1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AMD Memory Encryption Support 4 * 5 * Copyright (C) 2019 SUSE 6 * 7 * Author: Joerg Roedel <jroedel@suse.de> 8 */ 9 10 #define pr_fmt(fmt) "SEV: " fmt 11 12 #include <linux/sched/debug.h> /* For show_regs() */ 13 #include <linux/percpu-defs.h> 14 #include <linux/cc_platform.h> 15 #include <linux/printk.h> 16 #include <linux/mm_types.h> 17 #include <linux/set_memory.h> 18 #include <linux/memblock.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/cpumask.h> 22 #include <linux/efi.h> 23 #include <linux/platform_device.h> 24 #include <linux/io.h> 25 26 #include <asm/cpu_entry_area.h> 27 #include <asm/stacktrace.h> 28 #include <asm/sev.h> 29 #include <asm/insn-eval.h> 30 #include <asm/fpu/xcr.h> 31 #include <asm/processor.h> 32 #include <asm/realmode.h> 33 #include <asm/setup.h> 34 #include <asm/traps.h> 35 #include <asm/svm.h> 36 #include <asm/smp.h> 37 #include <asm/cpu.h> 38 #include <asm/apic.h> 39 #include <asm/cpuid.h> 40 #include <asm/cmdline.h> 41 42 #define DR7_RESET_VALUE 0x400 43 44 /* AP INIT values as documented in the APM2 section "Processor Initialization State" */ 45 #define AP_INIT_CS_LIMIT 0xffff 46 #define AP_INIT_DS_LIMIT 0xffff 47 #define AP_INIT_LDTR_LIMIT 0xffff 48 #define AP_INIT_GDTR_LIMIT 0xffff 49 #define AP_INIT_IDTR_LIMIT 0xffff 50 #define AP_INIT_TR_LIMIT 0xffff 51 #define AP_INIT_RFLAGS_DEFAULT 0x2 52 #define AP_INIT_DR6_DEFAULT 0xffff0ff0 53 #define AP_INIT_GPAT_DEFAULT 0x0007040600070406ULL 54 #define AP_INIT_XCR0_DEFAULT 0x1 55 #define AP_INIT_X87_FTW_DEFAULT 0x5555 56 #define AP_INIT_X87_FCW_DEFAULT 0x0040 57 #define AP_INIT_CR0_DEFAULT 0x60000010 58 #define AP_INIT_MXCSR_DEFAULT 0x1f80 59 60 /* For early boot hypervisor communication in SEV-ES enabled guests */ 61 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE); 62 63 /* 64 * Needs to be in the .data section because we need it NULL before bss is 65 * cleared 66 */ 67 static struct ghcb *boot_ghcb __section(".data"); 68 69 /* Bitmap of SEV features supported by the hypervisor */ 70 static u64 sev_hv_features __ro_after_init; 71 72 /* #VC handler runtime per-CPU data */ 73 struct sev_es_runtime_data { 74 struct ghcb ghcb_page; 75 76 /* 77 * Reserve one page per CPU as backup storage for the unencrypted GHCB. 78 * It is needed when an NMI happens while the #VC handler uses the real 79 * GHCB, and the NMI handler itself is causing another #VC exception. In 80 * that case the GHCB content of the first handler needs to be backed up 81 * and restored. 82 */ 83 struct ghcb backup_ghcb; 84 85 /* 86 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions. 87 * There is no need for it to be atomic, because nothing is written to 88 * the GHCB between the read and the write of ghcb_active. So it is safe 89 * to use it when a nested #VC exception happens before the write. 90 * 91 * This is necessary for example in the #VC->NMI->#VC case when the NMI 92 * happens while the first #VC handler uses the GHCB. When the NMI code 93 * raises a second #VC handler it might overwrite the contents of the 94 * GHCB written by the first handler. To avoid this the content of the 95 * GHCB is saved and restored when the GHCB is detected to be in use 96 * already. 97 */ 98 bool ghcb_active; 99 bool backup_ghcb_active; 100 101 /* 102 * Cached DR7 value - write it on DR7 writes and return it on reads. 103 * That value will never make it to the real hardware DR7 as debugging 104 * is currently unsupported in SEV-ES guests. 105 */ 106 unsigned long dr7; 107 }; 108 109 struct ghcb_state { 110 struct ghcb *ghcb; 111 }; 112 113 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data); 114 DEFINE_STATIC_KEY_FALSE(sev_es_enable_key); 115 116 static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa); 117 118 struct sev_config { 119 __u64 debug : 1, 120 __reserved : 63; 121 }; 122 123 static struct sev_config sev_cfg __read_mostly; 124 125 static __always_inline bool on_vc_stack(struct pt_regs *regs) 126 { 127 unsigned long sp = regs->sp; 128 129 /* User-mode RSP is not trusted */ 130 if (user_mode(regs)) 131 return false; 132 133 /* SYSCALL gap still has user-mode RSP */ 134 if (ip_within_syscall_gap(regs)) 135 return false; 136 137 return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC))); 138 } 139 140 /* 141 * This function handles the case when an NMI is raised in the #VC 142 * exception handler entry code, before the #VC handler has switched off 143 * its IST stack. In this case, the IST entry for #VC must be adjusted, 144 * so that any nested #VC exception will not overwrite the stack 145 * contents of the interrupted #VC handler. 146 * 147 * The IST entry is adjusted unconditionally so that it can be also be 148 * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a 149 * nested sev_es_ist_exit() call may adjust back the IST entry too 150 * early. 151 * 152 * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run 153 * on the NMI IST stack, as they are only called from NMI handling code 154 * right now. 155 */ 156 void noinstr __sev_es_ist_enter(struct pt_regs *regs) 157 { 158 unsigned long old_ist, new_ist; 159 160 /* Read old IST entry */ 161 new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]); 162 163 /* 164 * If NMI happened while on the #VC IST stack, set the new IST 165 * value below regs->sp, so that the interrupted stack frame is 166 * not overwritten by subsequent #VC exceptions. 167 */ 168 if (on_vc_stack(regs)) 169 new_ist = regs->sp; 170 171 /* 172 * Reserve additional 8 bytes and store old IST value so this 173 * adjustment can be unrolled in __sev_es_ist_exit(). 174 */ 175 new_ist -= sizeof(old_ist); 176 *(unsigned long *)new_ist = old_ist; 177 178 /* Set new IST entry */ 179 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist); 180 } 181 182 void noinstr __sev_es_ist_exit(void) 183 { 184 unsigned long ist; 185 186 /* Read IST entry */ 187 ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]); 188 189 if (WARN_ON(ist == __this_cpu_ist_top_va(VC))) 190 return; 191 192 /* Read back old IST entry and write it to the TSS */ 193 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist); 194 } 195 196 /* 197 * Nothing shall interrupt this code path while holding the per-CPU 198 * GHCB. The backup GHCB is only for NMIs interrupting this path. 199 * 200 * Callers must disable local interrupts around it. 201 */ 202 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state) 203 { 204 struct sev_es_runtime_data *data; 205 struct ghcb *ghcb; 206 207 WARN_ON(!irqs_disabled()); 208 209 data = this_cpu_read(runtime_data); 210 ghcb = &data->ghcb_page; 211 212 if (unlikely(data->ghcb_active)) { 213 /* GHCB is already in use - save its contents */ 214 215 if (unlikely(data->backup_ghcb_active)) { 216 /* 217 * Backup-GHCB is also already in use. There is no way 218 * to continue here so just kill the machine. To make 219 * panic() work, mark GHCBs inactive so that messages 220 * can be printed out. 221 */ 222 data->ghcb_active = false; 223 data->backup_ghcb_active = false; 224 225 instrumentation_begin(); 226 panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use"); 227 instrumentation_end(); 228 } 229 230 /* Mark backup_ghcb active before writing to it */ 231 data->backup_ghcb_active = true; 232 233 state->ghcb = &data->backup_ghcb; 234 235 /* Backup GHCB content */ 236 *state->ghcb = *ghcb; 237 } else { 238 state->ghcb = NULL; 239 data->ghcb_active = true; 240 } 241 242 return ghcb; 243 } 244 245 static inline u64 sev_es_rd_ghcb_msr(void) 246 { 247 return __rdmsr(MSR_AMD64_SEV_ES_GHCB); 248 } 249 250 static __always_inline void sev_es_wr_ghcb_msr(u64 val) 251 { 252 u32 low, high; 253 254 low = (u32)(val); 255 high = (u32)(val >> 32); 256 257 native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high); 258 } 259 260 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt, 261 unsigned char *buffer) 262 { 263 