xref: /openbmc/linux/arch/x86/kernel/sev.c (revision 85d616dd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2019 SUSE
6  *
7  * Author: Joerg Roedel <jroedel@suse.de>
8  */
9 
10 #define pr_fmt(fmt)	"SEV: " fmt
11 
12 #include <linux/sched/debug.h>	/* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/cc_platform.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/efi.h>
23 #include <linux/platform_device.h>
24 #include <linux/io.h>
25 
26 #include <asm/cpu_entry_area.h>
27 #include <asm/stacktrace.h>
28 #include <asm/sev.h>
29 #include <asm/insn-eval.h>
30 #include <asm/fpu/xcr.h>
31 #include <asm/processor.h>
32 #include <asm/realmode.h>
33 #include <asm/setup.h>
34 #include <asm/traps.h>
35 #include <asm/svm.h>
36 #include <asm/smp.h>
37 #include <asm/cpu.h>
38 #include <asm/apic.h>
39 #include <asm/cpuid.h>
40 #include <asm/cmdline.h>
41 
42 #define DR7_RESET_VALUE        0x400
43 
44 /* AP INIT values as documented in the APM2  section "Processor Initialization State" */
45 #define AP_INIT_CS_LIMIT		0xffff
46 #define AP_INIT_DS_LIMIT		0xffff
47 #define AP_INIT_LDTR_LIMIT		0xffff
48 #define AP_INIT_GDTR_LIMIT		0xffff
49 #define AP_INIT_IDTR_LIMIT		0xffff
50 #define AP_INIT_TR_LIMIT		0xffff
51 #define AP_INIT_RFLAGS_DEFAULT		0x2
52 #define AP_INIT_DR6_DEFAULT		0xffff0ff0
53 #define AP_INIT_GPAT_DEFAULT		0x0007040600070406ULL
54 #define AP_INIT_XCR0_DEFAULT		0x1
55 #define AP_INIT_X87_FTW_DEFAULT		0x5555
56 #define AP_INIT_X87_FCW_DEFAULT		0x0040
57 #define AP_INIT_CR0_DEFAULT		0x60000010
58 #define AP_INIT_MXCSR_DEFAULT		0x1f80
59 
60 /* For early boot hypervisor communication in SEV-ES enabled guests */
61 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
62 
63 /*
64  * Needs to be in the .data section because we need it NULL before bss is
65  * cleared
66  */
67 static struct ghcb *boot_ghcb __section(".data");
68 
69 /* Bitmap of SEV features supported by the hypervisor */
70 static u64 sev_hv_features __ro_after_init;
71 
72 /* #VC handler runtime per-CPU data */
73 struct sev_es_runtime_data {
74 	struct ghcb ghcb_page;
75 
76 	/*
77 	 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
78 	 * It is needed when an NMI happens while the #VC handler uses the real
79 	 * GHCB, and the NMI handler itself is causing another #VC exception. In
80 	 * that case the GHCB content of the first handler needs to be backed up
81 	 * and restored.
82 	 */
83 	struct ghcb backup_ghcb;
84 
85 	/*
86 	 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
87 	 * There is no need for it to be atomic, because nothing is written to
88 	 * the GHCB between the read and the write of ghcb_active. So it is safe
89 	 * to use it when a nested #VC exception happens before the write.
90 	 *
91 	 * This is necessary for example in the #VC->NMI->#VC case when the NMI
92 	 * happens while the first #VC handler uses the GHCB. When the NMI code
93 	 * raises a second #VC handler it might overwrite the contents of the
94 	 * GHCB written by the first handler. To avoid this the content of the
95 	 * GHCB is saved and restored when the GHCB is detected to be in use
96 	 * already.
97 	 */
98 	bool ghcb_active;
99 	bool backup_ghcb_active;
100 
101 	/*
102 	 * Cached DR7 value - write it on DR7 writes and return it on reads.
103 	 * That value will never make it to the real hardware DR7 as debugging
104 	 * is currently unsupported in SEV-ES guests.
105 	 */
106 	unsigned long dr7;
107 };
108 
109 struct ghcb_state {
110 	struct ghcb *ghcb;
111 };
112 
113 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
114 DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
115 
116 static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
117 
118 struct sev_config {
119 	__u64 debug		: 1,
120 	      __reserved	: 63;
121 };
122 
123 static struct sev_config sev_cfg __read_mostly;
124 
125 static __always_inline bool on_vc_stack(struct pt_regs *regs)
126 {
127 	unsigned long sp = regs->sp;
128 
129 	/* User-mode RSP is not trusted */
130 	if (user_mode(regs))
131 		return false;
132 
133 	/* SYSCALL gap still has user-mode RSP */
134 	if (ip_within_syscall_gap(regs))
135 		return false;
136 
137 	return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
138 }
139 
140 /*
141  * This function handles the case when an NMI is raised in the #VC
142  * exception handler entry code, before the #VC handler has switched off
143  * its IST stack. In this case, the IST entry for #VC must be adjusted,
144  * so that any nested #VC exception will not overwrite the stack
145  * contents of the interrupted #VC handler.
146  *
147  * The IST entry is adjusted unconditionally so that it can be also be
148  * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
149  * nested sev_es_ist_exit() call may adjust back the IST entry too
150  * early.
151  *
152  * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
153  * on the NMI IST stack, as they are only called from NMI handling code
154  * right now.
155  */
156 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
157 {
158 	unsigned long old_ist, new_ist;
159 
160 	/* Read old IST entry */
161 	new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
162 
163 	/*
164 	 * If NMI happened while on the #VC IST stack, set the new IST
165 	 * value below regs->sp, so that the interrupted stack frame is
166 	 * not overwritten by subsequent #VC exceptions.
167 	 */
168 	if (on_vc_stack(regs))
169 		new_ist = regs->sp;
170 
171 	/*
172 	 * Reserve additional 8 bytes and store old IST value so this
173 	 * adjustment can be unrolled in __sev_es_ist_exit().
174 	 */
175 	new_ist -= sizeof(old_ist);
176 	*(unsigned long *)new_ist = old_ist;
177 
178 	/* Set new IST entry */
179 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
180 }
181 
182 void noinstr __sev_es_ist_exit(void)
183 {
184 	unsigned long ist;
185 
186 	/* Read IST entry */
187 	ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
188 
189 	if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
190 		return;
191 
192 	/* Read back old IST entry and write it to the TSS */
193 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
194 }
195 
196 /*
197  * Nothing shall interrupt this code path while holding the per-CPU
198  * GHCB. The backup GHCB is only for NMIs interrupting this path.
199  *
200  * Callers must disable local interrupts around it.
201  */
202 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
203 {
204 	struct sev_es_runtime_data *data;
205 	struct ghcb *ghcb;
206 
207 	WARN_ON(!irqs_disabled());
208 
209 	data = this_cpu_read(runtime_data);
210 	ghcb = &data->ghcb_page;
211 
212 	if (unlikely(data->ghcb_active)) {
213 		/* GHCB is already in use - save its contents */
214 
215 		if (unlikely(data->backup_ghcb_active)) {
216 			/*
217 			 * Backup-GHCB is also already in use. There is no way
218 			 * to continue here so just kill the machine. To make
219 			 * panic() work, mark GHCBs inactive so that messages
220 			 * can be printed out.
221 			 */
222 			data->ghcb_active        = false;
223 			data->backup_ghcb_active = false;
224 
225 			instrumentation_begin();
226 			panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
227 			instrumentation_end();
228 		}
229 
230 		/* Mark backup_ghcb active before writing to it */
231 		data->backup_ghcb_active = true;
232 
233 		state->ghcb = &data->backup_ghcb;
234 
235 		/* Backup GHCB content */
236 		*state->ghcb = *ghcb;
237 	} else {
238 		state->ghcb = NULL;
239 		data->ghcb_active = true;
240 	}
241 
242 	return ghcb;
243 }
244 
245 static inline u64 sev_es_rd_ghcb_msr(void)
246 {
247 	return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
248 }
249 
250 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
251 {
252 	u32 low, high;
253 
254 	low  = (u32)(val);
255 	high = (u32)(val >> 32);
256 
257 	native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
258 }
259 
260 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
261 				unsigned char *buffer)
262 {
263 	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
264 }
265 
266 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
267 {
268 	char buffer[MAX_INSN_SIZE];
269 	int insn_bytes;
270 
271 	insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
272 	if (insn_bytes == 0) {
273 		/* Nothing could be copied */
274 		ctxt->fi.vector     = X86_TRAP_PF;
275 		ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
276 		ctxt->fi.cr2        = ctxt->regs->ip;
277 		return ES_EXCEPTION;
278 	} else if (insn_bytes == -EINVAL) {
279 		/* Effective RIP could not be calculated */
280 		ctxt->fi.vector     = X86_TRAP_GP;
281 		ctxt->fi.error_code = 0;
282 		ctxt->fi.cr2        = 0;
283 		return ES_EXCEPTION;
284 	}
285 
286 	if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
287 		return ES_DECODE_FAILED;
288 
289 	if (ctxt->insn.immediate.got)
290 		return ES_OK;
291 	else
292 		return ES_DECODE_FAILED;
293 }
294 
295 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
296 {
297 	char buffer[MAX_INSN_SIZE];
298 	int res, ret;
299 
300 	res = vc_fetch_insn_kernel(ctxt, buffer);
301 	if (res) {
302 		ctxt->fi.vector     = X86_TRAP_PF;
303 		ctxt->fi.error_code = X86_PF_INSTR;
304 		ctxt->fi.cr2        = ctxt->regs->ip;
305 		return ES_EXCEPTION;
306 	}
307 
308 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
309 	if (ret < 0)
310 		return ES_DECODE_FAILED;
311 	else
312 		return ES_OK;
313 }
314 
315 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
316 {
317 	if (user_mode(ctxt->regs))
318 		return __vc_decode_user_insn(ctxt);
319 	else
320 		return __vc_decode_kern_insn(ctxt);
321 }
322 
323 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
324 				   char *dst, char *buf, size_t size)
325 {
326 	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
327 
328 	/*
329 	 * This function uses __put_user() independent of whether kernel or user
330 	 * memory is accessed. This works fine because __put_user() does no
331 	 * sanity checks of the pointer being accessed. All that it does is
332 	 * to report when the access failed.
