xref: /openbmc/linux/arch/x86/kernel/sev.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2019 SUSE
6  *
7  * Author: Joerg Roedel <jroedel@suse.de>
8  */
9 
10 #define pr_fmt(fmt)	"SEV: " fmt
11 
12 #include <linux/sched/debug.h>	/* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/cc_platform.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/sev.h>
25 #include <asm/insn-eval.h>
26 #include <asm/fpu/xcr.h>
27 #include <asm/processor.h>
28 #include <asm/realmode.h>
29 #include <asm/traps.h>
30 #include <asm/svm.h>
31 #include <asm/smp.h>
32 #include <asm/cpu.h>
33 
34 #define DR7_RESET_VALUE        0x400
35 
36 /* For early boot hypervisor communication in SEV-ES enabled guests */
37 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
38 
39 /*
40  * Needs to be in the .data section because we need it NULL before bss is
41  * cleared
42  */
43 static struct ghcb __initdata *boot_ghcb;
44 
45 /* #VC handler runtime per-CPU data */
46 struct sev_es_runtime_data {
47 	struct ghcb ghcb_page;
48 
49 	/*
50 	 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
51 	 * It is needed when an NMI happens while the #VC handler uses the real
52 	 * GHCB, and the NMI handler itself is causing another #VC exception. In
53 	 * that case the GHCB content of the first handler needs to be backed up
54 	 * and restored.
55 	 */
56 	struct ghcb backup_ghcb;
57 
58 	/*
59 	 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
60 	 * There is no need for it to be atomic, because nothing is written to
61 	 * the GHCB between the read and the write of ghcb_active. So it is safe
62 	 * to use it when a nested #VC exception happens before the write.
63 	 *
64 	 * This is necessary for example in the #VC->NMI->#VC case when the NMI
65 	 * happens while the first #VC handler uses the GHCB. When the NMI code
66 	 * raises a second #VC handler it might overwrite the contents of the
67 	 * GHCB written by the first handler. To avoid this the content of the
68 	 * GHCB is saved and restored when the GHCB is detected to be in use
69 	 * already.
70 	 */
71 	bool ghcb_active;
72 	bool backup_ghcb_active;
73 
74 	/*
75 	 * Cached DR7 value - write it on DR7 writes and return it on reads.
76 	 * That value will never make it to the real hardware DR7 as debugging
77 	 * is currently unsupported in SEV-ES guests.
78 	 */
79 	unsigned long dr7;
80 };
81 
82 struct ghcb_state {
83 	struct ghcb *ghcb;
84 };
85 
86 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
87 DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
88 
89 /* Needed in vc_early_forward_exception */
90 void do_early_exception(struct pt_regs *regs, int trapnr);
91 
92 static __always_inline bool on_vc_stack(struct pt_regs *regs)
93 {
94 	unsigned long sp = regs->sp;
95 
96 	/* User-mode RSP is not trusted */
97 	if (user_mode(regs))
98 		return false;
99 
100 	/* SYSCALL gap still has user-mode RSP */
101 	if (ip_within_syscall_gap(regs))
102 		return false;
103 
104 	return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
105 }
106 
107 /*
108  * This function handles the case when an NMI is raised in the #VC
109  * exception handler entry code, before the #VC handler has switched off
110  * its IST stack. In this case, the IST entry for #VC must be adjusted,
111  * so that any nested #VC exception will not overwrite the stack
112  * contents of the interrupted #VC handler.
113  *
114  * The IST entry is adjusted unconditionally so that it can be also be
115  * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
116  * nested sev_es_ist_exit() call may adjust back the IST entry too
117  * early.
118  *
119  * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
120  * on the NMI IST stack, as they are only called from NMI handling code
121  * right now.
122  */
123 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
124 {
125 	unsigned long old_ist, new_ist;
126 
127 	/* Read old IST entry */
128 	new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
129 
130 	/*
131 	 * If NMI happened while on the #VC IST stack, set the new IST
132 	 * value below regs->sp, so that the interrupted stack frame is
133 	 * not overwritten by subsequent #VC exceptions.
134 	 */
135 	if (on_vc_stack(regs))
136 		new_ist = regs->sp;
137 
138 	/*
139 	 * Reserve additional 8 bytes and store old IST value so this
140 	 * adjustment can be unrolled in __sev_es_ist_exit().
141 	 */
142 	new_ist -= sizeof(old_ist);
143 	*(unsigned long *)new_ist = old_ist;
144 
145 	/* Set new IST entry */
146 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
147 }
148 
149 void noinstr __sev_es_ist_exit(void)
150 {
151 	unsigned long ist;
152 
153 	/* Read IST entry */
154 	ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
155 
156 	if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
157 		return;
158 
159 	/* Read back old IST entry and write it to the TSS */
160 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
161 }
162 
163 /*
164  * Nothing shall interrupt this code path while holding the per-CPU
165  * GHCB. The backup GHCB is only for NMIs interrupting this path.
166  *
167  * Callers must disable local interrupts around it.
168  */
169 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
170 {
171 	struct sev_es_runtime_data *data;
172 	struct ghcb *ghcb;
173 
174 	WARN_ON(!irqs_disabled());
175 
176 	data = this_cpu_read(runtime_data);
177 	ghcb = &data->ghcb_page;
178 
179 	if (unlikely(data->ghcb_active)) {
180 		/* GHCB is already in use - save its contents */
181 
182 		if (unlikely(data->backup_ghcb_active)) {
183 			/*
184 			 * Backup-GHCB is also already in use. There is no way
185 			 * to continue here so just kill the machine. To make
186 			 * panic() work, mark GHCBs inactive so that messages
187 			 * can be printed out.