return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE); 264 } 265 266 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt) 267 { 268 char buffer[MAX_INSN_SIZE]; 269 int insn_bytes; 270 271 insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer); 272 if (insn_bytes == 0) { 273 /* Nothing could be copied */ 274 ctxt->fi.vector = X86_TRAP_PF; 275 ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER; 276 ctxt->fi.cr2 = ctxt->regs->ip; 277 return ES_EXCEPTION; 278 } else if (insn_bytes == -EINVAL) { 279 /* Effective RIP could not be calculated */ 280 ctxt->fi.vector = X86_TRAP_GP; 281 ctxt->fi.error_code = 0; 282 ctxt->fi.cr2 = 0; 283 return ES_EXCEPTION; 284 } 285 286 if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes)) 287 return ES_DECODE_FAILED; 288 289 if (ctxt->insn.immediate.got) 290 return ES_OK; 291 else 292 return ES_DECODE_FAILED; 293 } 294 295 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt) 296 { 297 char buffer[MAX_INSN_SIZE]; 298 int res, ret; 299 300 res = vc_fetch_insn_kernel(ctxt, buffer); 301 if (res) { 302 ctxt->fi.vector = X86_TRAP_PF; 303 ctxt->fi.error_code = X86_PF_INSTR; 304 ctxt->fi.cr2 = ctxt->regs->ip; 305 return ES_EXCEPTION; 306 } 307 308 ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64); 309 if (ret < 0) 310 return ES_DECODE_FAILED; 311 else 312 return ES_OK; 313 } 314 315 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt) 316 { 317 if (user_mode(ctxt->regs)) 318 return __vc_decode_user_insn(ctxt); 319 else 320 return __vc_decode_kern_insn(ctxt); 321 } 322 323 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt, 324 char *dst, char *buf, size_t size) 325 { 326 unsigned long error_code = X86_PF_PROT | X86_PF_WRITE; 327 328 /* 329 * This function uses __put_user() independent of whether kernel or user 330 * memory is accessed. This works fine because __put_user() does no 331 * sanity checks of the pointer being accessed. All that it does is 332 * to report when the access failed. 333 * 334 * Also, this function runs in atomic context, so __put_user() is not 335 * allowed to sleep. The page-fault handler detects that it is running 336 * in atomic context and will not try to take mmap_sem and handle the 337 * fault, so additional pagefault_enable()/disable() calls are not 338 * needed. 339 * 340 * The access can't be done via copy_to_user() here because 341 * vc_write_mem() must not use string instructions to access unsafe 342 * memory. The reason is that MOVS is emulated by the #VC handler by 343 * splitting the move up into a read and a write and taking a nested #VC 344 * exception on whatever of them is the MMIO access. Using string 345 * instructions here would cause infinite nesting. 346 */ 347 switch (size) { 348 case 1: { 349 u8 d1; 350 u8 __user *target = (u8 __user *)dst; 351 352 memcpy(&d1, buf, 1); 353 if (__put_user(d1, target)) 354 goto fault; 355 break; 356 } 357 case 2: { 358 u16 d2; 359 u16 __user *target = (u16 __user *)dst; 360 361 memcpy(&d2, buf, 2); 362 if (__put_user(d2, target)) 363 goto fault; 364 break; 365 } 366 case 4: { 367 u32 d4; 368 u32 __user *target = (u32 __user *)dst; 369 370 memcpy(&d4, buf, 4); 371 if (__put_user(d4, target)) 372 goto fault; 373 break; 374 } 375 case 8: { 376 u64 d8; 377 u64 __user *target = (u64 __user *)dst; 378 379 memcpy(&d8, buf, 8); 380 if (__put_user(d8, target)) 381 goto fault; 382 break; 383 } 384 default: 385 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size); 386 return ES_UNSUPPORTED; 387 } 388 389 return ES_OK; 390 391 fault: 392 if (user_mode(ctxt->regs)) 393 error_code |= X86_PF_USER; 394 395 ctxt->fi.vector = X86_TRAP_PF; 396 ctxt->fi.error_code = error_code; 397 ctxt->fi.cr2 = (unsigned long)dst; 398 399 return ES_EXCEPTION; 400 } 401 402 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt, 403 char *src, char *buf, size_t size) 404 { 405 unsigned long error_code = X86_PF_PROT; 406 407 /* 408 * This function uses __get_user() independent of whether kernel or user 409 * memory is accessed. This works fine because __get_user() does no 410 * sanity checks of the pointer being accessed. All that it does is 411 * to report when the access failed. 412 * 413 * Also, this function runs in atomic context, so __get_user() is not 414 * allowed to sleep. The page-fault handler detects that it is running 415 * in atomic context and will not try to take mmap_sem and handle the 416 * fault, so additional pagefault_enable()/disable() calls are not 417 * needed. 418 * 419 * The access can't be done via copy_from_user() here because 420 * vc_read_mem() must not use string instructions to access unsafe 421 * memory. The reason is that MOVS is emulated by the #VC handler by 422 * splitting the move up into a read and a write and taking a nested #VC 423 * exception on whatever of them is the MMIO access. Using string 424 * instructions here would cause infinite nesting. 425 */ 426 switch (size) { 427 case 1: { 428 u8 d1; 429 u8 __user *s = (u8 __user *)src; 430 431 if (__get_user(d1, s)) 432 goto fault; 433 memcpy(buf, &d1, 1); 434 break; 435 } 436 case 2: { 437 u16 d2; 438 u16 __user *s = (u16 __user *)src; 439 440 if (__get_user(d2, s)) 441 goto fault; 442 memcpy(buf, &d2, 2); 443 break; 444 } 445 case 4: { 446 u32 d4; 447 u32 __user *s = (u32 __user *)src; 448 449 if (__get_user(d4, s)) 450 goto fault; 451 memcpy(buf, &d4, 4); 452 break; 453 } 454 case 8: { 455 u64 d8; 456 u64 __user *s = (u64 __user *)src; 457 if (__get_user(d8, s)) 458 goto fault; 459 memcpy(buf, &d8, 8); 460 break; 461 } 462 default: 463 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size); 464 return ES_UNSUPPORTED; 465 } 466 467 return ES_OK; 468 469 fault: 470 if (user_mode(ctxt->regs)) 471 error_code |= X86_PF_USER; 472 473 ctxt->fi.vector = X86_TRAP_PF; 474 ctxt->fi.error_code = error_code; 475 ctxt->fi.cr2 = (unsigned long)src; 476 477 return ES_EXCEPTION; 478 } 479 480 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt, 481 unsigned long vaddr, phys_addr_t *paddr) 482 { 483 unsigned long va = (unsigned long)vaddr; 484 unsigned int level; 485 phys_addr_t pa; 486 pgd_t *pgd; 487 pte_t *pte; 488 489 pgd = __va(read_cr3_pa()); 490 pgd = &pgd[pgd_index(va)]; 491 pte = lookup_address_in_pgd(pgd, va, &level); 492 if (!pte) { 493 ctxt->fi.vector = X86_TRAP_PF; 494 ctxt->fi.cr2 = vaddr; 495 ctxt->fi.error_code = 0; 496 497 if (user_mode(ctxt->regs)) 498 ctxt->fi.error_code |= X86_PF_USER; 499 500 return ES_EXCEPTION; 501 } 502 503 if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC)) 504 /* Emulated MMIO to/from encrypted memory not supported */ 505 return ES_UNSUPPORTED; 506 507 pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; 508 pa |= va & ~page_level_mask(level); 509 510 *paddr = pa; 511 512 return ES_OK; 513 } 514 515 /* Include code shared with pre-decompression boot stage */ 516 #include "sev-shared.c" 517 518 static noinstr void __sev_put_ghcb(struct ghcb_state *state) 519 { 520 struct sev_es_runtime_data *data; 521 struct ghcb *ghcb; 522 523 WARN_ON(!irqs_disabled()); 524 525 data = this_cpu_read(runtime_data); 526 ghcb = &data->ghcb_page; 527 528 if (state->ghcb) { 529 /* Restore GHCB from Backup */ 530 *ghcb = *state->ghcb; 531 data->backup_ghcb_active = false; 532 state->ghcb = NULL; 533 } else { 534 /* 535 * Invalidate the GHCB so a VMGEXIT instruction issued 536 * from userspace won't appear to be valid. 537 */ 538 vc_ghcb_invalidate(ghcb); 539 data->ghcb_active = false; 540 } 541 } 542 543 void noinstr __sev_es_nmi_complete(void) 544 { 545 struct ghcb_state state; 546 struct ghcb *ghcb; 547 548 ghcb = __sev_get_ghcb(&state); 549 550 vc_ghcb_invalidate(ghcb); 551 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE); 552 ghcb_set_sw_exit_info_1(ghcb, 0); 553 ghcb_set_sw_exit_info_2(ghcb, 0); 554 555 sev_es_wr_ghcb_msr(__pa_nodebug(ghcb)); 556 VMGEXIT(); 557 558 __sev_put_ghcb(&state); 559 } 560 561 static u64 __init get_secrets_page(void) 562 { 563 u64 pa_data = boot_params.cc_blob_address; 564 struct cc_blob_sev_info info; 565 void *map; 566 567 /* 568 * The CC blob contains the address of the secrets page, check if the 569 * blob is present. 