xref: /openbmc/linux/arch/x86/kernel/sev-shared.c (revision f29119b301d598f245154edc797c69c712a8b7fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * AMD Encrypted Register State Support
4  *
5  * Author: Joerg Roedel <jroedel@suse.de>
6  *
7  * This file is not compiled stand-alone. It contains code shared
8  * between the pre-decompression boot code and the running Linux kernel
9  * and is included directly into both code-bases.
10  */
11 
12 #ifndef __BOOT_COMPRESSED
13 #define error(v)	pr_err(v)
14 #define has_cpuflag(f)	boot_cpu_has(f)
15 #else
16 #undef WARN
17 #define WARN(condition, format...) (!!(condition))
18 #endif
19 
20 /* I/O parameters for CPUID-related helpers */
21 struct cpuid_leaf {
22 	u32 fn;
23 	u32 subfn;
24 	u32 eax;
25 	u32 ebx;
26 	u32 ecx;
27 	u32 edx;
28 };
29 
30 /*
31  * Individual entries of the SNP CPUID table, as defined by the SNP
32  * Firmware ABI, Revision 0.9, Section 7.1, Table 14.
33  */
34 struct snp_cpuid_fn {
35 	u32 eax_in;
36 	u32 ecx_in;
37 	u64 xcr0_in;
38 	u64 xss_in;
39 	u32 eax;
40 	u32 ebx;
41 	u32 ecx;
42 	u32 edx;
43 	u64 __reserved;
44 } __packed;
45 
46 /*
47  * SNP CPUID table, as defined by the SNP Firmware ABI, Revision 0.9,
48  * Section 8.14.2.6. Also noted there is the SNP firmware-enforced limit
49  * of 64 entries per CPUID table.
50  */
51 #define SNP_CPUID_COUNT_MAX 64
52 
53 struct snp_cpuid_table {
54 	u32 count;
55 	u32 __reserved1;
56 	u64 __reserved2;
57 	struct snp_cpuid_fn fn[SNP_CPUID_COUNT_MAX];
58 } __packed;
59 
60 /*
61  * Since feature negotiation related variables are set early in the boot
62  * process they must reside in the .data section so as not to be zeroed
63  * out when the .bss section is later cleared.
64  *
65  * GHCB protocol version negotiated with the hypervisor.
66  */
67 static u16 ghcb_version __ro_after_init;
68 
69 /* Copy of the SNP firmware's CPUID page. */
70 static struct snp_cpuid_table cpuid_table_copy __ro_after_init;
71 
72 /*
73  * These will be initialized based on CPUID table so that non-present
74  * all-zero leaves (for sparse tables) can be differentiated from
75  * invalid/out-of-range leaves. This is needed since all-zero leaves
76  * still need to be post-processed.
77  */
78 static u32 cpuid_std_range_max __ro_after_init;
79 static u32 cpuid_hyp_range_max __ro_after_init;
80 static u32 cpuid_ext_range_max __ro_after_init;
81 
82 static bool __init sev_es_check_cpu_features(void)
83 {
84 	if (!has_cpuflag(X86_FEATURE_RDRAND)) {
85 		error("RDRAND instruction not supported - no trusted source of randomness available\n");
86 		return false;
87 	}
88 
89 	return true;
90 }
91 
92 static void __head __noreturn
93 sev_es_terminate(unsigned int set, unsigned int reason)
94 {
95 	u64 val = GHCB_MSR_TERM_REQ;
96 
97 	/* Tell the hypervisor what went wrong. */
98 	val |= GHCB_SEV_TERM_REASON(set, reason);
99 
100 	/* Request Guest Termination from Hypvervisor */
101 	sev_es_wr_ghcb_msr(val);
102 	VMGEXIT();
103 
104 	while (true)
105 		asm volatile("hlt\n" : : : "memory");
106 }
107 
108 /*
109  * The hypervisor features are available from GHCB version 2 onward.
110  */
111 static u64 get_hv_features(void)
112 {
113 	u64 val;
114 
115 	if (ghcb_version < 2)
116 		return 0;
117 
118 	sev_es_wr_ghcb_msr(GHCB_MSR_HV_FT_REQ);
119 	VMGEXIT();
120 
121 	val = sev_es_rd_ghcb_msr();
122 	if (GHCB_RESP_CODE(val) != GHCB_MSR_HV_FT_RESP)
123 		return 0;
124 
125 	return GHCB_MSR_HV_FT_RESP_VAL(val);
126 }
127 
128 static void snp_register_ghcb_early(unsigned long paddr)
129 {
130 	unsigned long pfn = paddr >> PAGE_SHIFT;
131 	u64 val;
132 
133 	sev_es_wr_ghcb_msr(GHCB_MSR_REG_GPA_REQ_VAL(pfn));
134 	VMGEXIT();
135 
136 	val = sev_es_rd_ghcb_msr();
137 
138 	/* If the response GPA is not ours then abort the guest */
139 	if ((GHCB_RESP_CODE(val) != GHCB_MSR_REG_GPA_RESP) ||
140 	    (GHCB_MSR_REG_GPA_RESP_VAL(val) != pfn))
141 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_REGISTER);
142 }
143 
144 static bool sev_es_negotiate_protocol(void)
145 {
146 	u64 val;
147 
148 	/* Do the GHCB protocol version negotiation */
149 	sev_es_wr_ghcb_msr(GHCB_MSR_SEV_INFO_REQ);
150 	VMGEXIT();
151 	val = sev_es_rd_ghcb_msr();
152 
153 	if (GHCB_MSR_INFO(val) != GHCB_MSR_SEV_INFO_RESP)
154 		return false;
155 
156 	if (GHCB_MSR_PROTO_MAX(val) < GHCB_PROTOCOL_MIN ||
157 	    GHCB_MSR_PROTO_MIN(val) > GHCB_PROTOCOL_MAX)
158 		return false;
159 
160 	ghcb_version = min_t(size_t, GHCB_MSR_PROTO_MAX(val), GHCB_PROTOCOL_MAX);
161 
162 	return true;
163 }
164 
165 static __always_inline void vc_ghcb_invalidate(struct ghcb *ghcb)
166 {
167 	ghcb->save.sw_exit_code = 0;
168 	__builtin_memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
169 }
170 