333 	 *
334 	 * Also, this function runs in atomic context, so __put_user() is not
335 	 * allowed to sleep. The page-fault handler detects that it is running
336 	 * in atomic context and will not try to take mmap_sem and handle the
337 	 * fault, so additional pagefault_enable()/disable() calls are not
338 	 * needed.
339 	 *
340 	 * The access can't be done via copy_to_user() here because
341 	 * vc_write_mem() must not use string instructions to access unsafe
342 	 * memory. The reason is that MOVS is emulated by the #VC handler by
343 	 * splitting the move up into a read and a write and taking a nested #VC
344 	 * exception on whatever of them is the MMIO access. Using string
345 	 * instructions here would cause infinite nesting.
346 	 */
347 	switch (size) {
348 	case 1: {
349 		u8 d1;
350 		u8 __user *target = (u8 __user *)dst;
351 
352 		memcpy(&d1, buf, 1);
353 		if (__put_user(d1, target))
354 			goto fault;
355 		break;
356 	}
357 	case 2: {
358 		u16 d2;
359 		u16 __user *target = (u16 __user *)dst;
360 
361 		memcpy(&d2, buf, 2);
362 		if (__put_user(d2, target))
363 			goto fault;
364 		break;
365 	}
366 	case 4: {
367 		u32 d4;
368 		u32 __user *target = (u32 __user *)dst;
369 
370 		memcpy(&d4, buf, 4);
371 		if (__put_user(d4, target))
372 			goto fault;
373 		break;
374 	}
375 	case 8: {
376 		u64 d8;
377 		u64 __user *target = (u64 __user *)dst;
378 
379 		memcpy(&d8, buf, 8);
380 		if (__put_user(d8, target))
381 			goto fault;
382 		break;
383 	}
384 	default:
385 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
386 		return ES_UNSUPPORTED;
387 	}
388 
389 	return ES_OK;
390 
391 fault:
392 	if (user_mode(ctxt->regs))
393 		error_code |= X86_PF_USER;
394 
395 	ctxt->fi.vector = X86_TRAP_PF;
396 	ctxt->fi.error_code = error_code;
397 	ctxt->fi.cr2 = (unsigned long)dst;
398 
399 	return ES_EXCEPTION;
400 }
401 
402 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
403 				  char *src, char *buf, size_t size)
404 {
405 	unsigned long error_code = X86_PF_PROT;
406 
407 	/*
408 	 * This function uses __get_user() independent of whether kernel or user
409 	 * memory is accessed. This works fine because __get_user() does no
410 	 * sanity checks of the pointer being accessed. All that it does is
411 	 * to report when the access failed.
412 	 *
413 	 * Also, this function runs in atomic context, so __get_user() is not
414 	 * allowed to sleep. The page-fault handler detects that it is running
415 	 * in atomic context and will not try to take mmap_sem and handle the
416 	 * fault, so additional pagefault_enable()/disable() calls are not
417 	 * needed.
418 	 *
419 	 * The access can't be done via copy_from_user() here because
420 	 * vc_read_mem() must not use string instructions to access unsafe
421 	 * memory. The reason is that MOVS is emulated by the #VC handler by
422 	 * splitting the move up into a read and a write and taking a nested #VC
423 	 * exception on whatever of them is the MMIO access. Using string
424 	 * instructions here would cause infinite nesting.
425 	 */
426 	switch (size) {
427 	case 1: {
428 		u8 d1;
429 		u8 __user *s = (u8 __user *)src;
430 
431 		if (__get_user(d1, s))
432 			goto fault;
433 		memcpy(buf, &d1, 1);
434 		break;
435 	}
436 	case 2: {
437 		u16 d2;
438 		u16 __user *s = (u16 __user *)src;
439 
440 		if (__get_user(d2, s))
441 			goto fault;
442 		memcpy(buf, &d2, 2);
443 		break;
444 	}
445 	case 4: {
446 		u32 d4;
447 		u32 __user *s = (u32 __user *)src;
448 
449 		if (__get_user(d4, s))
450 			goto fault;
451 		memcpy(buf, &d4, 4);
452 		break;
453 	}
454 	case 8: {
455 		u64 d8;
456 		u64 __user *s = (u64 __user *)src;
457 		if (__get_user(d8, s))
458 			goto fault;
459 		memcpy(buf, &d8, 8);
460 		break;
461 	}
462 	default:
463 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
464 		return ES_UNSUPPORTED;
465 	}
466 
467 	return ES_OK;
468 
469 fault:
470 	if (user_mode(ctxt->regs))
471 		error_code |= X86_PF_USER;
472 
473 	ctxt->fi.vector = X86_TRAP_PF;
474 	ctxt->fi.error_code = error_code;
475 	ctxt->fi.cr2 = (unsigned long)src;
476 
477 	return ES_EXCEPTION;
478 }
479 
480 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
481 					   unsigned long vaddr, phys_addr_t *paddr)
482 {
483 	unsigned long va = (unsigned long)vaddr;
484 	unsigned int level;
485 	phys_addr_t pa;
486 	pgd_t *pgd;
487 	pte_t *pte;
488 
489 	pgd = __va(read_cr3_pa());
490 	pgd = &pgd[pgd_index(va)];
491 	pte = lookup_address_in_pgd(pgd, va, &level);
492 	if (!pte) {
493 		ctxt->fi.vector     = X86_TRAP_PF;
494 		ctxt->fi.cr2        = vaddr;
495 		ctxt->fi.error_code = 0;
496 
497 		if (user_mode(ctxt->regs))
498 			ctxt->fi.error_code |= X86_PF_USER;
499 
500 		return ES_EXCEPTION;
501 	}
502 
503 	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
504 		/* Emulated MMIO to/from encrypted memory not supported */
505 		return ES_UNSUPPORTED;
506 
507 	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
508 	pa |= va & ~page_level_mask(level);
509 
510 	*paddr = pa;
511 
512 	return ES_OK;
513 }
514 
515 /* Include code shared with pre-decompression boot stage */
516 #include "sev-shared.c"
517 
518 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
519 {
520 	struct sev_es_runtime_data *data;
521 	struct ghcb *ghcb;
522 
523 	WARN_ON(!irqs_disabled());
524 
525 	data = this_cpu_read(runtime_data);
526 	ghcb = &data->ghcb_page;
527 
528 	if (state->ghcb) {
529 		/* Restore GHCB from Backup */
530 		*ghcb = *state->ghcb;
531 		data->backup_ghcb_active = false;
532 		state->ghcb = NULL;
533 	} else {
534 		/*
535 		 * Invalidate the GHCB so a VMGEXIT instruction issued
536 		 * from userspace won't appear to be valid.
537 		 */
538 		vc_ghcb_invalidate(ghcb);
539 		data->ghcb_active = false;
540 	}
541 }
542 
543 void noinstr __sev_es_nmi_complete(void)
544 {
545 	struct ghcb_state state;
546 	struct ghcb *ghcb;
547 
548 	ghcb = __sev_get_ghcb(&state);
549 
550 	vc_ghcb_invalidate(ghcb);
551 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
552 	ghcb_set_sw_exit_info_1(ghcb, 0);
553 	ghcb_set_sw_exit_info_2(ghcb, 0);
554 
555 	sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
556 	VMGEXIT();
557 
558 	__sev_put_ghcb(&state);
559 }
560 
561 static u64 __init get_secrets_page(void)
562 {
563 	u64 pa_data = boot_params.cc_blob_address;
564 	struct cc_blob_sev_info info;
565 	void *map;
566 
567 	/*
568 	 * The CC blob contains the address of the secrets page, check if the
569 	 * blob is present.