570 */ 571 if (!pa_data) 572 return 0; 573 574 map = early_memremap(pa_data, sizeof(info)); 575 if (!map) { 576 pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n"); 577 return 0; 578 } 579 memcpy(&info, map, sizeof(info)); 580 early_memunmap(map, sizeof(info)); 581 582 /* smoke-test the secrets page passed */ 583 if (!info.secrets_phys || info.secrets_len != PAGE_SIZE) 584 return 0; 585 586 return info.secrets_phys; 587 } 588 589 static u64 __init get_snp_jump_table_addr(void) 590 { 591 struct snp_secrets_page_layout *layout; 592 void __iomem *mem; 593 u64 pa, addr; 594 595 pa = get_secrets_page(); 596 if (!pa) 597 return 0; 598 599 mem = ioremap_encrypted(pa, PAGE_SIZE); 600 if (!mem) { 601 pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n"); 602 return 0; 603 } 604 605 layout = (__force struct snp_secrets_page_layout *)mem; 606 607 addr = layout->os_area.ap_jump_table_pa; 608 iounmap(mem); 609 610 return addr; 611 } 612 613 static u64 __init get_jump_table_addr(void) 614 { 615 struct ghcb_state state; 616 unsigned long flags; 617 struct ghcb *ghcb; 618 u64 ret = 0; 619 620 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) 621 return get_snp_jump_table_addr(); 622 623 local_irq_save(flags); 624 625 ghcb = __sev_get_ghcb(&state); 626 627 vc_ghcb_invalidate(ghcb); 628 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE); 629 ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE); 630 ghcb_set_sw_exit_info_2(ghcb, 0); 631 632 sev_es_wr_ghcb_msr(__pa(ghcb)); 633 VMGEXIT(); 634 635 if (ghcb_sw_exit_info_1_is_valid(ghcb) && 636 ghcb_sw_exit_info_2_is_valid(ghcb)) 637 ret = ghcb->save.sw_exit_info_2; 638 639 __sev_put_ghcb(&state); 640 641 local_irq_restore(flags); 642 643 return ret; 644 } 645 646 static void pvalidate_pages(unsigned long vaddr, unsigned int npages, bool validate) 647 { 648 unsigned long vaddr_end; 649 int rc; 650 651 vaddr = vaddr & PAGE_MASK; 652 vaddr_end = vaddr + (npages << PAGE_SHIFT); 653 654 while (vaddr < vaddr_end) { 655 rc = pvalidate(vaddr, RMP_PG_SIZE_4K, validate); 656 if (WARN(rc, "Failed to validate address 0x%lx ret %d", vaddr, rc)) 657 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE); 658 659 vaddr = vaddr + PAGE_SIZE; 660 } 661 } 662 663 static void __init early_set_pages_state(unsigned long paddr, unsigned int npages, enum psc_op op) 664 { 665 unsigned long paddr_end; 666 u64 val; 667 668 paddr = paddr & PAGE_MASK; 669 paddr_end = paddr + (npages << PAGE_SHIFT); 670 671 while (paddr < paddr_end) { 672 /* 673 * Use the MSR protocol because this function can be called before 674 * the GHCB is established. 675 */ 676 sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op)); 677 VMGEXIT(); 678 679 val = sev_es_rd_ghcb_msr(); 680 681 if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP, 682 "Wrong PSC response code: 0x%x\n", 683 (unsigned int)GHCB_RESP_CODE(val))) 684 goto e_term; 685 686 if (WARN(GHCB_MSR_PSC_RESP_VAL(val), 687 "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n", 688 op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared", 689 paddr, GHCB_MSR_PSC_RESP_VAL(val))) 690 goto e_term; 691 692 paddr = paddr + PAGE_SIZE; 693 } 694 695 return; 696 697 e_term: 698 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC); 699 } 700 701 void __init early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr, 702 unsigned int npages) 703 { 704 /* 705 * This can be invoked in early boot while running identity mapped, so 706 * use an open coded check for SNP instead of using cc_platform_has(). 707 * This eliminates worries about jump tables or checking boot_cpu_data 708 * in the cc_platform_has() function. 709 */ 710 if (!(sev_status & MSR_AMD64_SEV_SNP_ENABLED)) 711 return; 712 713 /* 714 * Ask the hypervisor to mark the memory pages as private in the RMP 715 * table. 716 */ 717 early_set_pages_state(paddr, npages, SNP_PAGE_STATE_PRIVATE); 718 719 /* Validate the memory pages after they've been added in the RMP table. */ 720 pvalidate_pages(vaddr, npages, true); 721 } 722 723 void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr, 724 unsigned int npages) 725 { 726 /* 727 * This can be invoked in early boot while running identity mapped, so 728 * use an open coded check for SNP instead of using cc_platform_has(). 729 * This eliminates worries about jump tables or checking boot_cpu_data 730 * in the cc_platform_has() function. 731 */ 732 if (!(sev_status & MSR_AMD64_SEV_SNP_ENABLED)) 733 return; 734 735 /* Invalidate the memory pages before they are marked shared in the RMP table. */ 736 pvalidate_pages(vaddr, npages, false); 737 738 /* Ask hypervisor to mark the memory pages shared in the RMP table. */ 739 early_set_pages_state(paddr, npages, SNP_PAGE_STATE_SHARED); 740 } 741 742 void __init snp_prep_memory(unsigned long paddr, unsigned int sz, enum psc_op op) 743 { 744 unsigned long vaddr, npages; 745 746 vaddr = (unsigned long)__va(paddr); 747 npages = PAGE_ALIGN(sz) >> PAGE_SHIFT; 748 749 if (op == SNP_PAGE_STATE_PRIVATE) 750 early_snp_set_memory_private(vaddr, paddr, npages); 751 else if (op == SNP_PAGE_STATE_SHARED) 752 early_snp_set_memory_shared(vaddr, paddr, npages); 753 else 754 WARN(1, "invalid memory op %d\n", op); 755 } 756 757 static int vmgexit_psc(struct snp_psc_desc *desc) 758 { 759 int cur_entry, end_entry, ret = 0; 760 struct snp_psc_desc *data; 761 struct ghcb_state state; 762 struct es_em_ctxt ctxt; 763 unsigned long flags; 764 struct ghcb *ghcb; 765 766 /* 767 * __sev_get_ghcb() needs to run with IRQs disabled because it is using 768 * a per-CPU GHCB. 769 */ 770 local_irq_save(flags); 771 772 ghcb = __sev_get_ghcb(&state); 773 if (!ghcb) { 774 ret = 1; 775 goto out_unlock; 776 } 777 778 /* Copy the input desc into GHCB shared buffer */ 779 data = (struct snp_psc_desc *)ghcb->shared_buffer; 780 memcpy(ghcb->shared_buffer, desc, min_t(int, GHCB_SHARED_BUF_SIZE, sizeof(*desc))); 781 782 /* 783 * As per the GHCB specification, the hypervisor can resume the guest 784 * before processing all the entries. Check whether all the entries 785 * are processed. If not, then keep retrying. Note, the hypervisor 786 * will update the data memory directly to indicate the status, so 787 * reference the data->hdr everywhere. 788 * 789 * The strategy here is to wait for the hypervisor to change the page 790 * state in the RMP table before guest accesses the memory pages. If the 791 * page state change was not successful, then later memory access will 792 * result in a crash. 793 */ 794 cur_entry = data->hdr.cur_entry; 795 end_entry = data->hdr.end_entry; 796 797 while (data->hdr.cur_entry <= data->hdr.end_entry) { 798 ghcb_set_sw_scratch(ghcb, (u64)__pa(data)); 799 800 /* This will advance the shared buffer data points to. */ 801 ret = sev_es_ghcb_hv_call(ghcb, &ctxt, SVM_VMGEXIT_PSC, 0, 0); 802 803 /* 804 * Page State Change VMGEXIT can pass error code through 805 * exit_info_2. 806 */ 807 if (WARN(ret || ghcb->save.sw_exit_info_2, 808 "SNP: PSC failed ret=%d exit_info_2=%llx\n", 809 ret, ghcb->save.sw_exit_info_2)) { 810 ret = 1; 811 goto out; 812 } 813 814 /* Verify that reserved bit is not set */ 815 if (WARN(data->hdr.reserved, "Reserved bit is set in the PSC header\n")) { 816 ret = 1; 817 goto out; 818 } 819 820 /* 821 * Sanity check that entry processing is not going backwards. 