171 static bool vc_decoding_needed(unsigned long exit_code)
172 {
173 	/* Exceptions don't require to decode the instruction */
174 	return !(exit_code >= SVM_EXIT_EXCP_BASE &&
175 		 exit_code <= SVM_EXIT_LAST_EXCP);
176 }
177 
178 static enum es_result vc_init_em_ctxt(struct es_em_ctxt *ctxt,
179 				      struct pt_regs *regs,
180 				      unsigned long exit_code)
181 {
182 	enum es_result ret = ES_OK;
183 
184 	memset(ctxt, 0, sizeof(*ctxt));
185 	ctxt->regs = regs;
186 
187 	if (vc_decoding_needed(exit_code))
188 		ret = vc_decode_insn(ctxt);
189 
190 	return ret;
191 }
192 
193 static void vc_finish_insn(struct es_em_ctxt *ctxt)
194 {
195 	ctxt->regs->ip += ctxt->insn.length;
196 }
197 
198 static enum es_result verify_exception_info(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
199 {
200 	u32 ret;
201 
202 	ret = ghcb->save.sw_exit_info_1 & GENMASK_ULL(31, 0);
203 	if (!ret)
204 		return ES_OK;
205 
206 	if (ret == 1) {
207 		u64 info = ghcb->save.sw_exit_info_2;
208 		unsigned long v = info & SVM_EVTINJ_VEC_MASK;
209 
210 		/* Check if exception information from hypervisor is sane. */
211 		if ((info & SVM_EVTINJ_VALID) &&
212 		    ((v == X86_TRAP_GP) || (v == X86_TRAP_UD)) &&
213 		    ((info & SVM_EVTINJ_TYPE_MASK) == SVM_EVTINJ_TYPE_EXEPT)) {
214 			ctxt->fi.vector = v;
215 
216 			if (info & SVM_EVTINJ_VALID_ERR)
217 				ctxt->fi.error_code = info >> 32;
218 
219 			return ES_EXCEPTION;
220 		}
221 	}
222 
223 	return ES_VMM_ERROR;
224 }
225 
226 static enum es_result sev_es_ghcb_hv_call(struct ghcb *ghcb,
227 					  struct es_em_ctxt *ctxt,
228 					  u64 exit_code, u64 exit_info_1,
229 					  u64 exit_info_2)
230 {
231 	/* Fill in protocol and format specifiers */
232 	ghcb->protocol_version = ghcb_version;
233 	ghcb->ghcb_usage       = GHCB_DEFAULT_USAGE;
234 
235 	ghcb_set_sw_exit_code(ghcb, exit_code);
236 	ghcb_set_sw_exit_info_1(ghcb, exit_info_1);
237 	ghcb_set_sw_exit_info_2(ghcb, exit_info_2);
238 
239 	sev_es_wr_ghcb_msr(__pa(ghcb));
240 	VMGEXIT();
241 
242 	return verify_exception_info(ghcb, ctxt);
243 }
244 
245 static int __sev_cpuid_hv(u32 fn, int reg_idx, u32 *reg)
246 {
247 	u64 val;
248 
249 	sev_es_wr_ghcb_msr(GHCB_CPUID_REQ(fn, reg_idx));
250 	VMGEXIT();
251 	val = sev_es_rd_ghcb_msr();
252 	if (GHCB_RESP_CODE(val) != GHCB_MSR_CPUID_RESP)
253 		return -EIO;
254 
255 	*reg = (val >> 32);
256 
257 	return 0;
258 }
259 
260 static int __sev_cpuid_hv_msr(struct cpuid_leaf *leaf)
261 {
262 	int ret;
263 
264 	/*
265 	 * MSR protocol does not support fetching non-zero subfunctions, but is
266 	 * sufficient to handle current early-boot cases. Should that change,
267 	 * make sure to report an error rather than ignoring the index and
268 	 * grabbing random values. If this issue arises in the future, handling
269 	 * can be added here to use GHCB-page protocol for cases that occur late
270 	 * enough in boot that GHCB page is available.
271 	 */
272 	if (cpuid_function_is_indexed(leaf->fn) && leaf->subfn)
273 		return -EINVAL;
274 
275 	ret =         __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EAX, &leaf->eax);
276 	ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EBX, &leaf->ebx);
277 	ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_ECX, &leaf->ecx);
278 	ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EDX, &leaf->edx);
279 
280 	return ret;
281 }
282 
283 static int __sev_cpuid_hv_ghcb(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
284 {
285 	u32 cr4 = native_read_cr4();
286 	int ret;
287 
288 	ghcb_set_rax(ghcb, leaf->fn);
289 	ghcb_set_rcx(ghcb, leaf->subfn);
290 
291 	if (cr4 & X86_CR4_OSXSAVE)
292 		/* Safe to read xcr0 */
293 		ghcb_set_xcr0(ghcb, xgetbv(XCR_XFEATURE_ENABLED_MASK));
294 	else
295 		/* xgetbv will cause #UD - use reset value for xcr0 */
296 		ghcb_set_xcr0(ghcb, 1);
297 
298 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_CPUID, 0, 0);
299 	if (ret != ES_OK)
300 		return ret;
301 
302 	if (!(ghcb_rax_is_valid(ghcb) &&
303 	      ghcb_rbx_is_valid(ghcb) &&
304 	      ghcb_rcx_is_valid(ghcb) &&
305 	      ghcb_rdx_is_valid(ghcb)))
306 		return ES_VMM_ERROR;
307 
308 	leaf->eax = ghcb->save.rax;
309 	leaf->ebx = ghcb->save.rbx;
310 	leaf->ecx = ghcb->save.rcx;
311 	leaf->edx = ghcb->save.rdx;
312 
313 	return ES_OK;
314 }
315 
316 static int sev_cpuid_hv(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
317 {
318 	return ghcb ? __sev_cpuid_hv_ghcb(ghcb, ctxt, leaf)
319 		    : __sev_cpuid_hv_msr(leaf);
320 }
321 
322 /*
323  * This may be called early while still running on the initial identity
324  * mapping. Use RIP-relative addressing to obtain the correct address
325  * while running with the initial identity mapping as well as the
326  * switch-over to kernel virtual addresses later.
