxt(&ctxt, regs, error_code);
1341 
1342 	if (result == ES_OK)
1343 		result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1344 
1345 	__sev_put_ghcb(&state);
1346 
1347 	/* Done - now check the result */
1348 	switch (result) {
1349 	case ES_OK:
1350 		vc_finish_insn(&ctxt);
1351 		break;
1352 	case ES_UNSUPPORTED:
1353 		pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
1354 				   error_code, regs->ip);
1355 		ret = false;
1356 		break;
1357 	case ES_VMM_ERROR:
1358 		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1359 				   error_code, regs->ip);
1360 		ret = false;
1361 		break;
1362 	case ES_DECODE_FAILED:
1363 		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1364 				   error_code, regs->ip);
1365 		ret = false;
1366 		break;
1367 	case ES_EXCEPTION:
1368 		vc_forward_exception(&ctxt);
1369 		break;
1370 	case ES_RETRY:
1371 		/* Nothing to do */
1372 		break;
1373 	default:
1374 		pr_emerg("Unknown result in %s():%d\n", __func__, result);
1375 		/*
1376 		 * Emulating the instruction which caused the #VC exception
1377 		 * failed - can't continue so print debug information
1378 		 */
1379 		BUG();
1380 	}
1381 
1382 	return ret;
1383 }
1384 
1385 static __always_inline bool vc_is_db(unsigned long error_code)
1386 {
1387 	return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1388 }
1389 
1390 /*
1391  * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1392  * and will panic when an error happens.
1393  */
1394 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1395 {
1396 	irqentry_state_t irq_state;
1397 
1398 	/*
1399 	 * With the current implementation it is always possible to switch to a
1400 	 * safe stack because #VC exceptions only happen at known places, like
1401 	 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1402 	 * also happen with code instrumentation when the hypervisor intercepts
1403 	 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1404 	 * exceptions currently also only happen in safe places.
1405 	 *
1406 	 * But keep this here in case the noinstr annotations are violated due
1407 	 * to bug elsewhere.
1408 	 */
1409 	if (unlikely(on_vc_fallback_stack(regs))) {
1410 		instrumentation_begin();
1411 		panic("Can't handle #VC exception from unsupported context\n");
1412 		instrumentation_end();
1413 	}
1414 
1415 	/*
1416 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1417 	 */
1418 	if (vc_is_db(error_code)) {
1419 		exc_debug(regs);
1420 		return;
1421 	}
1422 
1423 	irq_state = irqentry_nmi_enter(regs);
1424 
1425 	instrumentation_begin();
1426 
1427 	if (!vc_raw_handle_exception(regs, error_code)) {
1428 		/* Show some debug info */
1429 		show_regs(regs);
1430 
1431 		/* Ask hypervisor to sev_es_terminate */
1432 		sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1433 
1434 		/* If that fails and we get here - just panic */
1435 		panic("Returned from Terminate-Request to Hypervisor\n");
1436 	}
1437 
1438 	instrumentation_end();
1439 	irqentry_nmi_exit(regs, irq_state);
1440 }
1441 
1442 /*
1443  * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1444  * and will kill the current task with SIGBUS when an error happens.
1445  */
1446 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1447 {
1448 	/*
1449 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1450 	 */
1451 	if (vc_is_db(error_code)) {
1452 		noist_exc_debug(regs);
1453 		return;
1454 	}
1455 
1456 	irqentry_enter_from_user_mode(regs);
1457 	instrumentation_begin();
1458 
1459 	if (!vc_raw_handle_exception(regs, error_code)) {
1460 		/*
1461 		 * Do not kill the machine if user-space triggered the
1462 		 * exception. Send SIGBUS instead and let user-space deal with
1463 		 * it.
1464 		 */
1465 		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1466 	}
1467 
1468 	instrumentation_end();
1469 	irqentry_exit_to_user_mode(regs);
1470 }
1471 
1472 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1473 {
1474 	unsigned long exit_code = regs->orig_ax;
1475 	struct es_em_ctxt ctxt;
1476 	enum es_result result;
1477 
1478 	/* Do initial setup or terminate the guest */
1479 	if (unlikely(boot_ghcb == NULL && !sev_es_setup_ghcb()))
1480 		sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1481 
1482 	vc_ghcb_invalidate(boot_ghcb);
1483 
1484 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
1485 	if (result == ES_OK)
1486 		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
1487 
1488 	/* Done - now check the result */
1489 	switch (result) {
1490 	case ES_OK:
1491 		vc_finish_insn(&ctxt);
1492 		break;
1493 	case ES_UNSUPPORTED:
1494 		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1495 				exit_code, regs->ip);
1496 		goto fail;
1497 	case ES_VMM_ERROR:
1498 		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1499 				exit_code, regs->ip);
1500 		goto fail;
1501 	case ES_DECODE_FAILED:
1502 		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1503 				exit_code, regs->ip);
1504 		goto fail;
1505 	case ES_EXCEPTION:
1506 		vc_early_forward_exception(&ctxt);
1507 		break;
1508 	case ES_RETRY:
1509 		/* Nothing to do */
1510 		break;
1511 	default:
1512 		BUG();
1513 	}
1514 
1515 	return true;
1516 
1517 fail:
1518 	show_regs(regs);
1519 
1520 	while (true)
1521 		halt();
1522 }
1523