570 	 */
571 	if (!pa_data)
572 		return 0;
573 
574 	map = early_memremap(pa_data, sizeof(info));
575 	if (!map) {
576 		pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n");
577 		return 0;
578 	}
579 	memcpy(&info, map, sizeof(info));
580 	early_memunmap(map, sizeof(info));
581 
582 	/* smoke-test the secrets page passed */
583 	if (!info.secrets_phys || info.secrets_len != PAGE_SIZE)
584 		return 0;
585 
586 	return info.secrets_phys;
587 }
588 
589 static u64 __init get_snp_jump_table_addr(void)
590 {
591 	struct snp_secrets_page_layout *layout;
592 	void __iomem *mem;
593 	u64 pa, addr;
594 
595 	pa = get_secrets_page();
596 	if (!pa)
597 		return 0;
598 
599 	mem = ioremap_encrypted(pa, PAGE_SIZE);
600 	if (!mem) {
601 		pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
602 		return 0;
603 	}
604 
605 	layout = (__force struct snp_secrets_page_layout *)mem;
606 
607 	addr = layout->os_area.ap_jump_table_pa;
608 	iounmap(mem);
609 
610 	return addr;
611 }
612 
613 static u64 __init get_jump_table_addr(void)
614 {
615 	struct ghcb_state state;
616 	unsigned long flags;
617 	struct ghcb *ghcb;
618 	u64 ret = 0;
619 
620 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
621 		return get_snp_jump_table_addr();
622 
623 	local_irq_save(flags);
624 
625 	ghcb = __sev_get_ghcb(&state);
626 
627 	vc_ghcb_invalidate(ghcb);
628 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
629 	ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
630 	ghcb_set_sw_exit_info_2(ghcb, 0);
631 
632 	sev_es_wr_ghcb_msr(__pa(ghcb));
633 	VMGEXIT();
634 
635 	if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
636 	    ghcb_sw_exit_info_2_is_valid(ghcb))
637 		ret = ghcb->save.sw_exit_info_2;
638 
639 	__sev_put_ghcb(&state);
640 
641 	local_irq_restore(flags);
642 
643 	return ret;
644 }
645 
646 static void pvalidate_pages(unsigned long vaddr, unsigned int npages, bool validate)
647 {
648 	unsigned long vaddr_end;
649 	int rc;
650 
651 	vaddr = vaddr & PAGE_MASK;
652 	vaddr_end = vaddr + (npages << PAGE_SHIFT);
653 
654 	while (vaddr < vaddr_end) {
655 		rc = pvalidate(vaddr, RMP_PG_SIZE_4K, validate);
656 		if (WARN(rc, "Failed to validate address 0x%lx ret %d", vaddr, rc))
657 			sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
658 
659 		vaddr = vaddr + PAGE_SIZE;
660 	}
661 }
662 
663 static void __init early_set_pages_state(unsigned long paddr, unsigned int npages, enum psc_op op)
664 {
665 	unsigned long paddr_end;
666 	u64 val;
667 
668 	paddr = paddr & PAGE_MASK;
669 	paddr_end = paddr + (npages << PAGE_SHIFT);
670 
671 	while (paddr < paddr_end) {
672 		/*
673 		 * Use the MSR protocol because this function can be called before
674 		 * the GHCB is established.
675 		 */
676 		sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
677 		VMGEXIT();
678 
679 		val = sev_es_rd_ghcb_msr();
680 
681 		if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP,
682 			 "Wrong PSC response code: 0x%x\n",
683 			 (unsigned int)GHCB_RESP_CODE(val)))
684 			goto e_term;
685 
686 		if (WARN(GHCB_MSR_PSC_RESP_VAL(val),
687 			 "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n",
688 			 op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared",
689 			 paddr, GHCB_MSR_PSC_RESP_VAL(val)))
690 			goto e_term;
691 
692 		paddr = paddr + PAGE_SIZE;
693 	}
694 
695 	return;
696 
697 e_term:
698 	sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
699 }
700 
701 void __init early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr,
702 					 unsigned int npages)
703 {
704 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
705 		return;
706 
707 	 /*
708 	  * Ask the hypervisor to mark the memory pages as private in the RMP
709 	  * table.
710 	  */
711 	early_set_pages_state(paddr, npages, SNP_PAGE_STATE_PRIVATE);
712 
713 	/* Validate the memory pages after they've been added in the RMP table. */
714 	pvalidate_pages(vaddr, npages, true);
715 }
716 
717 void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr,
718 					unsigned int npages)
719 {
720 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
721 		return;
722 
723 	/* Invalidate the memory pages before they are marked shared in the RMP table. */
724 	pvalidate_pages(vaddr, npages, false);
725 
726 	 /* Ask hypervisor to mark the memory pages shared in the RMP table. */
727 	early_set_pages_state(paddr, npages, SNP_PAGE_STATE_SHARED);
728 }
729 
730 void __init snp_prep_memory(unsigned long paddr, unsigned int sz, enum psc_op op)
731 {
732 	unsigned long vaddr, npages;
733 
734 	vaddr = (unsigned long)__va(paddr);
735 	npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
736 
737 	if (op == SNP_PAGE_STATE_PRIVATE)
738 		early_snp_set_memory_private(vaddr, paddr, npages);
739 	else if (op == SNP_PAGE_STATE_SHARED)
740 		early_snp_set_memory_shared(vaddr, paddr, npages);
741 	else
742 		WARN(1, "invalid memory op %d\n", op);
743 }
744 
745 static int vmgexit_psc(struct snp_psc_desc *desc)
746 {
747 	int cur_entry, end_entry, ret = 0;
748 	struct snp_psc_desc *data;
749 	struct ghcb_state state;
750 	struct es_em_ctxt ctxt;
751 	unsigned long flags;
752 	struct ghcb *ghcb;
753 
754 	/*
755 	 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
756 	 * a per-CPU GHCB.
757 	 */
758 	local_irq_save(flags);
759 
760 	ghcb = __sev_get_ghcb(&state);
761 	if (!ghcb) {
762 		ret = 1;
763 		goto out_unlock;
764 	}
765 
766 	/* Copy the input desc into GHCB shared buffer */
767 	data = (struct snp_psc_desc *)ghcb->shared_buffer;
768 	memcpy(ghcb->shared_buffer, desc, min_t(int, GHCB_SHARED_BUF_SIZE, sizeof(*desc)));
769 
770 	/*
771 	 * As per the GHCB specification, the hypervisor can resume the guest
772 	 * before processing all the entries. Check whether all the entries
773 	 * are processed. If not, then keep retrying. Note, the hypervisor
774 	 * will update the data memory directly to indicate the status, so
775 	 * reference the data->hdr everywhere.
776 	 *
777 	 * The strategy here is to wait for the hypervisor to change the page
778 	 * state in the RMP table before guest accesses the memory pages. If the
779 	 * page state change was not successful, then later memory access will
780 	 * result in a crash.
781 	 */
782 	cur_entry = data->hdr.cur_entry;
783 	end_entry = data->hdr.end_entry;
784 
785 	while (data->hdr.cur_entry <= data->hdr.end_entry) {
786 		ghcb_set_sw_scratch(ghcb, (u64)__pa(data));
787 
788 		/* This will advance the shared buffer data points to. */
789 		ret = sev_es_ghcb_hv_call(ghcb, true, &ctxt, SVM_VMGEXIT_PSC, 0, 0);
790 
791 		/*
792 		 * Page State Change VMGEXIT can pass error code through
793 		 * exit_info_2.
794 		 */
795 		if (WARN(ret || ghcb->save.sw_exit_info_2,
796 			 "SNP: PSC failed ret=%d exit_info_2=%llx\n",
797 			 ret, ghcb->save.sw_exit_info_2)) {
798 			ret = 1;
799 			goto out;
800 		}
801 
802 		/* Verify that reserved bit is not set */
803 		if (WARN(data->hdr.reserved, "Reserved bit is set in the PSC header\n")) {
804 			ret = 1;
805 			goto out;
806 		}
807 
808 		/*
809 		 * Sanity check that entry processing is not going backwards.
810 		 * This will happen only if hypervisor is tricking us.
811 		 */
812 		if (WARN(data->hdr.end_entry > end_entry || cur_entry > data->hdr.cur_entry,
813 "SNP: PSC processing going backward, end_entry %d (got %d) cur_entry %d (got %d)\n",
814 			 end_entry, data->hdr.end_entry, cur_entry, data->hdr.cur_entry)) {
815 			ret = 1;
816 			goto out;
817 		}
818 	}
819 
820 out:
821 	__sev_put_ghcb(&state);
822 
823 out_unlock:
824 	local_irq_restore(flags);
825 
826 	return ret;
827 }
828 
829 static void __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
830 			      unsigned long vaddr_end, int op)
831 {
832 	struct psc_hdr *hdr;
833 	struct psc_entry *e;
834 	unsigned long pfn;
835 	int i;
836 
837 	hdr = &data->hdr;
838 	e = data->entries;
839 
840 	memset(data, 0, sizeof(*data));
841 	i = 0;
842 
843 	while (vaddr < vaddr_end) {
844 		if (is_vmalloc_addr((void *)vaddr))
845 			pfn = vmalloc_to_pfn((void *)vaddr);
846 		else
847 			pfn = __pa(vaddr) >> PAGE_SHIFT;
848 
849 		e->gfn = pfn;
850 		e->operation = op;
851 		hdr->end_entry = i;
852 
853 		/*
854 		 * Current SNP implementation doesn't keep track of the RMP page
855 		 * size so use 4K for simplicity.