822 * This will happen only if hypervisor is tricking us. 823 */ 824 if (WARN(data->hdr.end_entry > end_entry || cur_entry > data->hdr.cur_entry, 825 "SNP: PSC processing going backward, end_entry %d (got %d) cur_entry %d (got %d)\n", 826 end_entry, data->hdr.end_entry, cur_entry, data->hdr.cur_entry)) { 827 ret = 1; 828 goto out; 829 } 830 } 831 832 out: 833 __sev_put_ghcb(&state); 834 835 out_unlock: 836 local_irq_restore(flags); 837 838 return ret; 839 } 840 841 static void __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr, 842 unsigned long vaddr_end, int op) 843 { 844 struct psc_hdr *hdr; 845 struct psc_entry *e; 846 unsigned long pfn; 847 int i; 848 849 hdr = &data->hdr; 850 e = data->entries; 851 852 memset(data, 0, sizeof(*data)); 853 i = 0; 854 855 while (vaddr < vaddr_end) { 856 if (is_vmalloc_addr((void *)vaddr)) 857 pfn = vmalloc_to_pfn((void *)vaddr); 858 else 859 pfn = __pa(vaddr) >> PAGE_SHIFT; 860 861 e->gfn = pfn; 862 e->operation = op; 863 hdr->end_entry = i; 864 865 /* 866 * Current SNP implementation doesn't keep track of the RMP page 867 * size so use 4K for simplicity. 868 */ 869 e->pagesize = RMP_PG_SIZE_4K; 870 871 vaddr = vaddr + PAGE_SIZE; 872 e++; 873 i++; 874 } 875 876 if (vmgexit_psc(data)) 877 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC); 878 } 879 880 static void set_pages_state(unsigned long vaddr, unsigned int npages, int op) 881 { 882 unsigned long vaddr_end, next_vaddr; 883 struct snp_psc_desc *desc; 884 885 desc = kmalloc(sizeof(*desc), GFP_KERNEL_ACCOUNT); 886 if (!desc) 887 panic("SNP: failed to allocate memory for PSC descriptor\n"); 888 889 vaddr = vaddr & PAGE_MASK; 890 vaddr_end = vaddr + (npages << PAGE_SHIFT); 891 892 while (vaddr < vaddr_end) { 893 /* Calculate the last vaddr that fits in one struct snp_psc_desc. */ 894 next_vaddr = min_t(unsigned long, vaddr_end, 895 (VMGEXIT_PSC_MAX_ENTRY * PAGE_SIZE) + vaddr); 896 897 __set_pages_state(desc, vaddr, next_vaddr, op); 898 899 vaddr = next_vaddr; 900 } 901 902 kfree(desc); 903 } 904 905 void snp_set_memory_shared(unsigned long vaddr, unsigned int npages) 906 { 907 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) 908 return; 909 910 pvalidate_pages(vaddr, npages, false); 911 912 set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED); 913 } 914 915 void snp_set_memory_private(unsigned long vaddr, unsigned int npages) 916 { 917 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) 918 return; 919 920 set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE); 921 922 pvalidate_pages(vaddr, npages, true); 923 } 924 925 static int snp_set_vmsa(void *va, bool vmsa) 926 { 927 u64 attrs; 928 929 /* 930 * Running at VMPL0 allows the kernel to change the VMSA bit for a page 931 * using the RMPADJUST instruction. However, for the instruction to 932 * succeed it must target the permissions of a lesser privileged 933 * (higher numbered) VMPL level, so use VMPL1 (refer to the RMPADJUST 934 * instruction in the AMD64 APM Volume 3). 935 */ 936 attrs = 1; 937 if (vmsa) 938 attrs |= RMPADJUST_VMSA_PAGE_BIT; 939 940 return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs); 941 } 942 943 #define __ATTR_BASE (SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK) 944 #define INIT_CS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK) 945 #define INIT_DS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_WRITE_MASK) 946 947 #define INIT_LDTR_ATTRIBS (SVM_SELECTOR_P_MASK | 2) 948 #define INIT_TR_ATTRIBS (SVM_SELECTOR_P_MASK | 3) 949 950 static void *snp_alloc_vmsa_page(void) 951 { 952 struct page *p; 953 954 /* 955 * Allocate VMSA page to work around the SNP erratum where the CPU will 956 * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB) 957 * collides with the RMP entry of VMSA page. The recommended workaround 958 * is to not use a large page. 959 * 960 * Allocate an 8k page which is also 8k-aligned. 961 */ 962 p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1); 963 if (!p) 964 return NULL; 965 966 split_page(p, 1); 967 968 /* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */ 969 __free_page(p); 970 971 return page_address(p + 1); 972 } 973 974 static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa) 975 { 976 int err; 977 978 err = snp_set_vmsa(vmsa, false); 979 if (err) 980 pr_err("clear VMSA page failed (%u), leaking page\n", err); 981 else 982 free_page((unsigned long)vmsa); 983 } 984 985 static int wakeup_cpu_via_vmgexit(int apic_id, unsigned long start_ip) 986 { 987 struct sev_es_save_area *cur_vmsa, *vmsa; 988 struct ghcb_state state; 989 unsigned long flags; 990 struct ghcb *ghcb; 991 u8 sipi_vector; 992 int cpu, ret; 993 u64 cr4; 994 995 /* 996 * The hypervisor SNP feature support check has happened earlier, just check 997 * the AP_CREATION one here. 998 */ 999 if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION)) 1000 return -EOPNOTSUPP; 1001 1002 /* 1003 * Verify the desired start IP against the known trampoline start IP 1004 * to catch any future new trampolines that may be introduced that 1005 * would require a new protected guest entry point. 1006 */ 1007 if (WARN_ONCE(start_ip != real_mode_header->trampoline_start, 1008 "Unsupported SNP start_ip: %lx\n", start_ip)) 1009 return -EINVAL; 1010 1011 /* Override start_ip with known protected guest start IP */ 1012 start_ip = real_mode_header->sev_es_trampoline_start; 1013 1014 /* Find the logical CPU for the APIC ID */ 1015 for_each_present_cpu(cpu) { 1016 if (arch_match_cpu_phys_id(cpu, apic_id)) 1017 break; 1018 } 1019 if (cpu >= nr_cpu_ids) 1020 return -EINVAL; 1021 1022 cur_vmsa = per_cpu(sev_vmsa, cpu); 1023 1024 /* 1025 * A new VMSA is created each time because there is no guarantee that 1026 * the current VMSA is the kernels or that the vCPU is not running. If 1027 * an attempt was done to use the current VMSA with a running vCPU, a 1028 * #VMEXIT of that vCPU would wipe out all of the settings being done 1029 * here. 1030 */ 1031 vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page(); 1032 if (!vmsa) 1033 return -ENOMEM; 1034 1035 /* CR4 should maintain the MCE value */ 1036 cr4 = native_read_cr4() & X86_CR4_MCE; 1037 1038 /* Set the CS value based on the start_ip converted to a SIPI vector */ 1039 sipi_vector = (start_ip >> 12); 1040 vmsa->cs.base = sipi_vector << 12; 1041 vmsa->cs.limit = AP_INIT_CS_LIMIT; 1042 vmsa->cs.attrib = INIT_CS_ATTRIBS; 1043 vmsa->cs.selector = sipi_vector << 8; 1044 1045 /* Set the RIP value based on start_ip */ 1046 vmsa->rip = start_ip & 0xfff; 1047 1048 /* Set AP INIT defaults as documented in the APM */ 1049 vmsa->ds.limit = AP_INIT_DS_LIMIT; 1050 vmsa->ds.attrib = INIT_DS_ATTRIBS; 1051 vmsa->es = vmsa->ds; 1052 vmsa->fs = vmsa->ds; 1053 vmsa->gs = vmsa->ds; 1054 vmsa->ss = vmsa->ds; 1055 1056 vmsa->gdtr.limit = AP_INIT_GDTR_LIMIT; 1057 vmsa->ldtr.limit = AP_INIT_LDTR_LIMIT; 1058 vmsa->ldtr.attrib = INIT_LDTR_ATTRIBS; 1059 vmsa->idtr.limit = AP_INIT_IDTR_LIMIT; 1060 vmsa->tr.limit = AP_INIT_TR_LIMIT; 1061 vmsa->tr.attrib = INIT_TR_ATTRIBS; 1062 1063 vmsa->cr4 = cr4; 1064 vmsa->cr0 = AP_INIT_CR0_DEFAULT; 1065 vmsa->dr7 = DR7_RESET_VALUE; 1066 vmsa->dr6 = AP_INIT_DR6_DEFAULT; 1067 vmsa->rflags = AP_INIT_RFLAGS_DEFAULT; 1068 vmsa->g_pat = AP_INIT_GPAT_DEFAULT; 1069 vmsa->xcr0 = AP_INIT_XCR0_DEFAULT; 1070 vmsa->mxcsr = AP_INIT_MXCSR_DEFAULT; 1071 vmsa->x87_ftw = AP_INIT_X87_FTW_DEFAULT; 1072 vmsa->x87_fcw = AP_INIT_X87_FCW_DEFAULT; 1073 1074 /* SVME must be set. */ 1075 vmsa->efer = EFER_SVME; 1076 1077 /* 1078 * Set the SNP-specific fields for this VMSA: 1079 * VMPL level 1080 * SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits) 1081 */ 1082 vmsa->vmpl = 0; 1083 vmsa->sev_features = sev_status >> 2; 1084 1085 /* Switch the page over to a VMSA page now that it is initialized */ 1086 ret = snp_set_vmsa(vmsa, true); 1087 if (ret) { 1088 pr_err("set VMSA page failed (%u)\n", ret); 1089 free_page((unsigned long)vmsa); 1090 1091 return -EINVAL; 1092 } 1093 1094 /* Issue VMGEXIT AP Creation NAE event */ 1095 local_irq_save(flags); 1096 1097 ghcb = __sev_get_ghcb(&state); 1098 1099 vc_ghcb_invalidate(ghcb); 1100 ghcb_set_rax(ghcb, vmsa->sev_features); 1101 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION); 1102 ghcb_set_sw_exit_info_1(ghcb, ((u64)apic_id << 32) | SVM_VMGEXIT_AP_CREATE); 1103 ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa)); 1104 1105 sev_es_wr_ghcb_msr(__pa(ghcb)); 1106 VMGEXIT(); 1107 1108 if (!ghcb_sw_exit_info_1_is_valid(ghcb) || 1109 lower_32_bits(ghcb->save.sw_exit_info_1)) { 1110 pr_err("SNP AP Creation error\n"); 1111 ret = -EINVAL; 1112 } 1113 1114 __sev_put_ghcb(&state); 1115 1116 local_irq_restore(flags); 1117 1118 /* Perform cleanup if there was an error */ 1119 if (ret) { 1120 snp_cleanup_vmsa(vmsa); 1121 vmsa = NULL; 1122 } 1123 1124 /* Free up any previous VMSA page */ 1125 if (cur_vmsa) 1126 snp_cleanup_vmsa(cur_vmsa); 1127 1128 /* Record the current VMSA page */ 1129 per_cpu(sev_vmsa, cpu) = vmsa; 1130 1131 return ret; 1132 } 1133 1134 void snp_set_wakeup_secondary_cpu(void) 1135 { 1136 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) 1137 return; 1138 1139 /* 1140 * Always set this override if SNP is enabled. This makes it the 1141 * required method to start APs under SNP. If the hypervisor does 1142 * not support AP creation, then no APs will be started. 