327  */
328 static const struct snp_cpuid_table *snp_cpuid_get_table(void)
329 {
330 	return &RIP_REL_REF(cpuid_table_copy);
331 }
332 
333 /*
334  * The SNP Firmware ABI, Revision 0.9, Section 7.1, details the use of
335  * XCR0_IN and XSS_IN to encode multiple versions of 0xD subfunctions 0
336  * and 1 based on the corresponding features enabled by a particular
337  * combination of XCR0 and XSS registers so that a guest can look up the
338  * version corresponding to the features currently enabled in its XCR0/XSS
339  * registers. The only values that differ between these versions/table
340  * entries is the enabled XSAVE area size advertised via EBX.
341  *
342  * While hypervisors may choose to make use of this support, it is more
343  * robust/secure for a guest to simply find the entry corresponding to the
344  * base/legacy XSAVE area size (XCR0=1 or XCR0=3), and then calculate the
345  * XSAVE area size using subfunctions 2 through 64, as documented in APM
346  * Volume 3, Rev 3.31, Appendix E.3.8, which is what is done here.
347  *
348  * Since base/legacy XSAVE area size is documented as 0x240, use that value
349  * directly rather than relying on the base size in the CPUID table.
350  *
351  * Return: XSAVE area size on success, 0 otherwise.
352  */
353 static u32 snp_cpuid_calc_xsave_size(u64 xfeatures_en, bool compacted)
354 {
355 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
356 	u64 xfeatures_found = 0;
357 	u32 xsave_size = 0x240;
358 	int i;
359 
360 	for (i = 0; i < cpuid_table->count; i++) {
361 		const struct snp_cpuid_fn *e = &cpuid_table->fn[i];
362 
363 		if (!(e->eax_in == 0xD && e->ecx_in > 1 && e->ecx_in < 64))
364 			continue;
365 		if (!(xfeatures_en & (BIT_ULL(e->ecx_in))))
366 			continue;
367 		if (xfeatures_found & (BIT_ULL(e->ecx_in)))
368 			continue;
369 
370 		xfeatures_found |= (BIT_ULL(e->ecx_in));
371 
372 		if (compacted)
373 			xsave_size += e->eax;
374 		else
375 			xsave_size = max(xsave_size, e->eax + e->ebx);
376 	}
377 
378 	/*
379 	 * Either the guest set unsupported XCR0/XSS bits, or the corresponding
380 	 * entries in the CPUID table were not present. This is not a valid
381 	 * state to be in.
382 	 */
383 	if (xfeatures_found != (xfeatures_en & GENMASK_ULL(63, 2)))
384 		return 0;
385 
386 	return xsave_size;
387 }
388 
389 static bool __head
390 snp_cpuid_get_validated_func(struct cpuid_leaf *leaf)
391 {
392 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
393 	int i;
394 
395 	for (i = 0; i < cpuid_table->count; i++) {
396 		const struct snp_cpuid_fn *e = &cpuid_table->fn[i];
397 
398 		if (e->eax_in != leaf->fn)
399 			continue;
400 
401 		if (cpuid_function_is_indexed(leaf->fn) && e->ecx_in != leaf->subfn)
402 			continue;
403 
404 		/*
405 		 * For 0xD subfunctions 0 and 1, only use the entry corresponding
406 		 * to the base/legacy XSAVE area size (XCR0=1 or XCR0=3, XSS=0).
407 		 * See the comments above snp_cpuid_calc_xsave_size() for more
408 		 * details.