856 		 */
857 		e->pagesize = RMP_PG_SIZE_4K;
858 
859 		vaddr = vaddr + PAGE_SIZE;
860 		e++;
861 		i++;
862 	}
863 
864 	if (vmgexit_psc(data))
865 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
866 }
867 
868 static void set_pages_state(unsigned long vaddr, unsigned int npages, int op)
869 {
870 	unsigned long vaddr_end, next_vaddr;
871 	struct snp_psc_desc *desc;
872 
873 	desc = kmalloc(sizeof(*desc), GFP_KERNEL_ACCOUNT);
874 	if (!desc)
875 		panic("SNP: failed to allocate memory for PSC descriptor\n");
876 
877 	vaddr = vaddr & PAGE_MASK;
878 	vaddr_end = vaddr + (npages << PAGE_SHIFT);
879 
880 	while (vaddr < vaddr_end) {
881 		/* Calculate the last vaddr that fits in one struct snp_psc_desc. */
882 		next_vaddr = min_t(unsigned long, vaddr_end,
883 				   (VMGEXIT_PSC_MAX_ENTRY * PAGE_SIZE) + vaddr);
884 
885 		__set_pages_state(desc, vaddr, next_vaddr, op);
886 
887 		vaddr = next_vaddr;
888 	}
889 
890 	kfree(desc);
891 }
892 
893 void snp_set_memory_shared(unsigned long vaddr, unsigned int npages)
894 {
895 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
896 		return;
897 
898 	pvalidate_pages(vaddr, npages, false);
899 
900 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
901 }
902 
903 void snp_set_memory_private(unsigned long vaddr, unsigned int npages)
904 {
905 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
906 		return;
907 
908 	set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
909 
910 	pvalidate_pages(vaddr, npages, true);
911 }
912 
913 static int snp_set_vmsa(void *va, bool vmsa)
914 {
915 	u64 attrs;
916 
917 	/*
918 	 * Running at VMPL0 allows the kernel to change the VMSA bit for a page
919 	 * using the RMPADJUST instruction. However, for the instruction to
920 	 * succeed it must target the permissions of a lesser privileged
921 	 * (higher numbered) VMPL level, so use VMPL1 (refer to the RMPADJUST
922 	 * instruction in the AMD64 APM Volume 3).
923 	 */
924 	attrs = 1;
925 	if (vmsa)
926 		attrs |= RMPADJUST_VMSA_PAGE_BIT;
927 
928 	return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
929 }
930 
931 #define __ATTR_BASE		(SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
932 #define INIT_CS_ATTRIBS		(__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
933 #define INIT_DS_ATTRIBS		(__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)
934 
935 #define INIT_LDTR_ATTRIBS	(SVM_SELECTOR_P_MASK | 2)
936 #define INIT_TR_ATTRIBS		(SVM_SELECTOR_P_MASK | 3)
937 
938 static void *snp_alloc_vmsa_page(void)
939 {
940 	struct page *p;
941 
942 	/*
943 	 * Allocate VMSA page to work around the SNP erratum where the CPU will
944 	 * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
945 	 * collides with the RMP entry of VMSA page. The recommended workaround
946 	 * is to not use a large page.
947 	 *
948 	 * Allocate an 8k page which is also 8k-aligned.
949 	 */
950 	p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
951 	if (!p)
952 		return NULL;
953 
954 	split_page(p, 1);
955 
956 	/* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
957 	__free_page(p);
958 
959 	return page_address(p + 1);
960 }
961 
962 static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa)
963 {
964 	int err;
965 
966 	err = snp_set_vmsa(vmsa, false);
967 	if (err)
968 		pr_err("clear VMSA page failed (%u), leaking page\n", err);
969 	else
970 		free_page((unsigned long)vmsa);
971 }
972 
973 static int wakeup_cpu_via_vmgexit(int apic_id, unsigned long start_ip)
974 {
975 	struct sev_es_save_area *cur_vmsa, *vmsa;
976 	struct ghcb_state state;
977 	unsigned long flags;
978 	struct ghcb *ghcb;
979 	u8 sipi_vector;
980 	int cpu, ret;
981 	u64 cr4;
982 
983 	/*
984 	 * The hypervisor SNP feature support check has happened earlier, just check
985 	 * the AP_CREATION one here.
986 	 */
987 	if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
988 		return -EOPNOTSUPP;
989 
990 	/*
991 	 * Verify the desired start IP against the known trampoline start IP
992 	 * to catch any future new trampolines that may be introduced that
993 	 * would require a new protected guest entry point.
994 	 */
995 	if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
996 		      "Unsupported SNP start_ip: %lx\n", start_ip))
997 		return -EINVAL;
998 
999 	/* Override start_ip with known protected guest start IP */
1000 	start_ip = real_mode_header->sev_es_trampoline_start;
1001 
1002 	/* Find the logical CPU for the APIC ID */
1003 	for_each_present_cpu(cpu) {
1004 		if (arch_match_cpu_phys_id(cpu, apic_id))
1005 			break;
1006 	}
1007 	if (cpu >= nr_cpu_ids)
1008 		return -EINVAL;
1009 
1010 	cur_vmsa = per_cpu(sev_vmsa, cpu);
1011 
1012 	/*
1013 	 * A new VMSA is created each time because there is no guarantee that
1014 	 * the current VMSA is the kernels or that the vCPU is not running. If
1015 	 * an attempt was done to use the current VMSA with a running vCPU, a
1016 	 * #VMEXIT of that vCPU would wipe out all of the settings being done
1017 	 * here.
1018 	 */
1019 	vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page();
1020 	if (!vmsa)
1021 		return -ENOMEM;
1022 
1023 	/* CR4 should maintain the MCE value */
1024 	cr4 = native_read_cr4() & X86_CR4_MCE;
1025 
1026 	/* Set the CS value based on the start_ip converted to a SIPI vector */
1027 	sipi_vector		= (start_ip >> 12);
1028 	vmsa->cs.base		= sipi_vector << 12;
1029 	vmsa->cs.limit		= AP_INIT_CS_LIMIT;
1030 	vmsa->cs.attrib		= INIT_CS_ATTRIBS;
1031 	vmsa->cs.selector	= sipi_vector << 8;
1032 
1033 	/* Set the RIP value based on start_ip */
1034 	vmsa->rip		= start_ip & 0xfff;
1035 
1036 	/* Set AP INIT defaults as documented in the APM */
1037 	vmsa->ds.limit		= AP_INIT_DS_LIMIT;
1038 	vmsa->ds.attrib		= INIT_DS_ATTRIBS;
1039 	vmsa->es		= vmsa->ds;
1040 	vmsa->fs		= vmsa->ds;
1041 	vmsa->gs		= vmsa->ds;
1042 	vmsa->ss		= vmsa->ds;
1043 
1044 	vmsa->gdtr.limit	= AP_INIT_GDTR_LIMIT;
1045 	vmsa->ldtr.limit	= AP_INIT_LDTR_LIMIT;
1046 	vmsa->ldtr.attrib	= INIT_LDTR_ATTRIBS;
1047 	vmsa->idtr.limit	= AP_INIT_IDTR_LIMIT;
1048 	vmsa->tr.limit		= AP_INIT_TR_LIMIT;
1049 	vmsa->tr.attrib		= INIT_TR_ATTRIBS;
1050 
1051 	vmsa->cr4		= cr4;
1052 	vmsa->cr0		= AP_INIT_CR0_DEFAULT;
1053 	vmsa->dr7		= DR7_RESET_VALUE;
1054 	vmsa->dr6		= AP_INIT_DR6_DEFAULT;
1055 	vmsa->rflags		= AP_INIT_RFLAGS_DEFAULT;
1056 	vmsa->g_pat		= AP_INIT_GPAT_DEFAULT;
1057 	vmsa->xcr0		= AP_INIT_XCR0_DEFAULT;
1058 	vmsa->mxcsr		= AP_INIT_MXCSR_DEFAULT;
1059 	vmsa->x87_ftw		= AP_INIT_X87_FTW_DEFAULT;
1060 	vmsa->x87_fcw		= AP_INIT_X87_FCW_DEFAULT;
1061 
1062 	/* SVME must be set. */
1063 	vmsa->efer		= EFER_SVME;
1064 
1065 	/*
1066 	 * Set the SNP-specific fields for this VMSA:
1067 	 *   VMPL level
1068 	 *   SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
1069 	 */
1070 	vmsa->vmpl		= 0;
1071 	vmsa->sev_features	= sev_status >> 2;
1072 
1073 	/* Switch the page over to a VMSA page now that it is initialized */
1074 	ret = snp_set_vmsa(vmsa, true);
1075 	if (ret) {
1076 		pr_err("set VMSA page failed (%u)\n", ret);
1077 		free_page((unsigned long)vmsa);
1078 
1079 		return -EINVAL;
1080 	}
1081 
1082 	/* Issue VMGEXIT AP Creation NAE event */
1083 	local_irq_save(flags);
1084 
1085 	ghcb = __sev_get_ghcb(&state);
1086 
1087 	vc_ghcb_invalidate(ghcb);
1088 	ghcb_set_rax(ghcb, vmsa->sev_features);
1089 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
1090 	ghcb_set_sw_exit_info_1(ghcb, ((u64)apic_id << 32) | SVM_VMGEXIT_AP_CREATE);
1091 	ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));
1092 
1093 	sev_es_wr_ghcb_msr(__pa(ghcb));
1094 	VMGEXIT();
1095 
1096 	if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
1097 	    lower_32_bits(ghcb->save.sw_exit_info_1)) {
1098 		pr_err("SNP AP Creation error\n");
1099 		ret = -EINVAL;
1100 	}
1101 
1102 	__sev_put_ghcb(&state);
1103 
1104 	local_irq_restore(flags);
1105 
1106 	/* Perform cleanup if there was an error */
1107 	if (ret) {
1108 		snp_cleanup_vmsa(vmsa);
1109 		vmsa = NULL;
1110 	}
1111 
1112 	/* Free up any previous VMSA page */
1113 	if (cur_vmsa)
1114 		snp_cleanup_vmsa(cur_vmsa);
1115 
1116 	/* Record the current VMSA page */
1117 	per_cpu(sev_vmsa, cpu) = vmsa;
1118 
1119 	return ret;
1120 }
1121 
1122 void snp_set_wakeup_secondary_cpu(void)
1123 {
1124 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1125 		return;
1126 
1127 	/*
1128 	 * Always set this override if SNP is enabled. This makes it the
1129 	 * required method to start APs under SNP. If the hypervisor does
1130 	 * not support AP creation, then no APs will be started.