1143 */ 1144 apic->wakeup_secondary_cpu = wakeup_cpu_via_vmgexit; 1145 } 1146 1147 int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh) 1148 { 1149 u16 startup_cs, startup_ip; 1150 phys_addr_t jump_table_pa; 1151 u64 jump_table_addr; 1152 u16 __iomem *jump_table; 1153 1154 jump_table_addr = get_jump_table_addr(); 1155 1156 /* On UP guests there is no jump table so this is not a failure */ 1157 if (!jump_table_addr) 1158 return 0; 1159 1160 /* Check if AP Jump Table is page-aligned */ 1161 if (jump_table_addr & ~PAGE_MASK) 1162 return -EINVAL; 1163 1164 jump_table_pa = jump_table_addr & PAGE_MASK; 1165 1166 startup_cs = (u16)(rmh->trampoline_start >> 4); 1167 startup_ip = (u16)(rmh->sev_es_trampoline_start - 1168 rmh->trampoline_start); 1169 1170 jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE); 1171 if (!jump_table) 1172 return -EIO; 1173 1174 writew(startup_ip, &jump_table[0]); 1175 writew(startup_cs, &jump_table[1]); 1176 1177 iounmap(jump_table); 1178 1179 return 0; 1180 } 1181 1182 /* 1183 * This is needed by the OVMF UEFI firmware which will use whatever it finds in 1184 * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu 1185 * runtime GHCBs used by the kernel are also mapped in the EFI page-table. 1186 */ 1187 int __init sev_es_efi_map_ghcbs(pgd_t *pgd) 1188 { 1189 struct sev_es_runtime_data *data; 1190 unsigned long address, pflags; 1191 int cpu; 1192 u64 pfn; 1193 1194 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT)) 1195 return 0; 1196 1197 pflags = _PAGE_NX | _PAGE_RW; 1198 1199 for_each_possible_cpu(cpu) { 1200 data = per_cpu(runtime_data, cpu); 1201 1202 address = __pa(&data->ghcb_page); 1203 pfn = address >> PAGE_SHIFT; 1204 1205 if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags)) 1206 return 1; 1207 } 1208 1209 return 0; 1210 } 1211 1212 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt) 1213 { 1214 struct pt_regs *regs = ctxt->regs; 1215 enum es_result ret; 1216 u64 exit_info_1; 1217 1218 /* Is it a WRMSR? */ 1219 exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0; 1220 1221 ghcb_set_rcx(ghcb, regs->cx); 1222 if (exit_info_1) { 1223 ghcb_set_rax(ghcb, regs->ax); 1224 ghcb_set_rdx(ghcb, regs->dx); 1225 } 1226 1227 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0); 1228 1229 if ((ret == ES_OK) && (!exit_info_1)) { 1230 regs->ax = ghcb->save.rax; 1231 regs->dx = ghcb->save.rdx; 1232 } 1233 1234 return ret; 1235 } 1236 1237 static void snp_register_per_cpu_ghcb(void) 1238 { 1239 struct sev_es_runtime_data *data; 1240 struct ghcb *ghcb; 1241 1242 data = this_cpu_read(runtime_data); 1243 ghcb = &data->ghcb_page; 1244 1245 snp_register_ghcb_early(__pa(ghcb)); 1246 } 1247 1248 void setup_ghcb(void) 1249 { 1250 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT)) 1251 return; 1252 1253 /* First make sure the hypervisor talks a supported protocol. */ 1254 if (!sev_es_negotiate_protocol()) 1255 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ); 1256 1257 /* 1258 * Check whether the runtime #VC exception handler is active. It uses 1259 * the per-CPU GHCB page which is set up by sev_es_init_vc_handling(). 1260 * 1261 * If SNP is active, register the per-CPU GHCB page so that the runtime 1262 * exception handler can use it. 1263 */ 1264 if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) { 1265 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) 1266 snp_register_per_cpu_ghcb(); 1267 1268 return; 1269 } 1270 1271 /* 1272 * Clear the boot_ghcb. The first exception comes in before the bss 1273 * section is cleared. 1274 */ 1275 memset(&boot_ghcb_page, 0, PAGE_SIZE); 1276 1277 /* Alright - Make the boot-ghcb public */ 1278 boot_ghcb = &boot_ghcb_page; 1279 1280 /* SNP guest requires that GHCB GPA must be registered. */ 1281 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) 1282 snp_register_ghcb_early(__pa(&boot_ghcb_page)); 1283 } 1284 1285 #ifdef CONFIG_HOTPLUG_CPU 1286 static void sev_es_ap_hlt_loop(void) 1287 { 1288 struct ghcb_state state; 1289 struct ghcb *ghcb; 1290 1291 ghcb = __sev_get_ghcb(&state); 1292 1293 while (true) { 1294 vc_ghcb_invalidate(ghcb); 1295 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP); 1296 ghcb_set_sw_exit_info_1(ghcb, 0); 1297 ghcb_set_sw_exit_info_2(ghcb, 0); 1298 1299 sev_es_wr_ghcb_msr(__pa(ghcb)); 1300 VMGEXIT(); 1301 1302 /* Wakeup signal? */ 1303 if (ghcb_sw_exit_info_2_is_valid(ghcb) && 1304 ghcb->save.sw_exit_info_2) 1305 break; 1306 } 1307 1308 __sev_put_ghcb(&state); 1309 } 1310 1311 /* 1312 * Play_dead handler when running under SEV-ES. This is needed because 1313 * the hypervisor can't deliver an SIPI request to restart the AP. 1314 * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the 1315 * hypervisor wakes it up again. 1316 */ 1317 static void sev_es_play_dead(void) 1318 { 1319 play_dead_common(); 1320 1321 /* IRQs now disabled */ 1322 1323 sev_es_ap_hlt_loop(); 1324 1325 /* 1326 * If we get here, the VCPU was woken up again. Jump to CPU 1327 * startup code to get it back online. 1328 */ 1329 start_cpu0(); 1330 } 1331 #else /* CONFIG_HOTPLUG_CPU */ 1332 #define sev_es_play_dead native_play_dead 1333 #endif /* CONFIG_HOTPLUG_CPU */ 1334 1335 #ifdef CONFIG_SMP 1336 static void __init sev_es_setup_play_dead(void) 1337 { 1338 smp_ops.play_dead = sev_es_play_dead; 1339 } 1340 #else 1341 static inline void sev_es_setup_play_dead(void) { } 1342 #endif 1343 1344 static void __init alloc_runtime_data(int cpu) 1345 { 1346 struct sev_es_runtime_data *data; 1347 1348 data = memblock_alloc(sizeof(*data), PAGE_SIZE); 1349 if (!data) 1350 panic("Can't allocate SEV-ES runtime data"); 1351 1352 per_cpu(runtime_data, cpu) = data; 1353 } 1354 1355 static void __init init_ghcb(int cpu) 1356 { 1357 struct sev_es_runtime_data *data; 1358 int err; 1359 1360 data = per_cpu(runtime_data, cpu); 1361 1362 err = early_set_memory_decrypted((unsigned long)&data->ghcb_page, 1363 sizeof(data->ghcb_page)); 1364 if (err) 1365 panic("Can't map GHCBs unencrypted"); 1366 1367 memset(&data->ghcb_page, 0, sizeof(data->ghcb_page)); 1368 1369 data->ghcb_active = false; 1370 data->backup_ghcb_active = false; 1371 } 1372 1373 void __init sev_es_init_vc_handling(void) 1374 { 1375 int cpu; 1376 1377 BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE); 1378 1379 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT)) 1380 return; 1381 1382 if (!sev_es_check_cpu_features()) 1383 panic("SEV-ES CPU Features missing"); 1384 1385 /* 1386 * SNP is supported in v2 of the GHCB spec which mandates support for HV 1387 * features. 1388 */ 1389 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) { 1390 sev_hv_features = get_hv_features(); 1391 1392 if (!