409 		 */
410 		if (e->eax_in == 0xD && (e->ecx_in == 0 || e->ecx_in == 1))
411 			if (!(e->xcr0_in == 1 || e->xcr0_in == 3) || e->xss_in)
412 				continue;
413 
414 		leaf->eax = e->eax;
415 		leaf->ebx = e->ebx;
416 		leaf->ecx = e->ecx;
417 		leaf->edx = e->edx;
418 
419 		return true;
420 	}
421 
422 	return false;
423 }
424 
425 static void snp_cpuid_hv(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
426 {
427 	if (sev_cpuid_hv(ghcb, ctxt, leaf))
428 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID_HV);
429 }
430 
431 static int snp_cpuid_postprocess(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
432 				 struct cpuid_leaf *leaf)
433 {
434 	struct cpuid_leaf leaf_hv = *leaf;
435 
436 	switch (leaf->fn) {
437 	case 0x1:
438 		snp_cpuid_hv(ghcb, ctxt, &leaf_hv);
439 
440 		/* initial APIC ID */
441 		leaf->ebx = (leaf_hv.ebx & GENMASK(31, 24)) | (leaf->ebx & GENMASK(23, 0));
442 		/* APIC enabled bit */
443 		leaf->edx = (leaf_hv.edx & BIT(9)) | (leaf->edx & ~BIT(9));
444 
445 		/* OSXSAVE enabled bit */
446 		if (native_read_cr4() & X86_CR4_OSXSAVE)
447 			leaf->ecx |= BIT(27);
448 		break;
449 	case 0x7:
450 		/* OSPKE enabled bit */
451 		leaf->ecx &= ~BIT(4);
452 		if (native_read_cr4() & X86_CR4_PKE)
453 			leaf->ecx |= BIT(4);
454 		break;
455 	case 0xB:
456 		leaf_hv.subfn = 0;
457 		snp_cpuid_hv(ghcb, ctxt, &leaf_hv);
458 
459 		/* extended APIC ID */
460 		leaf->edx = leaf_hv.edx;
461 		break;
462 	case 0xD: {
463 		bool compacted = false;
464 		u64 xcr0 = 1, xss = 0;
465 		u32 xsave_size;
466 
467 		if (leaf->subfn != 0 && leaf->subfn != 1)
468 			return 0;
469 
470 		if (native_read_cr4() & X86_CR4_OSXSAVE)
471 			xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
472 		if (leaf->subfn == 1) {
473 			/* Get XSS value if XSAVES is enabled. */
474 			if (leaf->eax & BIT(3)) {
475 				unsigned long lo, hi;
476 
477 				asm volatile("rdmsr" : "=a" (lo), "=d" (hi)
478 						     : "c" (MSR_IA32_XSS));
479 				xss = (hi << 32) | lo;
480 			}
481 
482 			/*
483 			 * The PPR and APM aren't clear on what size should be
484 			 * encoded in 0xD:0x1:EBX when compaction is not enabled
485 			 * by either XSAVEC (feature bit 1) or XSAVES (feature
486 			 * bit 3) since SNP-capable hardware has these feature
487 			 * bits fixed as 1. KVM sets it to 0 in this case, but
488 			 * to avoid this becoming an issue it's safer to simply
489 			 * treat this as unsupported for SNP guests.
490 			 */
491 			if (!(leaf->eax & (BIT(1) | BIT(3))))
492 				return -EINVAL;
493 
494 			compacted = true;
495 		}
496 
497 		xsave_size = snp_cpuid_calc_xsave_size(xcr0 | xss, compacted);
498 		if (!xsave_size)
499 			return -EINVAL;
500 
501 		leaf->ebx = xsave_size;
502 		}
503 		break;
504 	case 0x8000001E:
505 		snp_cpuid_hv(ghcb, ctxt, &leaf_hv);
506 
507 		/* extended APIC ID */
508 		leaf->eax = leaf_hv.eax;
509 		/* compute ID */
510 		leaf->ebx = (leaf->ebx & GENMASK(31, 8)) | (leaf_hv.ebx & GENMASK(7, 0));
511 		/* node ID */
512 		leaf->ecx = (leaf->ecx & GENMASK(31, 8)) | (leaf_hv.ecx & GENMASK(7, 0));
513 		break;
514 	default:
515 		/* No fix-ups needed, use values as-is. */
516 		break;
517 	}
518 
519 	return 0;
520 }
521 
522 /*
523  * Returns -EOPNOTSUPP if feature not enabled. Any other non-zero return value
524  * should be treated as fatal by caller.
525  */
526 static int __head
527 snp_cpuid(struct ghcb *ghcb, struct es_em_ctxt *ctxt, struct cpuid_leaf *leaf)
528 {
529 	const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
530 
531 	if (!cpuid_table->count)
532 		return -EOPNOTSUPP;
533 
534 	if (!snp_cpuid_get_validated_func(leaf)) {
535 		/*
536 		 * Some hypervisors will avoid keeping track of CPUID entries
537 		 * where all values are zero, since they can be handled the
538 		 * same as out-of-range values (all-zero). This is useful here
539 		 * as well as it allows virtually all guest configurations to
540 		 * work using a single SNP CPUID table.
541 		 *
542 		 * To allow for this, there is a need to distinguish between
543 		 * out-of-range entries and in-range zero entries, since the
544 		 * CPUID table entries are only a template that may need to be
545 		 * augmented with additional values for things like
546 		 * CPU-specific information during post-processing. So if it's
547 		 * not in the table, set the values to zero. Then, if they are
548 		 * within a valid CPUID range, proceed with post-processing
549 		 * using zeros as the initial values. Otherwise, skip
550 		 * post-processing and just return zeros immediately.
551 		 */
552 		leaf->eax = leaf->ebx = leaf->ecx = leaf->edx = 0;
553 
554 		/* Skip post-processing for out-of-range zero leafs. */
555 		if (!(leaf->fn <= RIP_REL_REF(cpuid_std_range_max) ||
556 		      (leaf->fn >= 0x40000000 && leaf->fn <= RIP_REL_REF(cpuid_hyp_range_max)) ||
557 		      (leaf->fn >= 0x80000000 && leaf->fn <= RIP_REL_REF(cpuid_ext_range_max))))
558 			return 0;
559 	}
560 
561 	return snp_cpuid_postprocess(ghcb, ctxt, leaf);
562 }
563 
564 /*
565  * Boot VC Handler - This is the first VC handler during boot, there is no GHCB
566  * page yet, so it only supports the MSR based communication with the
567  * hypervisor and only the CPUID exit-code.