1131 	 */
1132 	apic->wakeup_secondary_cpu = wakeup_cpu_via_vmgexit;
1133 }
1134 
1135 int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
1136 {
1137 	u16 startup_cs, startup_ip;
1138 	phys_addr_t jump_table_pa;
1139 	u64 jump_table_addr;
1140 	u16 __iomem *jump_table;
1141 
1142 	jump_table_addr = get_jump_table_addr();
1143 
1144 	/* On UP guests there is no jump table so this is not a failure */
1145 	if (!jump_table_addr)
1146 		return 0;
1147 
1148 	/* Check if AP Jump Table is page-aligned */
1149 	if (jump_table_addr & ~PAGE_MASK)
1150 		return -EINVAL;
1151 
1152 	jump_table_pa = jump_table_addr & PAGE_MASK;
1153 
1154 	startup_cs = (u16)(rmh->trampoline_start >> 4);
1155 	startup_ip = (u16)(rmh->sev_es_trampoline_start -
1156 			   rmh->trampoline_start);
1157 
1158 	jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
1159 	if (!jump_table)
1160 		return -EIO;
1161 
1162 	writew(startup_ip, &jump_table[0]);
1163 	writew(startup_cs, &jump_table[1]);
1164 
1165 	iounmap(jump_table);
1166 
1167 	return 0;
1168 }
1169 
1170 /*
1171  * This is needed by the OVMF UEFI firmware which will use whatever it finds in
1172  * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
1173  * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
1174  */
1175 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
1176 {
1177 	struct sev_es_runtime_data *data;
1178 	unsigned long address, pflags;
1179 	int cpu;
1180 	u64 pfn;
1181 
1182 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1183 		return 0;
1184 
1185 	pflags = _PAGE_NX | _PAGE_RW;
1186 
1187 	for_each_possible_cpu(cpu) {
1188 		data = per_cpu(runtime_data, cpu);
1189 
1190 		address = __pa(&data->ghcb_page);
1191 		pfn = address >> PAGE_SHIFT;
1192 
1193 		if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
1194 			return 1;
1195 	}
1196 
1197 	return 0;
1198 }
1199 
1200 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1201 {
1202 	struct pt_regs *regs = ctxt->regs;
1203 	enum es_result ret;
1204 	u64 exit_info_1;
1205 
1206 	/* Is it a WRMSR? */
1207 	exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
1208 
1209 	ghcb_set_rcx(ghcb, regs->cx);
1210 	if (exit_info_1) {
1211 		ghcb_set_rax(ghcb, regs->ax);
1212 		ghcb_set_rdx(ghcb, regs->dx);
1213 	}
1214 
1215 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_MSR,
1216 				  exit_info_1, 0);
1217 
1218 	if ((ret == ES_OK) && (!exit_info_1)) {
1219 		regs->ax = ghcb->save.rax;
1220 		regs->dx = ghcb->save.rdx;
1221 	}
1222 
1223 	return ret;
1224 }
1225 
1226 static void snp_register_per_cpu_ghcb(void)
1227 {
1228 	struct sev_es_runtime_data *data;
1229 	struct ghcb *ghcb;
1230 
1231 	data = this_cpu_read(runtime_data);
1232 	ghcb = &data->ghcb_page;
1233 
1234 	snp_register_ghcb_early(__pa(ghcb));
1235 }
1236 
1237 void setup_ghcb(void)
1238 {
1239 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1240 		return;
1241 
1242 	/* First make sure the hypervisor talks a supported protocol. */
1243 	if (!sev_es_negotiate_protocol())
1244 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1245 
1246 	/*
1247 	 * Check whether the runtime #VC exception handler is active. It uses
1248 	 * the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
1249 	 *
1250 	 * If SNP is active, register the per-CPU GHCB page so that the runtime
1251 	 * exception handler can use it.
1252 	 */
1253 	if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
1254 		if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1255 			snp_register_per_cpu_ghcb();
1256 
1257 		return;
1258 	}
1259 
1260 	/*
1261 	 * Clear the boot_ghcb. The first exception comes in before the bss
1262 	 * section is cleared.
1263 	 */
1264 	memset(&boot_ghcb_page, 0, PAGE_SIZE);
1265 
1266 	/* Alright - Make the boot-ghcb public */
1267 	boot_ghcb = &boot_ghcb_page;
1268 
1269 	/* SNP guest requires that GHCB GPA must be registered. */
1270 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1271 		snp_register_ghcb_early(__pa(&boot_ghcb_page));
1272 }
1273 
1274 #ifdef CONFIG_HOTPLUG_CPU
1275 static void sev_es_ap_hlt_loop(void)
1276 {
1277 	struct ghcb_state state;
1278 	struct ghcb *ghcb;
1279 
1280 	ghcb = __sev_get_ghcb(&state);
1281 
1282 	while (true) {
1283 		vc_ghcb_invalidate(ghcb);
1284 		ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
1285 		ghcb_set_sw_exit_info_1(ghcb, 0);
1286 		ghcb_set_sw_exit_info_2(ghcb, 0);
1287 
1288 		sev_es_wr_ghcb_msr(__pa(ghcb));
1289 		VMGEXIT();
1290 
1291 		/* Wakeup signal? */
1292 		if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
1293 		    ghcb->save.sw_exit_info_2)
1294 			break;
1295 	}
1296 
1297 	__sev_put_ghcb(&state);
1298 }
1299 
1300 /*
1301  * Play_dead handler when running under SEV-ES. This is needed because
1302  * the hypervisor can't deliver an SIPI request to restart the AP.
1303  * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
1304  * hypervisor wakes it up again.
1305  */
1306 static void sev_es_play_dead(void)
1307 {
1308 	play_dead_common();
1309 
1310 	/* IRQs now disabled */
1311 
1312 	sev_es_ap_hlt_loop();
1313 
1314 	/*
1315 	 * If we get here, the VCPU was woken up again. Jump to CPU
1316 	 * startup code to get it back online.
1317 	 */
1318 	start_cpu0();
1319 }
1320 #else  /* CONFIG_HOTPLUG_CPU */
1321 #define sev_es_play_dead	native_play_dead
1322 #endif /* CONFIG_HOTPLUG_CPU */
1323 
1324 #ifdef CONFIG_SMP
1325 static void __init sev_es_setup_play_dead(void)
1326 {
1327 	smp_ops.play_dead = sev_es_play_dead;
1328 }
1329 #else
1330 static inline void sev_es_setup_play_dead(void) { }
1331 #endif
1332 
1333 static void __init alloc_runtime_data(int cpu)
1334 {
1335 	struct sev_es_runtime_data *data;
1336 
1337 	data = memblock_alloc(sizeof(*data), PAGE_SIZE);
1338 	if (!data)
1339 		panic("Can't allocate SEV-ES runtime data");
1340 
1341 	per_cpu(runtime_data, cpu) = data;
1342 }
1343 
1344 static void __init init_ghcb(int cpu)
1345 {
1346 	struct sev_es_runtime_data *data;
1347 	int err;
1348 
1349 	data = per_cpu(runtime_data, cpu);
1350 
1351 	err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
1352 					 sizeof(data->ghcb_page));
1353 	if (err)
1354 		panic("Can't map GHCBs unencrypted");
1355 
1356 	memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
1357 
1358 	data->ghcb_active = false;
1359 	data->backup_ghcb_active = false;
1360 }
1361 
1362 void __init sev_es_init_vc_handling(void)
1363 {
1364 	int cpu;
1365 
1366 	BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
1367 
1368 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1369 		return;
1370 
1371 	if (!sev_es_check_cpu_features())
1372 		panic("SEV-ES CPU Features missing");
1373 
1374 	/*
1375 	 * SNP is supported in v2 of the GHCB spec which mandates support for HV
1376 	 * features.