188 			 */
189 			data->ghcb_active        = false;
190 			data->backup_ghcb_active = false;
191 
192 			instrumentation_begin();
193 			panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
194 			instrumentation_end();
195 		}
196 
197 		/* Mark backup_ghcb active before writing to it */
198 		data->backup_ghcb_active = true;
199 
200 		state->ghcb = &data->backup_ghcb;
201 
202 		/* Backup GHCB content */
203 		*state->ghcb = *ghcb;
204 	} else {
205 		state->ghcb = NULL;
206 		data->ghcb_active = true;
207 	}
208 
209 	return ghcb;
210 }
211 
212 /* Needed in vc_early_forward_exception */
213 void do_early_exception(struct pt_regs *regs, int trapnr);
214 
215 static inline u64 sev_es_rd_ghcb_msr(void)
216 {
217 	return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
218 }
219 
220 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
221 {
222 	u32 low, high;
223 
224 	low  = (u32)(val);
225 	high = (u32)(val >> 32);
226 
227 	native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
228 }
229 
230 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
231 				unsigned char *buffer)
232 {
233 	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
234 }
235 
236 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
237 {
238 	char buffer[MAX_INSN_SIZE];
239 	int insn_bytes;
240 
241 	insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
242 	if (insn_bytes == 0) {
243 		/* Nothing could be copied */
244 		ctxt->fi.vector     = X86_TRAP_PF;
245 		ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
246 		ctxt->fi.cr2        = ctxt->regs->ip;
247 		return ES_EXCEPTION;
248 	} else if (insn_bytes == -EINVAL) {
249 		/* Effective RIP could not be calculated */
250 		ctxt->fi.vector     = X86_TRAP_GP;
251 		ctxt->fi.error_code = 0;
252 		ctxt->fi.cr2        = 0;
253 		return ES_EXCEPTION;
254 	}
255 
256 	if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
257 		return ES_DECODE_FAILED;
258 
259 	if (ctxt->insn.immediate.got)
260 		return ES_OK;
261 	else
262 		return ES_DECODE_FAILED;
263 }
264 
265 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
266 {
267 	char buffer[MAX_INSN_SIZE];
268 	int res, ret;
269 
270 	res = vc_fetch_insn_kernel(ctxt, buffer);
271 	if (res) {
272 		ctxt->fi.vector     = X86_TRAP_PF;
273 		ctxt->fi.error_code = X86_PF_INSTR;
274 		ctxt->fi.cr2        = ctxt->regs->ip;
275 		return ES_EXCEPTION;
276 	}
277 
278 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
279 	if (ret < 0)
280 		return ES_DECODE_FAILED;
281 	else
282 		return ES_OK;
283 }
284 
285 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
286 {
287 	if (user_mode(ctxt->regs))
288 		return __vc_decode_user_insn(ctxt);
289 	else
290 		return __vc_decode_kern_insn(ctxt);
291 }
292 
293 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
294 				   char *dst, char *buf, size_t size)
295 {
296 	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
297 	char __user *target = (char __user *)dst;
298 	u64 d8;
299 	u32 d4;
300 	u16 d2;
301 	u8  d1;
302 
303 	/*
304 	 * This function uses __put_user() independent of whether kernel or user
305 	 * memory is accessed. This works fine because __put_user() does no
306 	 * sanity checks of the pointer being accessed. All that it does is
307 	 * to report when the access failed.
308 	 *
309 	 * Also, this function runs in atomic context, so __put_user() is not
310 	 * allowed to sleep. The page-fault handler detects that it is running
311 	 * in atomic context and will not try to take mmap_sem and handle the
312 	 * fault, so additional pagefault_enable()/disable() calls are not
313 	 * needed.
314 	 *
315 	 * The access can't be done via copy_to_user() here because
316 	 * vc_write_mem() must not use string instructions to access unsafe
317 	 * memory. The reason is that MOVS is emulated by the #VC handler by
318 	 * splitting the move up into a read and a write and taking a nested #VC
319 	 * exception on whatever of them is the MMIO access. Using string
320 	 * instructions here would cause infinite nesting.
321 	 */
322 	switch (size) {
323 	case 1:
324 		memcpy(&d1, buf, 1);
325 		if (__put_user(d1, target))
326 			goto fault;
327 		break;
328 	case 2:
329 		memcpy(&d2, buf, 2);
330 		if (__put_user(d2, target))
331 			goto fault;
332 		break;
333 	case 4:
334 		memcpy(&d4, buf, 4);
335 		if (__put_user(d4, target))
336 			goto fault;
337 		break;
338 	case 8:
339 		memcpy(&d8, buf, 8);
340 		if (__put_user(d8, target))
341 			goto fault;
342 		break;
343 	default:
344 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
345 		return ES_UNSUPPORTED;
346 	}
347 
348 	return ES_OK;
349 
350 fault:
351 	if (user_mode(ctxt->regs))
352 		error_code |= X86_PF_USER;
353 
354 	ctxt->fi.vector = X86_TRAP_PF;
355 	ctxt->fi.error_code = error_code;
356 	ctxt->fi.cr2 = (unsigned long)dst;
357 
358 	return ES_EXCEPTION;
359 }
360 
361 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
362 				  char *src, char *buf, size_t size)
363 {
364 	unsigned long error_code = X86_PF_PROT;
365 	char __user *s = (char __user *)src;
366 	u64 d8;
367 	u32 d4;
368 	u16 d2;
369 	u8  d1;
370 
371 	/*
372 	 * This function uses __get_user() independent of whether kernel or user
373 	 * memory is accessed. This works fine because __get_user() does no
374 	 * sanity checks of the pointer being accessed. All that it does is
375 	 * to report when the access failed.