568  */
569 void __head do_vc_no_ghcb(struct pt_regs *regs, unsigned long exit_code)
570 {
571 	unsigned int subfn = lower_bits(regs->cx, 32);
572 	unsigned int fn = lower_bits(regs->ax, 32);
573 	struct cpuid_leaf leaf;
574 	int ret;
575 
576 	/* Only CPUID is supported via MSR protocol */
577 	if (exit_code != SVM_EXIT_CPUID)
578 		goto fail;
579 
580 	leaf.fn = fn;
581 	leaf.subfn = subfn;
582 
583 	ret = snp_cpuid(NULL, NULL, &leaf);
584 	if (!ret)
585 		goto cpuid_done;
586 
587 	if (ret != -EOPNOTSUPP)
588 		goto fail;
589 
590 	if (__sev_cpuid_hv_msr(&leaf))
591 		goto fail;
592 
593 cpuid_done:
594 	regs->ax = leaf.eax;
595 	regs->bx = leaf.ebx;
596 	regs->cx = leaf.ecx;
597 	regs->dx = leaf.edx;
598 
599 	/*
600 	 * This is a VC handler and the #VC is only raised when SEV-ES is
601 	 * active, which means SEV must be active too. Do sanity checks on the
602 	 * CPUID results to make sure the hypervisor does not trick the kernel
603 	 * into the no-sev path. This could map sensitive data unencrypted and
604 	 * make it accessible to the hypervisor.
605 	 *
606 	 * In particular, check for:
607 	 *	- Availability of CPUID leaf 0x8000001f
608 	 *	- SEV CPUID bit.
609 	 *
610 	 * The hypervisor might still report the wrong C-bit position, but this
611 	 * can't be checked here.
612 	 */
613 
614 	if (fn == 0x80000000 && (regs->ax < 0x8000001f))
615 		/* SEV leaf check */
616 		goto fail;
617 	else if ((fn == 0x8000001f && !(regs->ax & BIT(1))))
618 		/* SEV bit */
619 		goto fail;
620 
621 	/* Skip over the CPUID two-byte opcode */
622 	regs->ip += 2;
623 
624 	return;
625 
626 fail:
627 	/* Terminate the guest */
628 	sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
629 }
630 
631 static enum es_result vc_insn_string_check(struct es_em_ctxt *ctxt,
632 					   unsigned long address,
633 					   bool write)
634 {
635 	if (user_mode(ctxt->regs) && fault_in_kernel_space(address)) {
636 		ctxt->fi.vector     = X86_TRAP_PF;
637 		ctxt->fi.error_code = X86_PF_USER;
638 		ctxt->fi.cr2        = address;
639 		if (write)
640 			ctxt->fi.error_code |= X86_PF_WRITE;
641 
642 		return ES_EXCEPTION;
643 	}
644 
645 	return ES_OK;
646 }
647 
648 static enum es_result vc_insn_string_read(struct es_em_ctxt *ctxt,
649 					  void *src, char *buf,
650 					  unsigned int data_size,
651 					  unsigned int count,
652 					  bool backwards)
653 {
654 	int i, b = backwards ? -1 : 1;
655 	unsigned long address = (unsigned long)src;
656 	enum es_result ret;
657 
658 	ret = vc_insn_string_check(ctxt, address, false);
659 	if (ret != ES_OK)
660 		return ret;
661 
662 	for (i = 0; i < count; i++) {
663 		void *s = src + (i * data_size * b);
664 		char *d = buf + (i * data_size);
665 
666 		ret = vc_read_mem(ctxt, s, d, data_size);
667 		if (ret != ES_OK)
668 			break;
669 	}
670 
671 	return ret;
672 }
673 
674 static enum es_result vc_insn_string_write(struct es_em_ctxt *ctxt,
675 					   void *dst, char *buf,
676 					   unsigned int data_size,
677 					   unsigned int count,
678 					   bool backwards)
679 {
680 	int i, s = backwards ? -1 : 1;
681 	unsigned long address = (unsigned long)dst;
682 	enum es_result ret;
683 
684 	ret = vc_insn_string_check(ctxt, address, true);
685 	if (ret != ES_OK)
686 		return ret;
687 
688 	for (i = 0; i < count; i++) {
689 		void *d = dst + (i * data_size * s);
690 		char *b = buf + (i * data_size);
691 
692 		ret = vc_write_mem(ctxt, d, b, data_size);
693 		if (ret != ES_OK)
694 			break;
695 	}
696 
697 	return ret;
698 }
699 
700 #define IOIO_TYPE_STR  BIT(2)
701 #define IOIO_TYPE_IN   1
702 #define IOIO_TYPE_INS  (IOIO_TYPE_IN | IOIO_TYPE_STR)
703 #define IOIO_TYPE_OUT  0
704 #define IOIO_TYPE_OUTS (IOIO_TYPE_OUT | IOIO_TYPE_STR)
705 
706 #define IOIO_REP       BIT(3)
707 
708 #define IOIO_ADDR_64   BIT(9)
709 #define IOIO_ADDR_32   BIT(8)
710 #define IOIO_ADDR_16   BIT(7)
711 
712 #define IOIO_DATA_32   BIT(6)
713 #define IOIO_DATA_16   BIT(5)