1377 	 */
1378 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
1379 		sev_hv_features = get_hv_features();
1380 
1381 		if (!(sev_hv_features & GHCB_HV_FT_SNP))
1382 			sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
1383 	}
1384 
1385 	/* Enable SEV-ES special handling */
1386 	static_branch_enable(&sev_es_enable_key);
1387 
1388 	/* Initialize per-cpu GHCB pages */
1389 	for_each_possible_cpu(cpu) {
1390 		alloc_runtime_data(cpu);
1391 		init_ghcb(cpu);
1392 	}
1393 
1394 	sev_es_setup_play_dead();
1395 
1396 	/* Secondary CPUs use the runtime #VC handler */
1397 	initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
1398 }
1399 
1400 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
1401 {
1402 	int trapnr = ctxt->fi.vector;
1403 
1404 	if (trapnr == X86_TRAP_PF)
1405 		native_write_cr2(ctxt->fi.cr2);
1406 
1407 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1408 	do_early_exception(ctxt->regs, trapnr);
1409 }
1410 
1411 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
1412 {
1413 	long *reg_array;
1414 	int offset;
1415 
1416 	reg_array = (long *)ctxt->regs;
1417 	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
1418 
1419 	if (offset < 0)
1420 		return NULL;
1421 
1422 	offset /= sizeof(long);
1423 
1424 	return reg_array + offset;
1425 }
1426 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
1427 				 unsigned int bytes, bool read)
1428 {
1429 	u64 exit_code, exit_info_1, exit_info_2;
1430 	unsigned long ghcb_pa = __pa(ghcb);
1431 	enum es_result res;
1432 	phys_addr_t paddr;
1433 	void __user *ref;
1434 
1435 	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
1436 	if (ref == (void __user *)-1L)
1437 		return ES_UNSUPPORTED;
1438 
1439 	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
1440 
1441 	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
1442 	if (res != ES_OK) {
1443 		if (res == ES_EXCEPTION && !read)
1444 			ctxt->fi.error_code |= X86_PF_WRITE;
1445 
1446 		return res;
1447 	}
1448 
1449 	exit_info_1 = paddr;
1450 	/* Can never be greater than 8 */
1451 	exit_info_2 = bytes;
1452 
1453 	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
1454 
1455 	return sev_es_ghcb_hv_call(ghcb, true, ctxt, exit_code, exit_info_1, exit_info_2);
1456 }
1457 
1458 /*
1459  * The MOVS instruction has two memory operands, which raises the
1460  * problem that it is not known whether the access to the source or the
1461  * destination caused the #VC exception (and hence whether an MMIO read
1462  * or write operation needs to be emulated).
1463  *
1464  * Instead of playing games with walking page-tables and trying to guess
1465  * whether the source or destination is an MMIO range, split the move
1466  * into two operations, a read and a write with only one memory operand.
1467  * This will cause a nested #VC exception on the MMIO address which can
1468  * then be handled.
1469  *
1470  * This implementation has the benefit that it also supports MOVS where
1471  * source _and_ destination are MMIO regions.
1472  *
1473  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
1474  * rare operation. If it turns out to be a performance problem the split
1475  * operations can be moved to memcpy_fromio() and memcpy_toio().
1476  */
1477 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
1478 					  unsigned int bytes)
1479 {
1480 	unsigned long ds_base, es_base;
1481 	unsigned char *src, *dst;
1482 	unsigned char buffer[8];
1483 	enum es_result ret;
1484 	bool rep;
1485 	int off;
1486 
1487 	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
1488 	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
1489 
1490 	if (ds_base == -1L || es_base == -1L) {
1491 		ctxt->fi.vector = X86_TRAP_GP;
1492 		ctxt->fi.error_code = 0;
1493 		return ES_EXCEPTION;
1494 	}
1495 
1496 	src = ds_base + (unsigned char *)ctxt->regs->si;
1497 	dst = es_base + (unsigned char *)ctxt->regs->di;
1498 
1499 	ret = vc_read_mem(ctxt, src, buffer, bytes);
1500 	if (ret != ES_OK)
1501 		return ret;
1502 
1503 	ret = vc_write_mem(ctxt, dst, buffer, bytes);
1504 	if (ret != ES_OK)
1505 		return ret;
1506 
1507 	if (ctxt->regs->flags & X86_EFLAGS_DF)
1508 		off = -bytes;
1509 	else
1510 		off =  bytes;
1511 
1512 	ctxt->regs->si += off;
1513 	ctxt->regs->di += off;
1514 
1515 	rep = insn_has_rep_prefix(&ctxt->insn);
1516 	if (rep)
1517 		ctxt->regs->cx -= 1;
1518 
1519 	if (!rep || ctxt->regs->cx == 0)
1520 		return ES_OK;
1521 	else
1522 		return ES_RETRY;
1523 }
1524 
1525 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1526 {
1527 	struct insn *insn = &ctxt->insn;
1528 	unsigned int bytes = 0;
1529 	enum mmio_type mmio;
1530 	enum es_result ret;
1531 	u8 sign_byte;
1532 	long *reg_data;
1533 
1534 	mmio = insn_decode_mmio(insn, &bytes);
1535 	if (mmio == MMIO_DECODE_FAILED)
1536 		return ES_DECODE_FAILED;
1537 
1538 	if (mmio != MMIO_WRITE_IMM && mmio != MMIO_MOVS) {
1539 		reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
1540 		if (!reg_data)
1541 			return ES_DECODE_FAILED;
1542 	}
1543 
1544 	switch (mmio) {
1545 	case MMIO_WRITE:
1546 		memcpy(ghcb->shared_buffer, reg_data, bytes);
1547 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1548 		break;
1549 	case MMIO_WRITE_IMM:
1550 		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1551 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1552 		break;
1553 	case MMIO_READ:
1554 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1555 		if (ret)
1556 			break;
1557 
1558 		/* Zero-extend for 32-bit operation */
1559 		if (bytes == 4)
1560 			*reg_data = 0;
1561 
1562 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1563 		break;
1564 	case MMIO_READ_ZERO_EXTEND:
1565 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1566 		if (ret)
1567 			break;
1568 
1569 		/* Zero extend based on operand size */
1570 		memset(reg_data, 0, insn->opnd_bytes);
1571 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1572 		break;
1573 	case MMIO_READ_SIGN_EXTEND:
1574 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1575 		if (ret)
1576 			break;
1577 
1578 		if (bytes == 1) {
1579 			u8 *val = (u8 *)ghcb->shared_buffer;
1580 
1581 			sign_byte = (*val & 0x80) ? 0xff : 0x00;
1582 		} else {
1583 			u16 *val = (u16 *)ghcb->shared_buffer;
1584 
1585 			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
1586 		}
1587 
1588 		/* Sign extend based on operand size */
1589 		memset(reg_data, sign_byte, insn->opnd_bytes);
1590 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1591 		break;
1592 	case MMIO_MOVS:
1593 		ret = vc_handle_mmio_movs(ctxt, bytes);
1594 		break;
1595 	default:
1596 		ret = ES_UNSUPPORTED;
1597 		break;
1598 	}
1599 
1600 	return ret;
1601 }
1602 
1603 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1604 					  struct es_em_ctxt *ctxt)
1605 {
1606 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1607 	long val, *reg = vc_insn_get_rm(ctxt);
1608 	enum es_result ret;
1609 
1610 	if (!reg)
1611 		return ES_DECODE_FAILED;
1612 
1613 	val = *reg;
1614 
1615 	/* Upper 32 bits must be written as zeroes */
1616 	if (val >> 32) {
1617 		ctxt->fi.vector = X86_TRAP_GP;
1618 		ctxt->fi.error_code = 0;
1619 		return ES_EXCEPTION;
1620 	}
1621 
1622 	/* Clear out other reserved bits and set bit 10 */
1623 	val = (val & 0xffff23ffL) | BIT(10);
1624 
1625 	/* Early non-zero writes to DR7 are not supported */
1626 	if (!data && (val & ~DR7_RESET_VALUE))
1627 		return ES_UNSUPPORTED;
1628 
1629 	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
1630 	ghcb_set_rax(ghcb, val);
1631 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1632 	if (ret != ES_OK)
1633 		return ret;
1634 
1635 	if (data)
1636 		data->dr7 = val;
1637 
1638 	return ES_OK;
1639 }
1640 
1641 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1642 					 struct es_em_ctxt *ctxt)
1643 {
1644 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1645 	long *reg = vc_insn_get_rm(ctxt);
1646 
1647 	if (!reg)
1648 		return ES_DECODE_FAILED;
1649 
1650 	if (data)
1651 		*reg = data->dr7;
1652 	else
1653 		*reg = DR7_RESET_VALUE;
1654 
1655 	return ES_OK;
1656 }
1657 
1658 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1659 				       struct es_em_ctxt *ctxt)
1660 {
1661 	return sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_WBINVD, 0, 0);
1662 }
1663 
1664 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1665 {
1666 	enum es_result ret;
1667 
1668 	ghcb_set_rcx(ghcb, ctxt->regs->cx);
1669 
1670 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_RDPMC, 0, 0);
1671 	if (ret != ES_OK)
1672 		return ret;
1673 
1674 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1675 		return ES_VMM_ERROR;
1676 
1677 	ctxt->regs->ax = ghcb->save.rax;
1678 	ctxt->regs->dx = ghcb->save.rdx;
1679 
1680 	return ES_OK;
1681 }
1682 
1683 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1684 					struct es_em_ctxt *ctxt)
1685 {
1686 	/*
1687 	 * Treat it as a NOP and do not leak a physical address to the
1688 	 * hypervisor.