376 	 *
377 	 * Also, this function runs in atomic context, so __get_user() is not
378 	 * allowed to sleep. The page-fault handler detects that it is running
379 	 * in atomic context and will not try to take mmap_sem and handle the
380 	 * fault, so additional pagefault_enable()/disable() calls are not
381 	 * needed.
382 	 *
383 	 * The access can't be done via copy_from_user() here because
384 	 * vc_read_mem() must not use string instructions to access unsafe
385 	 * memory. The reason is that MOVS is emulated by the #VC handler by
386 	 * splitting the move up into a read and a write and taking a nested #VC
387 	 * exception on whatever of them is the MMIO access. Using string
388 	 * instructions here would cause infinite nesting.
389 	 */
390 	switch (size) {
391 	case 1:
392 		if (__get_user(d1, s))
393 			goto fault;
394 		memcpy(buf, &d1, 1);
395 		break;
396 	case 2:
397 		if (__get_user(d2, s))
398 			goto fault;
399 		memcpy(buf, &d2, 2);
400 		break;
401 	case 4:
402 		if (__get_user(d4, s))
403 			goto fault;
404 		memcpy(buf, &d4, 4);
405 		break;
406 	case 8:
407 		if (__get_user(d8, s))
408 			goto fault;
409 		memcpy(buf, &d8, 8);
410 		break;
411 	default:
412 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
413 		return ES_UNSUPPORTED;
414 	}
415 
416 	return ES_OK;
417 
418 fault:
419 	if (user_mode(ctxt->regs))
420 		error_code |= X86_PF_USER;
421 
422 	ctxt->fi.vector = X86_TRAP_PF;
423 	ctxt->fi.error_code = error_code;
424 	ctxt->fi.cr2 = (unsigned long)src;
425 
426 	return ES_EXCEPTION;
427 }
428 
429 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
430 					   unsigned long vaddr, phys_addr_t *paddr)
431 {
432 	unsigned long va = (unsigned long)vaddr;
433 	unsigned int level;
434 	phys_addr_t pa;
435 	pgd_t *pgd;
436 	pte_t *pte;
437 
438 	pgd = __va(read_cr3_pa());
439 	pgd = &pgd[pgd_index(va)];
440 	pte = lookup_address_in_pgd(pgd, va, &level);
441 	if (!pte) {
442 		ctxt->fi.vector     = X86_TRAP_PF;
443 		ctxt->fi.cr2        = vaddr;
444 		ctxt->fi.error_code = 0;
445 
446 		if (user_mode(ctxt->regs))
447 			ctxt->fi.error_code |= X86_PF_USER;
448 
449 		return ES_EXCEPTION;
450 	}
451 
452 	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
453 		/* Emulated MMIO to/from encrypted memory not supported */
454 		return ES_UNSUPPORTED;
455 
456 	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
457 	pa |= va & ~page_level_mask(level);
458 
459 	*paddr = pa;
460 
461 	return ES_OK;
462 }
463 
464 /* Include code shared with pre-decompression boot stage */
465 #include "sev-shared.c"
466 
467 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
468 {
469 	struct sev_es_runtime_data *data;
470 	struct ghcb *ghcb;
471 
472 	WARN_ON(!irqs_disabled());
473 
474 	data = this_cpu_read(runtime_data);
475 	ghcb = &data->ghcb_page;
476 
477 	if (state->ghcb) {
478 		/* Restore GHCB from Backup */
479 		*ghcb = *state->ghcb;
480 		data->backup_ghcb_active = false;
481 		state->ghcb = NULL;
482 	} else {
483 		/*
484 		 * Invalidate the GHCB so a VMGEXIT instruction issued
485 		 * from userspace won't appear to be valid.
486 		 */
487 		vc_ghcb_invalidate(ghcb);
488 		data->ghcb_active = false;
489 	}
490 }
491 
492 void noinstr __sev_es_nmi_complete(void)
493 {
494 	struct ghcb_state state;
495 	struct ghcb *ghcb;
496 
497 	ghcb = __sev_get_ghcb(&state);
498 
499 	vc_ghcb_invalidate(ghcb);
500 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
501 	ghcb_set_sw_exit_info_1(ghcb, 0);
502 	ghcb_set_sw_exit_info_2(ghcb, 0);
503 
504 	sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
505 	VMGEXIT();
506 
507 	__sev_put_ghcb(&state);
508 }
509 
510 static u64 get_jump_table_addr(void)
511 {
512 	struct ghcb_state state;
513 	unsigned long flags;
514 	struct ghcb *ghcb;
515 	u64 ret = 0;
516 
517 	local_irq_save(flags);
518 
519 	ghcb = __sev_get_ghcb(&state);
520 
521 	vc_ghcb_invalidate(ghcb);
522 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
523 	ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
524 	ghcb_set_sw_exit_info_2(ghcb, 0);
525 
526 	sev_es_wr_ghcb_msr(__pa(ghcb));
527 	VMGEXIT();
528 
529 	if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
530 	    ghcb_sw_exit_info_2_is_valid(ghcb))