714 #define IOIO_DATA_8    BIT(4)
715 
716 #define IOIO_SEG_ES    (0 << 10)
717 #define IOIO_SEG_DS    (3 << 10)
718 
719 static enum es_result vc_ioio_exitinfo(struct es_em_ctxt *ctxt, u64 *exitinfo)
720 {
721 	struct insn *insn = &ctxt->insn;
722 	size_t size;
723 	u64 port;
724 
725 	*exitinfo = 0;
726 
727 	switch (insn->opcode.bytes[0]) {
728 	/* INS opcodes */
729 	case 0x6c:
730 	case 0x6d:
731 		*exitinfo |= IOIO_TYPE_INS;
732 		*exitinfo |= IOIO_SEG_ES;
733 		port	   = ctxt->regs->dx & 0xffff;
734 		break;
735 
736 	/* OUTS opcodes */
737 	case 0x6e:
738 	case 0x6f:
739 		*exitinfo |= IOIO_TYPE_OUTS;
740 		*exitinfo |= IOIO_SEG_DS;
741 		port	   = ctxt->regs->dx & 0xffff;
742 		break;
743 
744 	/* IN immediate opcodes */
745 	case 0xe4:
746 	case 0xe5:
747 		*exitinfo |= IOIO_TYPE_IN;
748 		port	   = (u8)insn->immediate.value & 0xffff;
749 		break;
750 
751 	/* OUT immediate opcodes */
752 	case 0xe6:
753 	case 0xe7:
754 		*exitinfo |= IOIO_TYPE_OUT;
755 		port	   = (u8)insn->immediate.value & 0xffff;
756 		break;
757 
758 	/* IN register opcodes */
759 	case 0xec:
760 	case 0xed:
761 		*exitinfo |= IOIO_TYPE_IN;
762 		port	   = ctxt->regs->dx & 0xffff;
763 		break;
764 
765 	/* OUT register opcodes */
766 	case 0xee:
767 	case 0xef:
768 		*exitinfo |= IOIO_TYPE_OUT;
769 		port	   = ctxt->regs->dx & 0xffff;
770 		break;
771 
772 	default:
773 		return ES_DECODE_FAILED;
774 	}
775 
776 	*exitinfo |= port << 16;
777 
778 	switch (insn->opcode.bytes[0]) {
779 	case 0x6c:
780 	case 0x6e:
781 	case 0xe4:
782 	case 0xe6:
783 	case 0xec:
784 	case 0xee:
785 		/* Single byte opcodes */
786 		*exitinfo |= IOIO_DATA_8;
787 		size       = 1;
788 		break;
789 	default:
790 		/* Length determined by instruction parsing */
791 		*exitinfo |= (insn->opnd_bytes == 2) ? IOIO_DATA_16
792 						     : IOIO_DATA_32;
793 		size       = (insn->opnd_bytes == 2) ? 2 : 4;
794 	}
795 
796 	switch (insn->addr_bytes) {
797 	case 2:
798 		*exitinfo |= IOIO_ADDR_16;
799 		break;
800 	case 4:
801 		*exitinfo |= IOIO_ADDR_32;
802 		break;
803 	case 8:
804 		*exitinfo |= IOIO_ADDR_64;
805 		break;
806 	}
807 
808 	if (insn_has_rep_prefix(insn))
809 		*exitinfo |= IOIO_REP;
810 
811 	return vc_ioio_check(ctxt, (u16)port, size);
812 }
813 
814 static enum es_result vc_handle_ioio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
815 {
816 	struct pt_regs *regs = ctxt->regs;
817 	u64 exit_info_1, exit_info_2;
818 	enum es_result ret;
819 
820 	ret = vc_ioio_exitinfo(ctxt, &exit_info_1);
821 	if (ret != ES_OK)
822 		return ret;
823 
824 	if (exit_info_1 & IOIO_TYPE_STR) {
825 
826 		/* (REP) INS/OUTS */
827 
828 		bool df = ((regs->flags & X86_EFLAGS_DF) == X86_EFLAGS_DF);
829 		unsigned int io_bytes, exit_bytes;
830 		unsigned int ghcb_count, op_count;
831 		unsigned long es_base;
832 		u64 sw_scratch;
833 
834 		/*
835 		 * For the string variants with rep prefix the amount of in/out
836 		 * operations per #VC exception is limited so that the kernel
837 		 * has a chance to take interrupts and re-schedule while the
838 		 * instruction is emulated.
839 		 */
840 		io_bytes   = (exit_info_1 >> 4) & 0x7;
841 		ghcb_count = sizeof(ghcb->shared_buffer) / io_bytes;
842 
843 		op_count    = (exit_info_1 & IOIO_REP) ? regs->cx : 1;
844 		exit_info_2 = min(op_count, ghcb_count);
845 		exit_bytes  = exit_info_2 * io_bytes;
846 
847 		es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
848 
849 		/* Read bytes of OUTS into the shared buffer */
850 		if (!(exit_info_1 & IOIO_TYPE_IN)) {
851 			ret = vc_insn_string_read(ctxt,
852 					       (void *)(es_base + regs->si),
853 					       ghcb->shared_buffer, io_bytes,
854 					       exit_info_2, df);
855 			if (ret)
856 				return ret;
857 		}
858 
859 		/*
860 		 * Issue an VMGEXIT to the HV to consume the bytes from the
861 		 * shared buffer or to have it write them into the shared buffer
862 		 * depending on the instruction: OUTS or INS.
