xref: /openbmc/linux/arch/x86/kernel/setup.c (revision e3b9f1e8)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *
6  *  Memory region support
7  *	David Parsons <orc@pell.chi.il.us>, July-August 1999
8  *
9  *  Added E820 sanitization routine (removes overlapping memory regions);
10  *  Brian Moyle <bmoyle@mvista.com>, February 2001
11  *
12  * Moved CPU detection code to cpu/${cpu}.c
13  *    Patrick Mochel <mochel@osdl.org>, March 2002
14  *
15  *  Provisions for empty E820 memory regions (reported by certain BIOSes).
16  *  Alex Achenbach <xela@slit.de>, December 2002.
17  *
18  */
19 
20 /*
21  * This file handles the architecture-dependent parts of initialization
22  */
23 
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/seq_file.h>
36 #include <linux/console.h>
37 #include <linux/root_dev.h>
38 #include <linux/highmem.h>
39 #include <linux/export.h>
40 #include <linux/efi.h>
41 #include <linux/init.h>
42 #include <linux/edd.h>
43 #include <linux/iscsi_ibft.h>
44 #include <linux/nodemask.h>
45 #include <linux/kexec.h>
46 #include <linux/dmi.h>
47 #include <linux/pfn.h>
48 #include <linux/pci.h>
49 #include <asm/pci-direct.h>
50 #include <linux/init_ohci1394_dma.h>
51 #include <linux/kvm_para.h>
52 #include <linux/dma-contiguous.h>
53 
54 #include <linux/errno.h>
55 #include <linux/kernel.h>
56 #include <linux/stddef.h>
57 #include <linux/unistd.h>
58 #include <linux/ptrace.h>
59 #include <linux/user.h>
60 #include <linux/delay.h>
61 
62 #include <linux/kallsyms.h>
63 #include <linux/cpufreq.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/ctype.h>
66 #include <linux/uaccess.h>
67 
68 #include <linux/percpu.h>
69 #include <linux/crash_dump.h>
70 #include <linux/tboot.h>
71 #include <linux/jiffies.h>
72 #include <linux/mem_encrypt.h>
73 
74 #include <linux/usb/xhci-dbgp.h>
75 #include <video/edid.h>
76 
77 #include <asm/mtrr.h>
78 #include <asm/apic.h>
79 #include <asm/realmode.h>
80 #include <asm/e820/api.h>
81 #include <asm/mpspec.h>
82 #include <asm/setup.h>
83 #include <asm/efi.h>
84 #include <asm/timer.h>
85 #include <asm/i8259.h>
86 #include <asm/sections.h>
87 #include <asm/io_apic.h>
88 #include <asm/ist.h>
89 #include <asm/setup_arch.h>
90 #include <asm/bios_ebda.h>
91 #include <asm/cacheflush.h>
92 #include <asm/processor.h>
93 #include <asm/bugs.h>
94 #include <asm/kasan.h>
95 
96 #include <asm/vsyscall.h>
97 #include <asm/cpu.h>
98 #include <asm/desc.h>
99 #include <asm/dma.h>
100 #include <asm/iommu.h>
101 #include <asm/gart.h>
102 #include <asm/mmu_context.h>
103 #include <asm/proto.h>
104 
105 #include <asm/paravirt.h>
106 #include <asm/hypervisor.h>
107 #include <asm/olpc_ofw.h>
108 
109 #include <asm/percpu.h>
110 #include <asm/topology.h>
111 #include <asm/apicdef.h>
112 #include <asm/amd_nb.h>
113 #include <asm/mce.h>
114 #include <asm/alternative.h>
115 #include <asm/prom.h>
116 #include <asm/microcode.h>
117 #include <asm/kaslr.h>
118 #include <asm/unwind.h>
119 
120 /*
121  * max_low_pfn_mapped: highest direct mapped pfn under 4GB
122  * max_pfn_mapped:     highest direct mapped pfn over 4GB
123  *
124  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
125  * represented by pfn_mapped
126  */
127 unsigned long max_low_pfn_mapped;
128 unsigned long max_pfn_mapped;
129 
130 #ifdef CONFIG_DMI
131 RESERVE_BRK(dmi_alloc, 65536);
132 #endif
133 
134 
135 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
136 unsigned long _brk_end = (unsigned long)__brk_base;
137 
138 struct boot_params boot_params;
139 
140 /*
141  * Machine setup..