531 		ret = ghcb->save.sw_exit_info_2;
532 
533 	__sev_put_ghcb(&state);
534 
535 	local_irq_restore(flags);
536 
537 	return ret;
538 }
539 
540 int sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
541 {
542 	u16 startup_cs, startup_ip;
543 	phys_addr_t jump_table_pa;
544 	u64 jump_table_addr;
545 	u16 __iomem *jump_table;
546 
547 	jump_table_addr = get_jump_table_addr();
548 
549 	/* On UP guests there is no jump table so this is not a failure */
550 	if (!jump_table_addr)
551 		return 0;
552 
553 	/* Check if AP Jump Table is page-aligned */
554 	if (jump_table_addr & ~PAGE_MASK)
555 		return -EINVAL;
556 
557 	jump_table_pa = jump_table_addr & PAGE_MASK;
558 
559 	startup_cs = (u16)(rmh->trampoline_start >> 4);
560 	startup_ip = (u16)(rmh->sev_es_trampoline_start -
561 			   rmh->trampoline_start);
562 
563 	jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
564 	if (!jump_table)
565 		return -EIO;
566 
567 	writew(startup_ip, &jump_table[0]);
568 	writew(startup_cs, &jump_table[1]);
569 
570 	iounmap(jump_table);
571 
572 	return 0;
573 }
574 
575 /*
576  * This is needed by the OVMF UEFI firmware which will use whatever it finds in
577  * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
578  * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
579  */
580 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
581 {
582 	struct sev_es_runtime_data *data;
583 	unsigned long address, pflags;
584 	int cpu;
585 	u64 pfn;
586 
587 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
588 		return 0;
589 
590 	pflags = _PAGE_NX | _PAGE_RW;
591 
592 	for_each_possible_cpu(cpu) {
593 		data = per_cpu(runtime_data, cpu);
594 
595 		address = __pa(&data->ghcb_page);
596 		pfn = address >> PAGE_SHIFT;
597 
598 		if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
599 			return 1;
600 	}
601 
602 	return 0;
603 }
604 
605 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
606 {
607 	struct pt_regs *regs = ctxt->regs;
608 	enum es_result ret;
609 	u64 exit_info_1;
610 
611 	/* Is it a WRMSR? */
612 	exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
613 
614 	ghcb_set_rcx(ghcb, regs->cx);
615 	if (exit_info_1) {
616 		ghcb_set_rax(ghcb, regs->ax);
617 		ghcb_set_rdx(ghcb, regs->dx);
618 	}
619 
620 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_MSR,
621 				  exit_info_1, 0);
622 
623 	if ((ret == ES_OK) && (!exit_info_1)) {
624 		regs->ax = ghcb->save.rax;
625 		regs->dx = ghcb->save.rdx;
626 	}
627 
628 	return ret;
629 }
630 
631 /*
632  * This function runs on the first #VC exception after the kernel
633  * switched to virtual addresses.
634  */
635 static bool __init sev_es_setup_ghcb(void)
636 {
637 	/* First make sure the hypervisor talks a supported protocol. */
638 	if (!sev_es_negotiate_protocol())
639 		return false;
640 
641 	/*
642 	 * Clear the boot_ghcb. The first exception comes in before the bss
643 	 * section is cleared.
644 	 */
645 	memset(&boot_ghcb_page, 0, PAGE_SIZE);
646 
647 	/* Alright - Make the boot-ghcb public */
648 	boot_ghcb = &boot_ghcb_page;
649 
650 	return true;
651 }
652 
653 #ifdef CONFIG_HOTPLUG_CPU
654 static void sev_es_ap_hlt_loop(void)
655 {
656 	struct ghcb_state state;
657 	struct ghcb *ghcb;
658 
659 	ghcb = __sev_get_ghcb(&state);
660 
661 	while (true) {
662 		vc_ghcb_invalidate(ghcb);
663 		ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
664 		ghcb_set_sw_exit_info_1(ghcb, 0);
665 		ghcb_set_sw_exit_info_2(ghcb, 0);
666 
667 		sev_es_wr_ghcb_msr(__pa(ghcb));
668 		VMGEXIT();
669 
670 		/* Wakeup signal? */
671 		if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
672 		    ghcb->save.sw_exit_info_2)
673 			break;
674 	}
675 
676 	__sev_put_ghcb(&state);
677 }
678 
679 /*
680  * Play_dead handler when running under SEV-ES. This is needed because
681  * the hypervisor can't deliver an SIPI request to restart the AP.
682  * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
683  * hypervisor wakes it up again.
684  */
685 static void sev_es_play_dead(void)
686 {
687 	play_dead_common();
688 
689 	/* IRQs now disabled */
690 
691 	sev_es_ap_hlt_loop();
692 
693 	/*
694 	 * If we get here, the VCPU was woken up again. Jump to CPU
695 	 * startup code to get it back online.