863 		 */
864 		sw_scratch = __pa(ghcb) + offsetof(struct ghcb, shared_buffer);
865 		ghcb_set_sw_scratch(ghcb, sw_scratch);
866 		ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO,
867 					  exit_info_1, exit_info_2);
868 		if (ret != ES_OK)
869 			return ret;
870 
871 		/* Read bytes from shared buffer into the guest's destination. */
872 		if (exit_info_1 & IOIO_TYPE_IN) {
873 			ret = vc_insn_string_write(ctxt,
874 						   (void *)(es_base + regs->di),
875 						   ghcb->shared_buffer, io_bytes,
876 						   exit_info_2, df);
877 			if (ret)
878 				return ret;
879 
880 			if (df)
881 				regs->di -= exit_bytes;
882 			else
883 				regs->di += exit_bytes;
884 		} else {
885 			if (df)
886 				regs->si -= exit_bytes;
887 			else
888 				regs->si += exit_bytes;
889 		}
890 
891 		if (exit_info_1 & IOIO_REP)
892 			regs->cx -= exit_info_2;
893 
894 		ret = regs->cx ? ES_RETRY : ES_OK;
895 
896 	} else {
897 
898 		/* IN/OUT into/from rAX */
899 
900 		int bits = (exit_info_1 & 0x70) >> 1;
901 		u64 rax = 0;
902 
903 		if (!(exit_info_1 & IOIO_TYPE_IN))
904 			rax = lower_bits(regs->ax, bits);
905 
906 		ghcb_set_rax(ghcb, rax);
907 
908 		ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO, exit_info_1, 0);
909 		if (ret != ES_OK)
910 			return ret;
911 
912 		if (exit_info_1 & IOIO_TYPE_IN) {
913 			if (!ghcb_rax_is_valid(ghcb))
914 				return ES_VMM_ERROR;
915 			regs->ax = lower_bits(ghcb->save.rax, bits);
916 		}
917 	}
918 
919 	return ret;
920 }
921 
922 static int vc_handle_cpuid_snp(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
923 {
924 	struct pt_regs *regs = ctxt->regs;
925 	struct cpuid_leaf leaf;
926 	int ret;
927 
928 	leaf.fn = regs->ax;
929 	leaf.subfn = regs->cx;
930 	ret = snp_cpuid(ghcb, ctxt, &leaf);
931 	if (!ret) {
932 		regs->ax = leaf.eax;
933 		regs->bx = leaf.ebx;
934 		regs->cx = leaf.ecx;
935 		regs->dx = leaf.edx;
936 	}
937 
938 	return ret;
939 }
940 
941 static enum es_result vc_handle_cpuid(struct ghcb *ghcb,
942 				      struct es_em_ctxt *ctxt)
943 {
944 	struct pt_regs *regs = ctxt->regs;
945 	u32 cr4 = native_read_cr4();
946 	enum es_result ret;
947 	int snp_cpuid_ret;
948 
949 	snp_cpuid_ret = vc_handle_cpuid_snp(ghcb, ctxt);
950 	if (!snp_cpuid_ret)
951 		return ES_OK;
952 	if (snp_cpuid_ret != -EOPNOTSUPP)
953 		return ES_VMM_ERROR;
954 
955 	ghcb_set_rax(ghcb, regs->ax);
956 	ghcb_set_rcx(ghcb, regs->cx);
957 
958 	if (cr4 & X86_CR4_OSXSAVE)
959 		/* Safe to read xcr0 */
960 		ghcb_set_xcr0(ghcb, xgetbv(XCR_XFEATURE_ENABLED_MASK));
961 	else
962 		/* xgetbv will cause #GP - use reset value for xcr0 */
963 		ghcb_set_xcr0(ghcb, 1);
964 
965 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_CPUID, 0, 0);
966 	if (ret != ES_OK)
967 		return ret;
968 
969 	if (!(ghcb_rax_is_valid(ghcb) &&
970 	      ghcb_rbx_is_valid(ghcb) &&
971 	      ghcb_rcx_is_valid(ghcb) &&
972 	      ghcb_rdx_is_valid(ghcb)))
973 		return ES_VMM_ERROR;
974 
975 	regs->ax = ghcb->save.rax;
976 	regs->bx = ghcb->save.rbx;
977 	regs->cx = ghcb->save.rcx;
978 	regs->dx = ghcb->save.rdx;
979 
980 	return ES_OK;
981 }
982 
983 static enum es_result vc_handle_rdtsc(struct ghcb *ghcb,
984 				      struct es_em_ctxt *ctxt,
985 				      unsigned long exit_code)
986 {
987 	bool rdtscp = (exit_code == SVM_EXIT_RDTSCP);
988 	enum es_result ret;
989 
990 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, 0, 0);
991 	if (ret != ES_OK)
992 		return ret;
993 
994 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb) &&
995 	     (!rdtscp || ghcb_rcx_is_valid(ghcb))))
996 		return ES_VMM_ERROR;
997 
998 	ctxt->regs->ax = ghcb->save.rax;
999 	ctxt->regs->dx = ghcb->save.rdx;
1000 	if (rdtscp)
1001 		ctxt->regs->cx = ghcb->save.rcx;
1002 
1003 	return ES_OK;
1004 }
1005 
1006 struct cc_setup_data {
1007 	struct setup_data header;
1008 	u32 cc_blob_address;
1009 };
1010 
1011 /*
1012  * Search for a Confidential Computing blob passed in as a setup_data entry
1013  * via the Linux Boot Protocol.
1014  */
1015 static __head
1016 struct cc_blob_sev_info *find_cc_blob_setup_data(struct boot_params *bp)
1017 {
1018 	struct cc_setup_data *sd = NULL;
1019 	struct setup_data *hdr;
1020 
1021 	hdr = (struct setup_data *)bp->hdr.setup_data;
1022 
1023 	while (hdr) {
1024 		if (hdr->type == SETUP_CC_BLOB) {
1025 			sd = (struct cc_setup_data *)hdr;
1026 			return (struct cc_blob_sev_info *)(unsigned long)sd->cc_blob_address;
1027 		}
1028 		hdr = (struct setup_data *)hdr->next;
1029 	}
1030 
1031 	return NULL;
1032 }
1033 
1034 /*
1035  * Initialize the kernel's copy of the SNP CPUID table, and set up the
1036  * pointer that will be used to access it.
1037  *
1038  * Maintaining a direct mapping of the SNP CPUID table used by firmware would
1039  * be possible as an alternative, but the approach is brittle since the
1040  * mapping needs to be updated in sync with all the changes to virtual memory
1041  * layout and related mapping facilities throughout the boot process.