(sev_hv_features & GHCB_HV_FT_SNP)) 1393 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED); 1394 } 1395 1396 /* Enable SEV-ES special handling */ 1397 static_branch_enable(&sev_es_enable_key); 1398 1399 /* Initialize per-cpu GHCB pages */ 1400 for_each_possible_cpu(cpu) { 1401 alloc_runtime_data(cpu); 1402 init_ghcb(cpu); 1403 } 1404 1405 sev_es_setup_play_dead(); 1406 1407 /* Secondary CPUs use the runtime #VC handler */ 1408 initial_vc_handler = (unsigned long)kernel_exc_vmm_communication; 1409 } 1410 1411 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt) 1412 { 1413 int trapnr = ctxt->fi.vector; 1414 1415 if (trapnr == X86_TRAP_PF) 1416 native_write_cr2(ctxt->fi.cr2); 1417 1418 ctxt->regs->orig_ax = ctxt->fi.error_code; 1419 do_early_exception(ctxt->regs, trapnr); 1420 } 1421 1422 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt) 1423 { 1424 long *reg_array; 1425 int offset; 1426 1427 reg_array = (long *)ctxt->regs; 1428 offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs); 1429 1430 if (offset < 0) 1431 return NULL; 1432 1433 offset /= sizeof(long); 1434 1435 return reg_array + offset; 1436 } 1437 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt, 1438 unsigned int bytes, bool read) 1439 { 1440 u64 exit_code, exit_info_1, exit_info_2; 1441 unsigned long ghcb_pa = __pa(ghcb); 1442 enum es_result res; 1443 phys_addr_t paddr; 1444 void __user *ref; 1445 1446 ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs); 1447 if (ref == (void __user *)-1L) 1448 return ES_UNSUPPORTED; 1449 1450 exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE; 1451 1452 res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr); 1453 if (res != ES_OK) { 1454 if (res == ES_EXCEPTION && !read) 1455 ctxt->fi.error_code |= X86_PF_WRITE; 1456 1457 return res; 1458 } 1459 1460 exit_info_1 = paddr; 1461 /* Can never be greater than 8 */ 1462 exit_info_2 = bytes; 1463 1464 ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer)); 1465 1466 return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2); 1467 } 1468 1469 /* 1470 * The MOVS instruction has two memory operands, which raises the 1471 * problem that it is not known whether the access to the source or the 1472 * destination caused the #VC exception (and hence whether an MMIO read 1473 * or write operation needs to be emulated). 1474 * 1475 * Instead of playing games with walking page-tables and trying to guess 1476 * whether the source or destination is an MMIO range, split the move 1477 * into two operations, a read and a write with only one memory operand. 1478 * This will cause a nested #VC exception on the MMIO address which can 1479 * then be handled. 1480 * 1481 * This implementation has the benefit that it also supports MOVS where 1482 * source _and_ destination are MMIO regions. 1483 * 1484 * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a 1485 * rare operation. If it turns out to be a performance problem the split 1486 * operations can be moved to memcpy_fromio() and memcpy_toio(). 1487 */ 1488 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt, 1489 unsigned int bytes) 1490 { 1491 unsigned long ds_base, es_base; 1492 unsigned char *src, *dst; 1493 unsigned char buffer[8]; 1494 enum es_result ret; 1495 bool rep; 1496 int off; 1497 1498 ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS); 1499 es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES); 1500 1501 if (ds_base == -1L || es_base == -1L) { 1502 ctxt->fi.vector = X86_TRAP_GP; 1503 ctxt->fi.error_code = 0; 1504 return ES_EXCEPTION; 1505 } 1506 1507 src = ds_base + (unsigned char *)ctxt->regs->si; 1508 dst = es_base + (unsigned char *)ctxt->regs->di; 1509 1510 ret = vc_read_mem(ctxt, src, buffer, bytes); 1511 if (ret != ES_OK) 1512 return ret; 1513 1514 ret = vc_write_mem(ctxt, dst, buffer, bytes); 1515 if (ret != ES_OK) 1516 return ret; 1517 1518 if (ctxt->regs->flags & X86_EFLAGS_DF) 1519 off = -bytes; 1520 else 1521 off = bytes; 1522 1523 ctxt->regs->si += off; 1524 ctxt->regs->di += off; 1525 1526 rep = insn_has_rep_prefix(&ctxt->insn); 1527 if (rep) 1528 ctxt->regs->cx -= 1; 1529 1530 if (!rep || ctxt->regs->cx == 0) 1531 return ES_OK; 1532 else 1533 return ES_RETRY; 1534 } 1535 1536 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt) 1537 { 1538 struct insn *insn = &ctxt->insn; 1539 enum insn_mmio_type mmio; 1540 unsigned int bytes = 0; 1541 enum es_result ret; 1542 u8 sign_byte; 1543 long *reg_data; 1544 1545 mmio = insn_decode_mmio(insn, &bytes); 1546 if (mmio == INSN_MMIO_DECODE_FAILED) 1547 return ES_DECODE_FAILED; 1548 1549 if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) { 1550 reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs); 1551 if (!reg_data) 1552 return ES_DECODE_FAILED; 1553 } 1554 1555 switch (mmio) { 1556 case INSN_MMIO_WRITE: 1557 memcpy(ghcb->shared_buffer, reg_data, bytes); 1558 ret = vc_do_mmio(ghcb, ctxt, bytes, false); 1559 break; 1560 case INSN_MMIO_WRITE_IMM: 1561 memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes); 1562 ret = vc_do_mmio(ghcb, ctxt, bytes, false); 1563 break; 1564 case INSN_MMIO_READ: 1565 ret = vc_do_mmio(ghcb, ctxt, bytes, true); 1566 if (ret) 1567 break; 1568 1569 /* Zero-extend for 32-bit operation */ 1570 if (bytes == 4) 1571 *reg_data = 0; 1572 1573 memcpy(reg_data, ghcb->shared_buffer, bytes); 1574 break; 1575 case INSN_MMIO_READ_ZERO_EXTEND: 1576 ret = vc_do_mmio(ghcb, ctxt, bytes, true); 1577 if (ret) 1578 break; 1579 1580 /* Zero extend based on operand size */ 1581 memset(reg_data, 0, insn->opnd_bytes); 1582 memcpy(reg_data, ghcb->shared_buffer, bytes); 1583 break; 1584 case INSN_MMIO_READ_SIGN_EXTEND: 1585 ret = vc_do_mmio(ghcb, ctxt, bytes, true); 1586 if (ret) 1587 break; 1588 1589 if (bytes == 1) { 1590 u8 *val = (u8 *)ghcb->shared_buffer; 1591 1592 sign_byte = (*val & 0x80) ? 0xff : 0x00; 1593 } else { 1594 u16 *val = (u16 *)ghcb->shared_buffer; 1595 1596 sign_byte = (*val & 0x8000) ? 0xff : 0x00; 1597 } 1598 1599 /* Sign extend based on operand size */ 1600 memset(reg_data, sign_byte, insn->opnd_bytes); 1601 memcpy(reg_data, ghcb->shared_buffer, bytes); 1602 break; 1603 case INSN_MMIO_MOVS: 1604 ret = vc_handle_mmio_movs(ctxt, bytes); 1605 break; 1606 default: 1607 ret = ES_UNSUPPORTED; 1608 break; 1609 } 1610 1611 return ret; 1612 } 1613 1614 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb, 1615 struct es_em_ctxt *ctxt) 1616 { 1617 struct sev_es_runtime_data *data = this_cpu_read(runtime_data); 1618 long val, *reg = vc_insn_get_rm(ctxt); 1619 enum es_result ret; 1620 1621 if (!reg) 1622 return ES_DECODE_FAILED; 1623 1624 val = *reg; 1625 1626 /* Upper 32 bits must be written as zeroes */ 1627 if (val >> 32) { 1628 ctxt->fi.vector = X86_TRAP_GP; 1629 ctxt->fi.error_code = 0; 1630 return ES_EXCEPTION; 1631 } 1632 1633 /* Clear out other reserved bits and set bit 10 */ 1634 val = (val & 0xffff23ffL) | BIT(10); 1635 1636 /* Early non-zero writes to DR7 are not supported */ 1637 if (!data && (val & ~DR7_RESET_VALUE)) 1638 return ES_UNSUPPORTED; 1639 1640 /* Using a value of 0 for ExitInfo1 means RAX holds the value */ 1641 ghcb_set_rax(ghcb, val); 1642 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0); 1643 if (ret != ES_OK) 1644 return ret; 1645 1646 if (data) 1647 data->dr7 = val; 1648 1649 return ES_OK; 1650 } 1651 1652 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb, 1653 struct es_em_ctxt *ctxt) 1654 { 1655 struct sev_es_runtime_data *data = this_cpu_read(runtime_data); 1656 long *reg = vc_insn_get_rm(ctxt); 1657 1658 if (!reg) 1659 return ES_DECODE_FAILED; 1660 1661 if (data) 1662 *reg = data->dr7; 1663 else 1664 *reg = DR7_RESET_VALUE; 1665 1666 return ES_OK; 1667 } 1668 1669 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb, 1670 struct es_em_ctxt *ctxt) 1671 { 1672 return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0); 1673 } 1674 1675 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt) 1676 { 1677 enum es_result ret; 1678 1679 ghcb_set_rcx(ghcb, ctxt->regs->cx); 1680 1681 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0); 1682 if (ret != ES_OK) 1683 return ret; 1684 1685 if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb))) 1686 return ES_VMM_ERROR; 1687 1688 ctxt->regs->ax = ghcb->save.rax; 1689 ctxt->regs->dx = ghcb->save.rdx; 1690 1691 return ES_OK; 1692 } 1693 1694 static enum es_result vc_handle_monitor(struct ghcb *ghcb, 1695 struct es_em_ctxt *ctxt) 1696 { 1697 /* 1698 * Treat it as a NOP and do not leak a physical address to the 1699 * hypervisor. 