696 	 */
697 	start_cpu0();
698 }
699 #else  /* CONFIG_HOTPLUG_CPU */
700 #define sev_es_play_dead	native_play_dead
701 #endif /* CONFIG_HOTPLUG_CPU */
702 
703 #ifdef CONFIG_SMP
704 static void __init sev_es_setup_play_dead(void)
705 {
706 	smp_ops.play_dead = sev_es_play_dead;
707 }
708 #else
709 static inline void sev_es_setup_play_dead(void) { }
710 #endif
711 
712 static void __init alloc_runtime_data(int cpu)
713 {
714 	struct sev_es_runtime_data *data;
715 
716 	data = memblock_alloc(sizeof(*data), PAGE_SIZE);
717 	if (!data)
718 		panic("Can't allocate SEV-ES runtime data");
719 
720 	per_cpu(runtime_data, cpu) = data;
721 }
722 
723 static void __init init_ghcb(int cpu)
724 {
725 	struct sev_es_runtime_data *data;
726 	int err;
727 
728 	data = per_cpu(runtime_data, cpu);
729 
730 	err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
731 					 sizeof(data->ghcb_page));
732 	if (err)
733 		panic("Can't map GHCBs unencrypted");
734 
735 	memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
736 
737 	data->ghcb_active = false;
738 	data->backup_ghcb_active = false;
739 }
740 
741 void __init sev_es_init_vc_handling(void)
742 {
743 	int cpu;
744 
745 	BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
746 
747 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
748 		return;
749 
750 	if (!sev_es_check_cpu_features())
751 		panic("SEV-ES CPU Features missing");
752 
753 	/* Enable SEV-ES special handling */
754 	static_branch_enable(&sev_es_enable_key);
755 
756 	/* Initialize per-cpu GHCB pages */
757 	for_each_possible_cpu(cpu) {
758 		alloc_runtime_data(cpu);
759 		init_ghcb(cpu);
760 	}
761 
762 	sev_es_setup_play_dead();
763 
764 	/* Secondary CPUs use the runtime #VC handler */
765 	initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
766 }
767 
768 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
769 {
770 	int trapnr = ctxt->fi.vector;
771 
772 	if (trapnr == X86_TRAP_PF)
773 		native_write_cr2(ctxt->fi.cr2);
774 
775 	ctxt->regs->orig_ax = ctxt->fi.error_code;
776 	do_early_exception(ctxt->regs, trapnr);
777 }
778 
779 static long *vc_insn_get_reg(struct es_em_ctxt *ctxt)
780 {
781 	long *reg_array;
782 	int offset;
783 
784 	reg_array = (long *)ctxt->regs;
785 	offset    = insn_get_modrm_reg_off(&ctxt->insn, ctxt->regs);
786 
787 	if (offset < 0)
788 		return NULL;
789 
790 	offset /= sizeof(long);
791 
792 	return reg_array + offset;
793 }
794 
795 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
796 {
797 	long *reg_array;
798 	int offset;
799 
800 	reg_array = (long *)ctxt->regs;
801 	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
802 
803 	if (offset < 0)
804 		return NULL;
805 
806 	offset /= sizeof(long);
807 
808 	return reg_array + offset;
809 }
810 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
811 				 unsigned int bytes, bool read)
812 {
813 	u64 exit_code, exit_info_1, exit_info_2;
814 	unsigned long ghcb_pa = __pa(ghcb);
815 	enum es_result res;
816 	phys_addr_t paddr;
817 	void __user *ref;
818 
819 	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
820 	if (ref == (void __user *)-1L)
821 		return ES_UNSUPPORTED;
822 
823 	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
824 
825 	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
826 	if (res != ES_OK) {
827 		if (res == ES_EXCEPTION && !read)
828 			ctxt->fi.error_code |= X86_PF_WRITE;
829 
830 		return res;
831 	}
832 
833 	exit_info_1 = paddr;
834 	/* Can never be greater than 8 */
835 	exit_info_2 = bytes;
836 
837 	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
838 
839 	return sev_es_ghcb_hv_call(ghcb, true, ctxt, exit_code, exit_info_1, exit_info_2);
840 }
841 
842 static enum es_result vc_handle_mmio_twobyte_ops(struct ghcb *ghcb,
843 						 struct es_em_ctxt *ctxt)
844 {
845 	struct insn *insn = &ctxt->insn;
846 	unsigned int bytes = 0;
847 	enum es_result ret;
848 	int sign_byte;
849 	long *reg_data;
850 
851 	switch (insn->opcode.bytes[1]) {
852 		/* MMIO Read w/ zero-extension */
853 	case 0xb6:
854 		bytes = 1;
855 		fallthrough;
856 	case 0xb7:
857 		if (!bytes)
858 			bytes = 2;
859 
860 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
861 		if (ret)
862 			break;
863 
864 		/* Zero extend based on operand size */
865 		reg_data = vc_insn_get_reg(ctxt);
866 		if (!reg_data)
867 			return ES_DECODE_FAILED;
868 
869 		memset(reg_data, 0, insn->opnd_bytes);
870 
871 		memcpy(reg_data, ghcb->shared_buffer, bytes);
872 		break;
873 
874 		/* MMIO Read w/ sign-extension */
875 	case 0xbe:
876 		bytes = 1;
877 		fallthrough;
878 	case 0xbf:
879 		if (!bytes)
880 			bytes = 2;
881 
882 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
883 		if (ret)
884 			break;
885 
886 		/* Sign extend based on operand size */
887 		reg_data = vc_insn_get_reg(ctxt);
888 		if (!reg_data)
889 			return ES_DECODE_FAILED;
890 
891 		if (bytes == 1) {
892 			u8 *val = (u8 *)ghcb->shared_buffer;
893 
894 			sign_byte = (*val & 0x80) ? 0xff : 0x00;
895 		} else {
896 			u16 *val = (u16 *)ghcb->shared_buffer;
897 
898 			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
899 		}
900 		memset(reg_data, sign_byte, insn->opnd_bytes);
901 
902 		memcpy(reg_data, ghcb->shared_buffer, bytes);
903 		break;
904 
905 	default:
906 		ret = ES_UNSUPPORTED;
907 	}
908 
909 	return ret;
910 }
911 
912 /*
913  * The MOVS instruction has two memory operands, which raises the
914  * problem that it is not known whether the access to the source or the
915  * destination caused the #VC exception (and hence whether an MMIO read
916  * or write operation needs to be emulated).
917  *
918  * Instead of playing games with walking page-tables and trying to guess
919  * whether the source or destination is an MMIO range, split the move
920  * into two operations, a read and a write with only one memory operand.
921  * This will cause a nested #VC exception on the MMIO address which can
922  * then be handled.
923  *
924  * This implementation has the benefit that it also supports MOVS where
925  * source _and_ destination are MMIO regions.
926  *
927  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
928  * rare operation. If it turns out to be a performance problem the split
929  * operations can be moved to memcpy_fromio() and memcpy_toio().