1689 	 */
1690 	return ES_OK;
1691 }
1692 
1693 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1694 				      struct es_em_ctxt *ctxt)
1695 {
1696 	/* Treat the same as MONITOR/MONITORX */
1697 	return ES_OK;
1698 }
1699 
1700 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1701 					struct es_em_ctxt *ctxt)
1702 {
1703 	enum es_result ret;
1704 
1705 	ghcb_set_rax(ghcb, ctxt->regs->ax);
1706 	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1707 
1708 	if (x86_platform.hyper.sev_es_hcall_prepare)
1709 		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1710 
1711 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1712 	if (ret != ES_OK)
1713 		return ret;
1714 
1715 	if (!ghcb_rax_is_valid(ghcb))
1716 		return ES_VMM_ERROR;
1717 
1718 	ctxt->regs->ax = ghcb->save.rax;
1719 
1720 	/*
1721 	 * Call sev_es_hcall_finish() after regs->ax is already set.
1722 	 * This allows the hypervisor handler to overwrite it again if
1723 	 * necessary.
1724 	 */
1725 	if (x86_platform.hyper.sev_es_hcall_finish &&
1726 	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1727 		return ES_VMM_ERROR;
1728 
1729 	return ES_OK;
1730 }
1731 
1732 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1733 					struct es_em_ctxt *ctxt)
1734 {
1735 	/*
1736 	 * Calling ecx_alignment_check() directly does not work, because it
1737 	 * enables IRQs and the GHCB is active. Forward the exception and call
1738 	 * it later from vc_forward_exception().
1739 	 */
1740 	ctxt->fi.vector = X86_TRAP_AC;
1741 	ctxt->fi.error_code = 0;
1742 	return ES_EXCEPTION;
1743 }
1744 
1745 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1746 					 struct ghcb *ghcb,
1747 					 unsigned long exit_code)
1748 {
1749 	enum es_result result;
1750 
1751 	switch (exit_code) {
1752 	case SVM_EXIT_READ_DR7:
1753 		result = vc_handle_dr7_read(ghcb, ctxt);
1754 		break;
1755 	case SVM_EXIT_WRITE_DR7:
1756 		result = vc_handle_dr7_write(ghcb, ctxt);
1757 		break;
1758 	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1759 		result = vc_handle_trap_ac(ghcb, ctxt);
1760 		break;
1761 	case SVM_EXIT_RDTSC:
1762 	case SVM_EXIT_RDTSCP:
1763 		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1764 		break;
1765 	case SVM_EXIT_RDPMC:
1766 		result = vc_handle_rdpmc(ghcb, ctxt);
1767 		break;
1768 	case SVM_EXIT_INVD:
1769 		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1770 		result = ES_UNSUPPORTED;
1771 		break;
1772 	case SVM_EXIT_CPUID:
1773 		result = vc_handle_cpuid(ghcb, ctxt);
1774 		break;
1775 	case SVM_EXIT_IOIO:
1776 		result = vc_handle_ioio(ghcb, ctxt);
1777 		break;
1778 	case SVM_EXIT_MSR:
1779 		result = vc_handle_msr(ghcb, ctxt);
1780 		break;
1781 	case SVM_EXIT_VMMCALL:
1782 		result = vc_handle_vmmcall(ghcb, ctxt);
1783 		break;
1784 	case SVM_EXIT_WBINVD:
1785 		result = vc_handle_wbinvd(ghcb, ctxt);
1786 		break;
1787 	case SVM_EXIT_MONITOR:
1788 		result = vc_handle_monitor(ghcb, ctxt);
1789 		break;
1790 	case SVM_EXIT_MWAIT:
1791 		result = vc_handle_mwait(ghcb, ctxt);
1792 		break;
1793 	case SVM_EXIT_NPF:
1794 		result = vc_handle_mmio(ghcb, ctxt);
1795 		break;
1796 	default:
1797 		/*
1798 		 * Unexpected #VC exception
1799 		 */
1800 		result = ES_UNSUPPORTED;
1801 	}
1802 
1803 	return result;
1804 }
1805 
1806 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1807 {
1808 	long error_code = ctxt->fi.error_code;
1809 	int trapnr = ctxt->fi.vector;
1810 
1811 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1812 
1813 	switch (trapnr) {
1814 	case X86_TRAP_GP:
1815 		exc_general_protection(ctxt->regs, error_code);
1816 		break;
1817 	case X86_TRAP_UD:
1818 		exc_invalid_op(ctxt->regs);
1819 		break;
1820 	case X86_TRAP_PF:
1821 		write_cr2(ctxt->fi.cr2);
1822 		exc_page_fault(ctxt->regs, error_code);
1823 		break;
1824 	case X86_TRAP_AC:
1825 		exc_alignment_check(ctxt->regs, error_code);
1826 		break;
1827 	default:
1828 		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1829 		BUG();
1830 	}
1831 }
1832 
1833 static __always_inline bool is_vc2_stack(unsigned long sp)
1834 {
1835 	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1836 }
1837 
1838 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
1839 {
1840 	unsigned long sp, prev_sp;
1841 
1842 	sp      = (unsigned long)regs;
1843 	prev_sp = regs->sp;
1844 
1845 	/*
1846 	 * If the code was already executing on the VC2 stack when the #VC
1847 	 * happened, let it proceed to the normal handling routine. This way the
1848 	 * code executing on the VC2 stack can cause #VC exceptions to get handled.
1849 	 */
1850 	return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
1851 }
1852 
1853 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1854 {
1855 	struct ghcb_state state;
1856 	struct es_em_ctxt ctxt;
1857 	enum es_result result;
1858 	struct ghcb *ghcb;
1859 	bool ret = true;
1860 
1861 	ghcb = __sev_get_ghcb(&state);
1862 
1863 	vc_ghcb_invalidate(ghcb);
1864 	result = vc_init_em_ctxt(&ctxt, regs, error_code);
1865 
1866 	if (result == ES_OK)
1867 		result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1868 
1869 	__sev_put_ghcb(&state);
1870 
1871 	/* Done - now check the result */
1872 	switch (result) {
1873 	case ES_OK:
1874 		vc_finish_insn(&ctxt);
1875 		break;
1876 	case ES_UNSUPPORTED:
1877 		pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
1878 				   error_code, regs->ip);
1879 		ret = false;
1880 		break;
1881 	case ES_VMM_ERROR:
1882 		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1883 				   error_code, regs->ip);
1884 		ret = false;
1885 		break;
1886 	case ES_DECODE_FAILED:
1887 		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1888 				   error_code, regs->ip);
1889 		ret = false;
1890 		break;
1891 	case ES_EXCEPTION:
1892 		vc_forward_exception(&ctxt);
1893 		break;
1894 	case ES_RETRY:
1895 		/* Nothing to do */
1896 		break;
1897 	default:
1898 		pr_emerg("Unknown result in %s():%d\n", __func__, result);
1899 		/*
1900 		 * Emulating the instruction which caused the #VC exception
1901 		 * failed - can't continue so print debug information
1902 		 */
1903 		BUG();
1904 	}
1905 
1906 	return ret;
1907 }
1908 
1909 static __always_inline bool vc_is_db(unsigned long error_code)
1910 {
1911 	return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1912 }
1913 
1914 /*
1915  * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1916  * and will panic when an error happens.
1917  */
1918 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1919 {
1920 	irqentry_state_t irq_state;
1921 
1922 	/*
1923 	 * With the current implementation it is always possible to switch to a
1924 	 * safe stack because #VC exceptions only happen at known places, like
1925 	 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1926 	 * also happen with code instrumentation when the hypervisor intercepts
1927 	 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1928 	 * exceptions currently also only happen in safe places.
1929 	 *
1930 	 * But keep this here in case the noinstr annotations are violated due
1931 	 * to bug elsewhere.