1700 */ 1701 return ES_OK; 1702 } 1703 1704 static enum es_result vc_handle_mwait(struct ghcb *ghcb, 1705 struct es_em_ctxt *ctxt) 1706 { 1707 /* Treat the same as MONITOR/MONITORX */ 1708 return ES_OK; 1709 } 1710 1711 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb, 1712 struct es_em_ctxt *ctxt) 1713 { 1714 enum es_result ret; 1715 1716 ghcb_set_rax(ghcb, ctxt->regs->ax); 1717 ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0); 1718 1719 if (x86_platform.hyper.sev_es_hcall_prepare) 1720 x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs); 1721 1722 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0); 1723 if (ret != ES_OK) 1724 return ret; 1725 1726 if (!ghcb_rax_is_valid(ghcb)) 1727 return ES_VMM_ERROR; 1728 1729 ctxt->regs->ax = ghcb->save.rax; 1730 1731 /* 1732 * Call sev_es_hcall_finish() after regs->ax is already set. 1733 * This allows the hypervisor handler to overwrite it again if 1734 * necessary. 1735 */ 1736 if (x86_platform.hyper.sev_es_hcall_finish && 1737 !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs)) 1738 return ES_VMM_ERROR; 1739 1740 return ES_OK; 1741 } 1742 1743 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb, 1744 struct es_em_ctxt *ctxt) 1745 { 1746 /* 1747 * Calling ecx_alignment_check() directly does not work, because it 1748 * enables IRQs and the GHCB is active. Forward the exception and call 1749 * it later from vc_forward_exception(). 1750 */ 1751 ctxt->fi.vector = X86_TRAP_AC; 1752 ctxt->fi.error_code = 0; 1753 return ES_EXCEPTION; 1754 } 1755 1756 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt, 1757 struct ghcb *ghcb, 1758 unsigned long exit_code) 1759 { 1760 enum es_result result; 1761 1762 switch (exit_code) { 1763 case SVM_EXIT_READ_DR7: 1764 result = vc_handle_dr7_read(ghcb, ctxt); 1765 break; 1766 case SVM_EXIT_WRITE_DR7: 1767 result = vc_handle_dr7_write(ghcb, ctxt); 1768 break; 1769 case SVM_EXIT_EXCP_BASE + X86_TRAP_AC: 1770 result = vc_handle_trap_ac(ghcb, ctxt); 1771 break; 1772 case SVM_EXIT_RDTSC: 1773 case SVM_EXIT_RDTSCP: 1774 result = vc_handle_rdtsc(ghcb, ctxt, exit_code); 1775 break; 1776 case SVM_EXIT_RDPMC: 1777 result = vc_handle_rdpmc(ghcb, ctxt); 1778 break; 1779 case SVM_EXIT_INVD: 1780 pr_err_ratelimited("#VC exception for INVD??? Seriously???\n"); 1781 result = ES_UNSUPPORTED; 1782 break; 1783 case SVM_EXIT_CPUID: 1784 result = vc_handle_cpuid(ghcb, ctxt); 1785 break; 1786 case SVM_EXIT_IOIO: 1787 result = vc_handle_ioio(ghcb, ctxt); 1788 break; 1789 case SVM_EXIT_MSR: 1790 result = vc_handle_msr(ghcb, ctxt); 1791 break; 1792 case SVM_EXIT_VMMCALL: 1793 result = vc_handle_vmmcall(ghcb, ctxt); 1794 break; 1795 case SVM_EXIT_WBINVD: 1796 result = vc_handle_wbinvd(ghcb, ctxt); 1797 break; 1798 case SVM_EXIT_MONITOR: 1799 result = vc_handle_monitor(ghcb, ctxt); 1800 break; 1801 case SVM_EXIT_MWAIT: 1802 result = vc_handle_mwait(ghcb, ctxt); 1803 break; 1804 case SVM_EXIT_NPF: 1805 result = vc_handle_mmio(ghcb, ctxt); 1806 break; 1807 default: 1808 /* 1809 * Unexpected #VC exception 1810 */ 1811 result = ES_UNSUPPORTED; 1812 } 1813 1814 return result; 1815 } 1816 1817 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt) 1818 { 1819 long error_code = ctxt->fi.error_code; 1820 int trapnr = ctxt->fi.vector; 1821 1822 ctxt->regs->orig_ax = ctxt->fi.error_code; 1823 1824 switch (trapnr) { 1825 case X86_TRAP_GP: 1826 exc_general_protection(ctxt->regs, error_code); 1827 break; 1828 case X86_TRAP_UD: 1829 exc_invalid_op(ctxt->regs); 1830 break; 1831 case X86_TRAP_PF: 1832 write_cr2(ctxt->fi.cr2); 1833 exc_page_fault(ctxt->regs, error_code); 1834 break; 1835 case X86_TRAP_AC: 1836 exc_alignment_check(ctxt->regs, error_code); 1837 break; 1838 default: 1839 pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n"); 1840 BUG(); 1841 } 1842 } 1843 1844 static __always_inline bool is_vc2_stack(unsigned long sp) 1845 { 1846 return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2)); 1847 } 1848 1849 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs) 1850 { 1851 unsigned long sp, prev_sp; 1852 1853 sp = (unsigned long)regs; 1854 prev_sp = regs->sp; 1855 1856 /* 1857 * If the code was already executing on the VC2 stack when the #VC 1858 * happened, let it proceed to the normal handling routine. This way the 1859 * code executing on the VC2 stack can cause #VC exceptions to get handled. 1860 */ 1861 return is_vc2_stack(sp) && !is_vc2_stack(prev_sp); 1862 } 1863 1864 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code) 1865 { 1866 struct ghcb_state state; 1867 struct es_em_ctxt ctxt; 1868 enum es_result result; 1869 struct ghcb *ghcb; 1870 bool ret = true; 1871 1872 ghcb = __sev_get_ghcb(&state); 1873 1874 vc_ghcb_invalidate(ghcb); 1875 result = vc_init_em_ctxt(&ctxt, regs, error_code); 1876 1877 if (result == ES_OK) 1878 result = vc_handle_exitcode(&ctxt, ghcb, error_code); 1879 1880 __sev_put_ghcb(&state); 1881 1882 /* Done - now check the result */ 1883 switch (result) { 1884 case ES_OK: 1885 vc_finish_insn(&ctxt); 1886 break; 1887 case ES_UNSUPPORTED: 1888 pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n", 1889 error_code, regs->ip); 1890 ret = false; 1891 break; 1892 case ES_VMM_ERROR: 1893 pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n", 1894 error_code, regs->ip); 1895 ret = false; 1896 break; 1897 case ES_DECODE_FAILED: 1898 pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n", 1899 error_code, regs->ip); 1900 ret = false; 1901 break; 1902 case ES_EXCEPTION: 1903 vc_forward_exception(&ctxt); 1904 break; 1905 case ES_RETRY: 1906 /* Nothing to do */ 1907 break; 1908 default: 1909 pr_emerg("Unknown result in %s():%d\n", __func__, result); 1910 /* 1911 * Emulating the instruction which caused the #VC exception 1912 * failed - can't continue so print debug information 1913 */ 1914 BUG(); 1915 } 1916 1917 return ret; 1918 } 1919 1920 static __always_inline bool vc_is_db(unsigned long error_code) 1921 { 1922 return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB; 1923 } 1924 1925 /* 1926 * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode 1927 * and will panic when an error happens. 1928 */ 1929 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication) 1930 { 1931 irqentry_state_t irq_state; 1932 1933 /* 1934 * With the current implementation it is always possible to switch to a 1935 * safe stack because #VC exceptions only happen at known places, like 1936 * intercepted instructions or accesses to MMIO areas/IO ports. They can 1937 * also happen with code instrumentation when the hypervisor intercepts 1938 * #DB, but the critical paths are forbidden to be instrumented, so #DB 1939 * exceptions currently also only happen in safe places. 1940 * 1941 * But keep this here in case the noinstr annotations are violated due 1942 * to bug elsewhere. 1943 */ 1944 if (unlikely(vc_from_invalid_context(regs))) { 1945 instrumentation_begin(); 1946 panic("Can't handle #VC exception from unsupported context\n"); 1947 instrumentation_end(); 1948 } 1949 1950 /* 1951 * Handle #DB before calling into !noinstr code to avoid recursive #DB. 1952 */ 1953 if (vc_is_db(error_code)) { 1954 exc_debug(regs); 1955 return; 1956 } 1957 1958 irq_state = irqentry_nmi_enter(regs); 1959 1960 instrumentation_begin(); 1961 1962 if (!vc_raw_handle_exception(regs, error_code)) { 1963 /* Show some debug info */ 1964 show_regs(regs); 1965 1966 /* Ask hypervisor to sev_es_terminate */ 1967 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ); 1968 1969 /* If that fails and we get here - just panic */ 1970 panic("Returned from Terminate-Request to Hypervisor\n"); 1971 } 1972 1973 instrumentation_end(); 1974 irqentry_nmi_exit(regs, irq_state); 1975 } 1976 1977 /* 1978 * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode 1979 * and will kill the current task with SIGBUS when an error happens. 