930  */
931 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
932 					  unsigned int bytes)
933 {
934 	unsigned long ds_base, es_base;
935 	unsigned char *src, *dst;
936 	unsigned char buffer[8];
937 	enum es_result ret;
938 	bool rep;
939 	int off;
940 
941 	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
942 	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
943 
944 	if (ds_base == -1L || es_base == -1L) {
945 		ctxt->fi.vector = X86_TRAP_GP;
946 		ctxt->fi.error_code = 0;
947 		return ES_EXCEPTION;
948 	}
949 
950 	src = ds_base + (unsigned char *)ctxt->regs->si;
951 	dst = es_base + (unsigned char *)ctxt->regs->di;
952 
953 	ret = vc_read_mem(ctxt, src, buffer, bytes);
954 	if (ret != ES_OK)
955 		return ret;
956 
957 	ret = vc_write_mem(ctxt, dst, buffer, bytes);
958 	if (ret != ES_OK)
959 		return ret;
960 
961 	if (ctxt->regs->flags & X86_EFLAGS_DF)
962 		off = -bytes;
963 	else
964 		off =  bytes;
965 
966 	ctxt->regs->si += off;
967 	ctxt->regs->di += off;
968 
969 	rep = insn_has_rep_prefix(&ctxt->insn);
970 	if (rep)
971 		ctxt->regs->cx -= 1;
972 
973 	if (!rep || ctxt->regs->cx == 0)
974 		return ES_OK;
975 	else
976 		return ES_RETRY;
977 }
978 
979 static enum es_result vc_handle_mmio(struct ghcb *ghcb,
980 				     struct es_em_ctxt *ctxt)
981 {
982 	struct insn *insn = &ctxt->insn;
983 	unsigned int bytes = 0;
984 	enum es_result ret;
985 	long *reg_data;
986 
987 	switch (insn->opcode.bytes[0]) {
988 	/* MMIO Write */
989 	case 0x88:
990 		bytes = 1;
991 		fallthrough;
992 	case 0x89:
993 		if (!bytes)
994 			bytes = insn->opnd_bytes;
995 
996 		reg_data = vc_insn_get_reg(ctxt);
997 		if (!reg_data)
998 			return ES_DECODE_FAILED;
999 
1000 		memcpy(ghcb->shared_buffer, reg_data, bytes);
1001 
1002 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1003 		break;
1004 
1005 	case 0xc6:
1006 		bytes = 1;
1007 		fallthrough;
1008 	case 0xc7:
1009 		if (!bytes)
1010 			bytes = insn->opnd_bytes;
1011 
1012 		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1013 
1014 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1015 		break;
1016 
1017 		/* MMIO Read */
1018 	case 0x8a:
1019 		bytes = 1;
1020 		fallthrough;
1021 	case 0x8b:
1022 		if (!bytes)
1023 			bytes = insn->opnd_bytes;
1024 
1025 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1026 		if (ret)
1027 			break;
1028 
1029 		reg_data = vc_insn_get_reg(ctxt);
1030 		if (!reg_data)
1031 			return ES_DECODE_FAILED;
1032 
1033 		/* Zero-extend for 32-bit operation */
1034 		if (bytes == 4)
1035 			*reg_data = 0;
1036 
1037 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1038 		break;
1039 
1040 		/* MOVS instruction */
1041 	case 0xa4:
1042 		bytes = 1;
1043 		fallthrough;
1044 	case 0xa5:
1045 		if (!bytes)
1046 			bytes = insn->opnd_bytes;
1047 
1048 		ret = vc_handle_mmio_movs(ctxt, bytes);
1049 		break;
1050 		/* Two-Byte Opcodes */
1051 	case 0x0f:
1052 		ret = vc_handle_mmio_twobyte_ops(ghcb, ctxt);
1053 		break;
1054 	default:
1055 		ret = ES_UNSUPPORTED;
1056 	}
1057 
1058 	return ret;
1059 }
1060 
1061 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1062 					  struct es_em_ctxt *ctxt)
1063 {
1064 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1065 	long val, *reg = vc_insn_get_rm(ctxt);
1066 	enum es_result ret;
1067 
1068 	if (!reg)
1069 		return ES_DECODE_FAILED;
1070 
1071 	val = *reg;
1072 
1073 	/* Upper 32 bits must be written as zeroes */
1074 	if (val >> 32) {
1075 		ctxt->fi.vector = X86_TRAP_GP;
1076 		ctxt->fi.error_code = 0;
1077 		return ES_EXCEPTION;
1078 	}
1079 
1080 	/* Clear out other reserved bits and set bit 10 */
1081 	val = (val & 0xffff23ffL) | BIT(10);
1082 
1083 	/* Early non-zero writes to DR7 are not supported */
1084 	if (!data && (val & ~DR7_RESET_VALUE))
1085 		return ES_UNSUPPORTED;
1086 
1087 	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
1088 	ghcb_set_rax(ghcb, val);
1089 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1090 	if (ret != ES_OK)
1091 		return ret;
1092 
1093 	if (data)
1094 		data->dr7 = val;
1095 
1096 	return ES_OK;
1097 }
1098 
1099 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1100 					 struct es_em_ctxt *ctxt)
1101 {
1102 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1103 	long *reg = vc_insn_get_rm(ctxt);
1104 
1105 	if (!reg)
1106 		return ES_DECODE_FAILED;
1107 
1108 	if (data)
1109 		*reg = data->dr7;
1110 	else
1111 		*reg = DR7_RESET_VALUE;
1112 
1113 	return ES_OK;
1114 }
1115 
1116 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1117 				       struct es_em_ctxt *ctxt)
1118 {
1119 	return sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_WBINVD, 0, 0);
1120 }
1121 
1122 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1123 {
1124 	enum es_result ret;
1125 
1126 	ghcb_set_rcx(ghcb, ctxt->regs->cx);
1127 
1128 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_RDPMC, 0, 0);
1129 	if (ret != ES_OK)
1130 		return ret;
1131 
1132 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1133 		return ES_VMM_ERROR;
1134 
1135 	ctxt->regs->ax = ghcb->save.rax;
1136 	ctxt->regs->dx = ghcb->save.rdx;
1137 
1138 	return ES_OK;
1139 }
1140 
1141 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1142 					struct es_em_ctxt *ctxt)
1143 {
1144 	/*
1145 	 * Treat it as a NOP and do not leak a physical address to the
1146 	 * hypervisor.