1042  */
1043 static void __head setup_cpuid_table(const struct cc_blob_sev_info *cc_info)
1044 {
1045 	const struct snp_cpuid_table *cpuid_table_fw, *cpuid_table;
1046 	int i;
1047 
1048 	if (!cc_info || !cc_info->cpuid_phys || cc_info->cpuid_len < PAGE_SIZE)
1049 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID);
1050 
1051 	cpuid_table_fw = (const struct snp_cpuid_table *)cc_info->cpuid_phys;
1052 	if (!cpuid_table_fw->count || cpuid_table_fw->count > SNP_CPUID_COUNT_MAX)
1053 		sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID);
1054 
1055 	cpuid_table = snp_cpuid_get_table();
1056 	memcpy((void *)cpuid_table, cpuid_table_fw, sizeof(*cpuid_table));
1057 
1058 	/* Initialize CPUID ranges for range-checking. */
1059 	for (i = 0; i < cpuid_table->count; i++) {
1060 		const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
1061 
1062 		if (fn->eax_in == 0x0)
1063 			RIP_REL_REF(cpuid_std_range_max) = fn->eax;
1064 		else if (fn->eax_in == 0x40000000)
1065 			RIP_REL_REF(cpuid_hyp_range_max) = fn->eax;
1066 		else if (fn->eax_in == 0x80000000)
1067 			RIP_REL_REF(cpuid_ext_range_max) = fn->eax;
1068 	}
1069 }
1070 
1071 static void pvalidate_pages(struct snp_psc_desc *desc)
1072 {
1073 	struct psc_entry *e;
1074 	unsigned long vaddr;
1075 	unsigned int size;
1076 	unsigned int i;
1077 	bool validate;
1078 	int rc;
1079 
1080 	for (i = 0; i <= desc->hdr.end_entry; i++) {
1081 		e = &desc->entries[i];
1082 
1083 		vaddr = (unsigned long)pfn_to_kaddr(e->gfn);
1084 		size = e->pagesize ? RMP_PG_SIZE_2M : RMP_PG_SIZE_4K;
1085 		validate = e->operation == SNP_PAGE_STATE_PRIVATE;
1086 
1087 		rc = pvalidate(vaddr, size, validate);
1088 		if (rc == PVALIDATE_FAIL_SIZEMISMATCH && size == RMP_PG_SIZE_2M) {
1089 			unsigned long vaddr_end = vaddr + PMD_SIZE;
1090 
1091 			for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) {
1092 				rc = pvalidate(vaddr, RMP_PG_SIZE_4K, validate);
1093 				if (rc)
1094 					break;
1095 			}
1096 		}
1097 
1098 		if (rc) {
1099 			WARN(1, "Failed to validate address 0x%lx ret %d", vaddr, rc);
1100 			sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
1101 		}
1102 	}
1103 }
1104 
1105 static int vmgexit_psc(struct ghcb *ghcb, struct snp_psc_desc *desc)
1106 {
1107 	int cur_entry, end_entry, ret = 0;
1108 	struct snp_psc_desc *data;
1109 	struct es_em_ctxt ctxt;
1110 
1111 	vc_ghcb_invalidate(ghcb);
1112 
1113 	/* Copy the input desc into GHCB shared buffer */
1114 	data = (struct snp_psc_desc *)ghcb->shared_buffer;
1115 	memcpy(ghcb->shared_buffer, desc, min_t(int, GHCB_SHARED_BUF_SIZE, sizeof(*desc)));
1116 
1117 	/*
1118 	 * As per the GHCB specification, the hypervisor can resume the guest
1119 	 * before processing all the entries. Check whether all the entries
1120 	 * are processed. If not, then keep retrying. Note, the hypervisor
1121 	 * will update the data memory directly to indicate the status, so
1122 	 * reference the data->hdr everywhere.
1123 	 *
1124 	 * The strategy here is to wait for the hypervisor to change the page
1125 	 * state in the RMP table before guest accesses the memory pages. If the
1126 	 * page state change was not successful, then later memory access will
1127 	 * result in a crash.
1128 	 */
1129 	cur_entry = data->hdr.cur_entry;
1130 	end_entry = data->hdr.end_entry;
1131 
1132 	while (data->hdr.cur_entry <= data->hdr.end_entry) {
1133 		ghcb_set_sw_scratch(ghcb, (u64)__pa(data));
1134 
1135 		/* This will advance the shared buffer data points to. */
1136 		ret = sev_es_ghcb_hv_call(ghcb, &ctxt, SVM_VMGEXIT_PSC, 0, 0);
1137 
1138 		/*
1139 		 * Page State Change VMGEXIT can pass error code through
1140 		 * exit_info_2.
1141 		 */
1142 		if (WARN(ret || ghcb->save.sw_exit_info_2,
1143 			 "SNP: PSC failed ret=%d exit_info_2=%llx\n",
1144 			 ret, ghcb->save.sw_exit_info_2)) {
1145 			ret = 1;
1146 			goto out;
1147 		}
1148 
1149 		/* Verify that reserved bit is not set */
1150 		if (WARN(data->hdr.reserved, "Reserved bit is set in the PSC header\n")) {
1151 			ret = 1;
1152 			goto out;
1153 		}
1154 
1155 		/*
1156 		 * Sanity check that entry processing is not going backwards.
1157 		 * This will happen only if hypervisor is tricking us.
1158 		 */
1159 		if (WARN(data->hdr.end_entry > end_entry || cur_entry > data->hdr.cur_entry,
1160 "SNP: PSC processing going backward, end_entry %d (got %d) cur_entry %d (got %d)\n",
1161 			 end_entry, data->hdr.end_entry, cur_entry, data->hdr.cur_entry)) {
1162 			ret = 1;
1163 			goto out;
1164 		}
1165 	}
1166 
1167 out:
1168 	return ret;
1169 }
1170