1980 */ 1981 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication) 1982 { 1983 /* 1984 * Handle #DB before calling into !noinstr code to avoid recursive #DB. 1985 */ 1986 if (vc_is_db(error_code)) { 1987 noist_exc_debug(regs); 1988 return; 1989 } 1990 1991 irqentry_enter_from_user_mode(regs); 1992 instrumentation_begin(); 1993 1994 if (!vc_raw_handle_exception(regs, error_code)) { 1995 /* 1996 * Do not kill the machine if user-space triggered the 1997 * exception. Send SIGBUS instead and let user-space deal with 1998 * it. 1999 */ 2000 force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0); 2001 } 2002 2003 instrumentation_end(); 2004 irqentry_exit_to_user_mode(regs); 2005 } 2006 2007 bool __init handle_vc_boot_ghcb(struct pt_regs *regs) 2008 { 2009 unsigned long exit_code = regs->orig_ax; 2010 struct es_em_ctxt ctxt; 2011 enum es_result result; 2012 2013 vc_ghcb_invalidate(boot_ghcb); 2014 2015 result = vc_init_em_ctxt(&ctxt, regs, exit_code); 2016 if (result == ES_OK) 2017 result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code); 2018 2019 /* Done - now check the result */ 2020 switch (result) { 2021 case ES_OK: 2022 vc_finish_insn(&ctxt); 2023 break; 2024 case ES_UNSUPPORTED: 2025 early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n", 2026 exit_code, regs->ip); 2027 goto fail; 2028 case ES_VMM_ERROR: 2029 early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n", 2030 exit_code, regs->ip); 2031 goto fail; 2032 case ES_DECODE_FAILED: 2033 early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n", 2034 exit_code, regs->ip); 2035 goto fail; 2036 case ES_EXCEPTION: 2037 vc_early_forward_exception(&ctxt); 2038 break; 2039 case ES_RETRY: 2040 /* Nothing to do */ 2041 break; 2042 default: 2043 BUG(); 2044 } 2045 2046 return true; 2047 2048 fail: 2049 show_regs(regs); 2050 2051 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ); 2052 } 2053 2054 /* 2055 * Initial set up of SNP relies on information provided by the 2056 * Confidential Computing blob, which can be passed to the kernel 2057 * in the following ways, depending on how it is booted: 2058 * 2059 * - when booted via the boot/decompress kernel: 2060 * - via boot_params 2061 * 2062 * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH): 2063 * - via a setup_data entry, as defined by the Linux Boot Protocol 2064 * 2065 * Scan for the blob in that order. 2066 */ 2067 static __init struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp) 2068 { 2069 struct cc_blob_sev_info *cc_info; 2070 2071 /* Boot kernel would have passed the CC blob via boot_params. */ 2072 if (bp->cc_blob_address) { 2073 cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address; 2074 goto found_cc_info; 2075 } 2076 2077 /* 2078 * If kernel was booted directly, without the use of the 2079 * boot/decompression kernel, the CC blob may have been passed via 2080 * setup_data instead. 2081 */ 2082 cc_info = find_cc_blob_setup_data(bp); 2083 if (!cc_info) 2084 return NULL; 2085 2086 found_cc_info: 2087 if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC) 2088 snp_abort(); 2089 2090 return cc_info; 2091 } 2092 2093 bool __init snp_init(struct boot_params *bp) 2094 { 2095 struct cc_blob_sev_info *cc_info; 2096 2097 if (!bp) 2098 return false; 2099 2100 cc_info = find_cc_blob(bp); 2101 if (!cc_info) 2102 return false; 2103 2104 setup_cpuid_table(cc_info); 2105 2106 /* 2107 * The CC blob will be used later to access the secrets page. Cache 2108 * it here like the boot kernel does. 2109 */ 2110 bp->cc_blob_address = (u32)(unsigned long)cc_info; 2111 2112 return true; 2113 } 2114 2115 void __init __noreturn snp_abort(void) 2116 { 2117 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED); 2118 } 2119 2120 static void dump_cpuid_table(void) 2121 { 2122 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table(); 2123 int i = 0; 2124 2125 pr_info("count=%d reserved=0x%x reserved2=0x%llx\n", 2126 cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2); 2127 2128 for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) { 2129 const struct snp_cpuid_fn *fn = &cpuid_table->fn[i]; 2130 2131 pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n", 2132 i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx, 2133 fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved); 2134 } 2135 } 2136 2137 /* 2138 * It is useful from an auditing/testing perspective to provide an easy way 2139 * for the guest owner to know that the CPUID table has been initialized as 2140 * expected, but that initialization happens too early in boot to print any 2141 * sort of indicator, and there's not really any other good place to do it, 2142 * so do it here. 2143 */ 2144 static int __init report_cpuid_table(void) 2145 { 2146 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table(); 2147 2148 if (!cpuid_table->count) 2149 return 0; 2150 2151 pr_info("Using SNP CPUID table, %d entries present.\n", 2152 cpuid_table->count); 2153 2154 if (sev_cfg.debug) 2155 dump_cpuid_table(); 2156 2157 return 0; 2158 } 2159 arch_initcall(report_cpuid_table); 2160 2161 static int __init init_sev_config(char *str) 2162 { 2163 char *s; 2164 2165 while ((s = strsep(&str, ","))) { 2166 if (!strcmp(s, "debug")) { 2167 sev_cfg.debug = true; 2168 continue; 2169 } 2170 2171 pr_info("SEV command-line option '%s' was not recognized\n", s); 2172 } 2173 2174 return 1; 2175 } 2176 __setup("sev=", init_sev_config); 2177 2178 int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, unsigned long *fw_err) 2179 { 2180 struct ghcb_state state; 2181 struct es_em_ctxt ctxt; 2182 unsigned long flags; 2183 struct ghcb *ghcb; 2184 int ret; 2185 2186 if (!fw_err) 2187 return -EINVAL; 2188 2189 /* 2190 * __sev_get_ghcb() needs to run with IRQs disabled because it is using 2191 * a per-CPU GHCB. 2192 */ 2193 local_irq_save(flags); 2194 2195 ghcb = __sev_get_ghcb(&state); 2196 if (!ghcb) { 2197 ret = -EIO; 2198 goto e_restore_irq; 2199 } 2200 2201 vc_ghcb_invalidate(ghcb); 2202 2203 if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) { 2204 ghcb_set_rax(ghcb, input->data_gpa); 2205 ghcb_set_rbx(ghcb, input->data_npages); 2206 } 2207 2208 ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa); 2209 if (ret) 2210 goto e_put; 2211 2212 *fw_err = ghcb->save.sw_exit_info_2; 2213 switch (*fw_err) { 2214 case 0: 2215 break; 2216 2217 case SNP_GUEST_REQ_ERR_BUSY: 2218 ret = -EAGAIN; 2219 break; 2220 2221 case SNP_GUEST_REQ_INVALID_LEN: 2222 /* Number of expected pages are returned in RBX */ 2223 if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) { 2224 input->data_npages = ghcb_get_rbx(ghcb); 2225 ret = -ENOSPC; 2226 break; 2227 } 2228 fallthrough; 2229 default: 2230 ret = -EIO; 2231 break; 2232 } 2233 2234 e_put: 2235 __sev_put_ghcb(&state); 2236 e_restore_irq: 2237 local_irq_restore(flags); 2238 2239 return ret; 2240 } 2241 EXPORT_SYMBOL_GPL(snp_issue_guest_request); 2242 2243 static struct platform_device sev_guest_device = { 2244 .name = "sev-guest", 2245 .id = -1, 2246 }; 2247 2248 static int __init snp_init_platform_device(void) 2249 { 2250 struct sev_guest_platform_data data; 2251 u64 gpa; 2252 2253 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) 2254 return -ENODEV; 2255 2256 gpa = get_secrets_page(); 2257 if (!gpa) 2258 return -ENODEV; 2259 2260 data.secrets_gpa = gpa; 2261 if (platform_device_add_data(&sev_guest_device, &data, sizeof(data))) 2262 return -ENODEV; 2263 2264 if (platform_device_register(&sev_guest_device)) 2265 return -ENODEV; 2266 2267 pr_info("SNP guest platform device initialized.\n"); 2268 return 0; 2269 } 2270 device_initcall(snp_init_platform_device); 2271