1932 	 */
1933 	if (unlikely(vc_from_invalid_context(regs))) {
1934 		instrumentation_begin();
1935 		panic("Can't handle #VC exception from unsupported context\n");
1936 		instrumentation_end();
1937 	}
1938 
1939 	/*
1940 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1941 	 */
1942 	if (vc_is_db(error_code)) {
1943 		exc_debug(regs);
1944 		return;
1945 	}
1946 
1947 	irq_state = irqentry_nmi_enter(regs);
1948 
1949 	instrumentation_begin();
1950 
1951 	if (!vc_raw_handle_exception(regs, error_code)) {
1952 		/* Show some debug info */
1953 		show_regs(regs);
1954 
1955 		/* Ask hypervisor to sev_es_terminate */
1956 		sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1957 
1958 		/* If that fails and we get here - just panic */
1959 		panic("Returned from Terminate-Request to Hypervisor\n");
1960 	}
1961 
1962 	instrumentation_end();
1963 	irqentry_nmi_exit(regs, irq_state);
1964 }
1965 
1966 /*
1967  * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1968  * and will kill the current task with SIGBUS when an error happens.
1969  */
1970 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1971 {
1972 	/*
1973 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1974 	 */
1975 	if (vc_is_db(error_code)) {
1976 		noist_exc_debug(regs);
1977 		return;
1978 	}
1979 
1980 	irqentry_enter_from_user_mode(regs);
1981 	instrumentation_begin();
1982 
1983 	if (!vc_raw_handle_exception(regs, error_code)) {
1984 		/*
1985 		 * Do not kill the machine if user-space triggered the
1986 		 * exception. Send SIGBUS instead and let user-space deal with
1987 		 * it.
1988 		 */
1989 		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1990 	}
1991 
1992 	instrumentation_end();
1993 	irqentry_exit_to_user_mode(regs);
1994 }
1995 
1996 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1997 {
1998 	unsigned long exit_code = regs->orig_ax;
1999 	struct es_em_ctxt ctxt;
2000 	enum es_result result;
2001 
2002 	vc_ghcb_invalidate(boot_ghcb);
2003 
2004 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
2005 	if (result == ES_OK)
2006 		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
2007 
2008 	/* Done - now check the result */
2009 	switch (result) {
2010 	case ES_OK:
2011 		vc_finish_insn(&ctxt);
2012 		break;
2013 	case ES_UNSUPPORTED:
2014 		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
2015 				exit_code, regs->ip);
2016 		goto fail;
2017 	case ES_VMM_ERROR:
2018 		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
2019 				exit_code, regs->ip);
2020 		goto fail;
2021 	case ES_DECODE_FAILED:
2022 		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
2023 				exit_code, regs->ip);
2024 		goto fail;
2025 	case ES_EXCEPTION:
2026 		vc_early_forward_exception(&ctxt);
2027 		break;
2028 	case ES_RETRY:
2029 		/* Nothing to do */
2030 		break;
2031 	default:
2032 		BUG();
2033 	}
2034 
2035 	return true;
2036 
2037 fail:
2038 	show_regs(regs);
2039 
2040 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
2041 }
2042 
2043 /*
2044  * Initial set up of SNP relies on information provided by the
2045  * Confidential Computing blob, which can be passed to the kernel
2046  * in the following ways, depending on how it is booted:
2047  *
2048  * - when booted via the boot/decompress kernel:
2049  *   - via boot_params
2050  *
2051  * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH):
2052  *   - via a setup_data entry, as defined by the Linux Boot Protocol
2053  *
2054  * Scan for the blob in that order.
2055  */
2056 static __init struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
2057 {
2058 	struct cc_blob_sev_info *cc_info;
2059 
2060 	/* Boot kernel would have passed the CC blob via boot_params. */
2061 	if (bp->cc_blob_address) {
2062 		cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address;
2063 		goto found_cc_info;
2064 	}
2065 
2066 	/*
2067 	 * If kernel was booted directly, without the use of the
2068 	 * boot/decompression kernel, the CC blob may have been passed via
2069 	 * setup_data instead.
2070 	 */
2071 	cc_info = find_cc_blob_setup_data(bp);
2072 	if (!cc_info)
2073 		return NULL;
2074 
2075 found_cc_info:
2076 	if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
2077 		snp_abort();
2078 
2079 	return cc_info;
2080 }
2081 
2082 bool __init snp_init(struct boot_params *bp)
2083 {
2084 	struct cc_blob_sev_info *cc_info;
2085 
2086 	if (!bp)
2087 		return false;
2088 
2089 	cc_info = find_cc_blob(bp);
2090 	if (!cc_info)
2091 		return false;
2092 
2093 	setup_cpuid_table(cc_info);
2094 
2095 	/*
2096 	 * The CC blob will be used later to access the secrets page. Cache
2097 	 * it here like the boot kernel does.
2098 	 */
2099 	bp->cc_blob_address = (u32)(unsigned long)cc_info;
2100 
2101 	return true;
2102 }
2103 
2104 void __init snp_abort(void)
2105 {
2106 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
2107 }
2108 
2109 static void dump_cpuid_table(void)
2110 {
2111 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2112 	int i = 0;
2113 
2114 	pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
2115 		cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);
2116 
2117 	for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
2118 		const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
2119 
2120 		pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
2121 			i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
2122 			fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
2123 	}
2124 }
2125 
2126 /*
2127  * It is useful from an auditing/testing perspective to provide an easy way
2128  * for the guest owner to know that the CPUID table has been initialized as
2129  * expected, but that initialization happens too early in boot to print any
2130  * sort of indicator, and there's not really any other good place to do it,
2131  * so do it here.
2132  */
2133 static int __init report_cpuid_table(void)
2134 {
2135 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2136 
2137 	if (!cpuid_table->count)
2138 		return 0;
2139 
2140 	pr_info("Using SNP CPUID table, %d entries present.\n",
2141 		cpuid_table->count);
2142 
2143 	if (sev_cfg.debug)
2144 		dump_cpuid_table();
2145 
2146 	return 0;
2147 }
2148 arch_initcall(report_cpuid_table);
2149 
2150 static int __init init_sev_config(char *str)
2151 {
2152 	char *s;
2153 
2154 	while ((s = strsep(&str, ","))) {
2155 		if (!strcmp(s, "debug")) {
2156 			sev_cfg.debug = true;
2157 			continue;
2158 		}
2159 
2160 		pr_info("SEV command-line option '%s' was not recognized\n", s);
2161 	}
2162 
2163 	return 1;
2164 }
2165 __setup("sev=", init_sev_config);
2166 
2167 int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, unsigned long *fw_err)
2168 {
2169 	struct ghcb_state state;
2170 	struct es_em_ctxt ctxt;
2171 	unsigned long flags;
2172 	struct ghcb *ghcb;
2173 	int ret;
2174 
2175 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2176 		return -ENODEV;
2177 
2178 	if (!fw_err)
2179 		return -EINVAL;
2180 
2181 	/*
2182 	 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
2183 	 * a per-CPU GHCB.
2184 	 */
2185 	local_irq_save(flags);
2186 
2187 	ghcb = __sev_get_ghcb(&state);
2188 	if (!ghcb) {
2189 		ret = -EIO;
2190 		goto e_restore_irq;
2191 	}
2192 
2193 	vc_ghcb_invalidate(ghcb);
2194 
2195 	if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2196 		ghcb_set_rax(ghcb, input->data_gpa);
2197 		ghcb_set_rbx(ghcb, input->data_npages);
2198 	}
2199 
2200 	ret = sev_es_ghcb_hv_call(ghcb, true, &ctxt, exit_code, input->req_gpa, input->resp_gpa);
2201 	if (ret)
2202 		goto e_put;
2203 
2204 	if (ghcb->save.sw_exit_info_2) {
2205 		/* Number of expected pages are returned in RBX */
2206 		if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST &&
2207 		    ghcb->save.sw_exit_info_2 == SNP_GUEST_REQ_INVALID_LEN)
2208 			input->data_npages = ghcb_get_rbx(ghcb);
2209 
2210 		*fw_err = ghcb->save.sw_exit_info_2;
2211 
2212 		ret = -EIO;
2213 	}
2214 
2215 e_put:
2216 	__sev_put_ghcb(&state);
2217 e_restore_irq:
2218 	local_irq_restore(flags);
2219 
2220 	return ret;
2221 }
2222 EXPORT_SYMBOL_GPL(snp_issue_guest_request);
2223 
2224 static struct platform_device sev_guest_device = {
2225 	.name		= "sev-guest",
2226 	.id		= -1,
2227 };
2228 
2229 static int __init snp_init_platform_device(void)
2230 {
2231 	struct sev_guest_platform_data data;
2232 	u64 gpa;
2233 
2234 	if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2235 		return -ENODEV;
2236 
2237 	gpa = get_secrets_page();
2238 	if (!gpa)
2239 		return -ENODEV;
2240 
2241 	data.secrets_gpa = gpa;
2242 	if (platform_device_add_data(&sev_guest_device, &data, sizeof(data)))
2243 		return -ENODEV;
2244 
2245 	if (platform_device_register(&sev_guest_device))
2246 		return -ENODEV;
2247 
2248 	pr_info("SNP guest platform device initialized.\n");
2249 	return 0;
2250 }
2251 device_initcall(snp_init_platform_device);
2252