1147 	 */
1148 	return ES_OK;
1149 }
1150 
1151 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1152 				      struct es_em_ctxt *ctxt)
1153 {
1154 	/* Treat the same as MONITOR/MONITORX */
1155 	return ES_OK;
1156 }
1157 
1158 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1159 					struct es_em_ctxt *ctxt)
1160 {
1161 	enum es_result ret;
1162 
1163 	ghcb_set_rax(ghcb, ctxt->regs->ax);
1164 	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1165 
1166 	if (x86_platform.hyper.sev_es_hcall_prepare)
1167 		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1168 
1169 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1170 	if (ret != ES_OK)
1171 		return ret;
1172 
1173 	if (!ghcb_rax_is_valid(ghcb))
1174 		return ES_VMM_ERROR;
1175 
1176 	ctxt->regs->ax = ghcb->save.rax;
1177 
1178 	/*
1179 	 * Call sev_es_hcall_finish() after regs->ax is already set.
1180 	 * This allows the hypervisor handler to overwrite it again if
1181 	 * necessary.
1182 	 */
1183 	if (x86_platform.hyper.sev_es_hcall_finish &&
1184 	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1185 		return ES_VMM_ERROR;
1186 
1187 	return ES_OK;
1188 }
1189 
1190 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1191 					struct es_em_ctxt *ctxt)
1192 {
1193 	/*
1194 	 * Calling ecx_alignment_check() directly does not work, because it
1195 	 * enables IRQs and the GHCB is active. Forward the exception and call
1196 	 * it later from vc_forward_exception().
1197 	 */
1198 	ctxt->fi.vector = X86_TRAP_AC;
1199 	ctxt->fi.error_code = 0;
1200 	return ES_EXCEPTION;
1201 }
1202 
1203 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1204 					 struct ghcb *ghcb,
1205 					 unsigned long exit_code)
1206 {
1207 	enum es_result result;
1208 
1209 	switch (exit_code) {
1210 	case SVM_EXIT_READ_DR7:
1211 		result = vc_handle_dr7_read(ghcb, ctxt);
1212 		break;
1213 	case SVM_EXIT_WRITE_DR7:
1214 		result = vc_handle_dr7_write(ghcb, ctxt);
1215 		break;
1216 	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1217 		result = vc_handle_trap_ac(ghcb, ctxt);
1218 		break;
1219 	case SVM_EXIT_RDTSC:
1220 	case SVM_EXIT_RDTSCP:
1221 		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1222 		break;
1223 	case SVM_EXIT_RDPMC:
1224 		result = vc_handle_rdpmc(ghcb, ctxt);
1225 		break;
1226 	case SVM_EXIT_INVD:
1227 		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1228 		result = ES_UNSUPPORTED;
1229 		break;
1230 	case SVM_EXIT_CPUID:
1231 		result = vc_handle_cpuid(ghcb, ctxt);
1232 		break;
1233 	case SVM_EXIT_IOIO:
1234 		result = vc_handle_ioio(ghcb, ctxt);
1235 		break;
1236 	case SVM_EXIT_MSR:
1237 		result = vc_handle_msr(ghcb, ctxt);
1238 		break;
1239 	case SVM_EXIT_VMMCALL:
1240 		result = vc_handle_vmmcall(ghcb, ctxt);
1241 		break;
1242 	case SVM_EXIT_WBINVD:
1243 		result = vc_handle_wbinvd(ghcb, ctxt);
1244 		break;
1245 	case SVM_EXIT_MONITOR:
1246 		result = vc_handle_monitor(ghcb, ctxt);
1247 		break;
1248 	case SVM_EXIT_MWAIT:
1249 		result = vc_handle_mwait(ghcb, ctxt);
1250 		break;
1251 	case SVM_EXIT_NPF:
1252 		result = vc_handle_mmio(ghcb, ctxt);
1253 		break;
1254 	default:
1255 		/*
1256 		 * Unexpected #VC exception
1257 		 */
1258 		result = ES_UNSUPPORTED;
1259 	}
1260 
1261 	return result;
1262 }
1263 
1264 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1265 {
1266 	long error_code = ctxt->fi.error_code;
1267 	int trapnr = ctxt->fi.vector;
1268 
1269 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1270 
1271 	switch (trapnr) {
1272 	case X86_TRAP_GP:
1273 		exc_general_protection(ctxt->regs, error_code);
1274 		break;
1275 	case X86_TRAP_UD:
1276 		exc_invalid_op(ctxt->regs);
1277 		break;
1278 	case X86_TRAP_PF:
1279 		write_cr2(ctxt->fi.cr2);
1280 		exc_page_fault(ctxt->regs, error_code);
1281 		break;
1282 	case X86_TRAP_AC:
1283 		exc_alignment_check(ctxt->regs, error_code);
1284 		break;
1285 	default:
1286 		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1287 		BUG();
1288 	}
1289 }
1290 
1291 static __always_inline bool is_vc2_stack(unsigned long sp)
1292 {
1293 	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1294 }
1295 
1296 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
1297 {
1298 	unsigned long sp, prev_sp;
1299 
1300 	sp      = (unsigned long)regs;
1301 	prev_sp = regs->sp;
1302 
1303 	/*
1304 	 * If the code was already executing on the VC2 stack when the #VC
1305 	 * happened, let it proceed to the normal handling routine. This way the
1306 	 * code executing on the VC2 stack can cause #VC exceptions to get handled.
1307 	 */
1308 	return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
1309 }
1310 
1311 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1312 {
1313 	struct ghcb_state state;
1314 	struct es_em_ctxt ctxt;
1315 	enum es_result result;
1316 	struct ghcb *ghcb;
1317 	bool ret = true;
1318 
1319 	ghcb = __sev_get_ghcb(&state);
1320 
1321 	vc_ghcb_invalidate(ghcb);
1322 	result = vc_init_em_ctxt(&ctxt, regs, error_code);
1323 
1324 	if (result == ES_OK)
1325 		result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1326 
1327 	__sev_put_ghcb(&state);
1328 
1329 	/* Done - now check the result */
1330 	switch (result) {
1331 	case ES_OK:
1332 		vc_finish_insn(&ctxt);
1333 		break;
1334 	case ES_UNSUPPORTED:
1335 		pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
1336 				   error_code, regs->ip);
1337 		ret = false;
1338 		break;
1339 	case ES_VMM_ERROR:
1340 		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1341 				   error_code, regs->ip);
1342 		ret = false;
1343 		break;
1344 	case ES_DECODE_FAILED:
1345 		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1346 				   error_code, regs->ip);
1347 		ret = false;
1348 		break;
1349 	case ES_EXCEPTION:
1350 		vc_forward_exception(&ctxt);
1351 		break;
1352 	case ES_RETRY:
1353 		/* Nothing to do */
1354 		break;
1355 	default:
1356 		pr_emerg("Unknown result in %s():%d\n", __func__, result);
1357 		/*
1358 		 * Emulating the instruction which caused the #VC exception
1359 		 * failed - can't continue so print debug information
1360 		 */
1361 		BUG();
1362 	}
1363 
1364 	return ret;
1365 }
1366 
1367 static __always_inline bool vc_is_db(unsigned long error_code)
1368 {
1369 	return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1370 }
1371 
1372 /*
1373  * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1374  * and will panic when an error happens.
1375  */
1376 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1377 {
1378 	irqentry_state_t irq_state;
1379 
1380 	/*
1381 	 * With the current implementation it is always possible to switch to a
1382 	 * safe stack because #VC exceptions only happen at known places, like
1383 	 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1384 	 * also happen with code instrumentation when the hypervisor intercepts
1385 	 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1386 	 * exceptions currently also only happen in safe places.
1387 	 *
1388 	 * But keep this here in case the noinstr annotations are violated due
1389 	 * to bug elsewhere.
1390 	 */
1391 	if (unlikely(vc_from_invalid_context(regs))) {
1392 		instrumentation_begin();
1393 		panic("Can't handle #VC exception from unsupported context\n");
1394 		instrumentation_end();
1395 	}
1396 
1397 	/*
1398 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1399 	 */
1400 	if (vc_is_db(error_code)) {
1401 		exc_debug(regs);
1402 		return;
1403 	}
1404 
1405 	irq_state = irqentry_nmi_enter(regs);
1406 
1407 	instrumentation_begin();
1408 
1409 	if (!vc_raw_handle_exception(regs, error_code)) {
1410 		/* Show some debug info */
1411 		show_regs(regs);
1412 
1413 		/* Ask hypervisor to sev_es_terminate */
1414 		sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1415 
1416 		/* If that fails and we get here - just panic */
1417 		panic("Returned from Terminate-Request to Hypervisor\n");
1418 	}
1419 
1420 	instrumentation_end();
1421 	irqentry_nmi_exit(regs, irq_state);
1422 }
1423 
1424 /*
1425  * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1426  * and will kill the current task with SIGBUS when an error happens.
1427  */
1428 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1429 {
1430 	/*
1431 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1432 	 */
1433 	if (vc_is_db(error_code)) {
1434 		noist_exc_debug(regs);
1435 		return;
1436 	}
1437 
1438 	irqentry_enter_from_user_mode(regs);
1439 	instrumentation_begin();
1440 
1441 	if (!vc_raw_handle_exception(regs, error_code)) {
1442 		/*
1443 		 * Do not kill the machine if user-space triggered the
1444 		 * exception. Send SIGBUS instead and let user-space deal with
1445 		 * it.
1446 		 */
1447 		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1448 	}
1449 
1450 	instrumentation_end();
1451 	irqentry_exit_to_user_mode(regs);
1452 }
1453 
1454 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1455 {
1456 	unsigned long exit_code = regs->orig_ax;
1457 	struct es_em_ctxt ctxt;
1458 	enum es_result result;
1459 
1460 	/* Do initial setup or terminate the guest */
1461 	if (unlikely(boot_ghcb == NULL && !sev_es_setup_ghcb()))
1462 		sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1463 
1464 	vc_ghcb_invalidate(boot_ghcb);
1465 
1466 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
1467 	if (result == ES_OK)
1468 		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
1469 
1470 	/* Done - now check the result */
1471 	switch (result) {
1472 	case ES_OK:
1473 		vc_finish_insn(&ctxt);
1474 		break;
1475 	case ES_UNSUPPORTED:
1476 		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1477 				exit_code, regs->ip);
1478 		goto fail;
1479 	case ES_VMM_ERROR:
1480 		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1481 				exit_code, regs->ip);
1482 		goto fail;
1483 	case ES_DECODE_FAILED:
1484 		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1485 				exit_code, regs->ip);
1486 		goto fail;
1487 	case ES_EXCEPTION:
1488 		vc_early_forward_exception(&ctxt);
1489 		break;
1490 	case ES_RETRY:
1491 		/* Nothing to do */
1492 		break;
1493 	default:
1494 		BUG();
1495 	}
1496 
1497 	return true;
1498 
1499 fail:
1500 	show_regs(regs);
1501 
1502 	while (true)
1503 		halt();
1504 }
1505