142  */
143 static struct resource data_resource = {
144 	.name	= "Kernel data",
145 	.start	= 0,
146 	.end	= 0,
147 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
148 };
149 
150 static struct resource code_resource = {
151 	.name	= "Kernel code",
152 	.start	= 0,
153 	.end	= 0,
154 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
155 };
156 
157 static struct resource bss_resource = {
158 	.name	= "Kernel bss",
159 	.start	= 0,
160 	.end	= 0,
161 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
162 };
163 
164 
165 #ifdef CONFIG_X86_32
166 /* cpu data as detected by the assembly code in head_32.S */
167 struct cpuinfo_x86 new_cpu_data;
168 
169 /* common cpu data for all cpus */
170 struct cpuinfo_x86 boot_cpu_data __read_mostly;
171 EXPORT_SYMBOL(boot_cpu_data);
172 
173 unsigned int def_to_bigsmp;
174 
175 /* for MCA, but anyone else can use it if they want */
176 unsigned int machine_id;
177 unsigned int machine_submodel_id;
178 unsigned int BIOS_revision;
179 
180 struct apm_info apm_info;
181 EXPORT_SYMBOL(apm_info);
182 
183 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
184 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
185 struct ist_info ist_info;
186 EXPORT_SYMBOL(ist_info);
187 #else
188 struct ist_info ist_info;
189 #endif
190 
191 #else
192 struct cpuinfo_x86 boot_cpu_data __read_mostly = {
193 	.x86_phys_bits = MAX_PHYSMEM_BITS,
194 };
195 EXPORT_SYMBOL(boot_cpu_data);
196 #endif
197 
198 
199 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
200 __visible unsigned long mmu_cr4_features __ro_after_init;
201 #else
202 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
203 #endif
204 
205 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
206 int bootloader_type, bootloader_version;
207 
208 /*
209  * Setup options
210  */
211 struct screen_info screen_info;
212 EXPORT_SYMBOL(screen_info);
213 struct edid_info edid_info;
214 EXPORT_SYMBOL_GPL(edid_info);
215 
216 extern int root_mountflags;
217 
218 unsigned long saved_video_mode;
219 
220 #define RAMDISK_IMAGE_START_MASK	0x07FF
221 #define RAMDISK_PROMPT_FLAG		0x8000
222 #define RAMDISK_LOAD_FLAG		0x4000
223 
224 static char __initdata command_line[COMMAND_LINE_SIZE];
225 #ifdef CONFIG_CMDLINE_BOOL
226 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
227 #endif
228 
229 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
230 struct edd edd;
231 #ifdef CONFIG_EDD_MODULE
232 EXPORT_SYMBOL(edd);
233 #endif
234 /**
235  * copy_edd() - Copy the BIOS EDD information
236  *              from boot_params into a safe place.
237  *
238  */
239 static inline void __init copy_edd(void)
240 {
241      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
242 	    sizeof(edd.mbr_signature));
243      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
244      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
245      edd.edd_info_nr = boot_params.eddbuf_entries;
246 }
247 #else
248 static inline void __init copy_edd(void)
249 {
250 }
251 #endif
252 
253 void * __init extend_brk(size_t size, size_t align)
254 {
255 	size_t mask = align - 1;
256 	void *ret;
257 
258 	BUG_ON(_brk_start == 0);
259 	BUG_ON(align & mask);
260 
261 	_brk_end = (_brk_end + mask) & ~mask;
262 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
263 
264 	ret = (void *)_brk_end;
265 	_brk_end += size;
266 
267 	memset(ret, 0, size);
268 
269 	return ret;
270 }
271 
272 #ifdef CONFIG_X86_32
273 static void __init cleanup_highmap(void)
274 {
275 }
276 #endif
277 
278 static void __init reserve_brk(void)
279 {
280 	if (_brk_end > _brk_start)
281 		memblock_reserve(__pa_symbol(_brk_start),
282 				 _brk_end - _brk_start);
283 
284 	/* Mark brk area as locked down and no longer taking any
285 	   new allocations */
286 	_brk_start = 0;
287 }
288 
289 u64 relocated_ramdisk;
290 
291 #ifdef CONFIG_BLK_DEV_INITRD
292 
293 static u64 __init get_ramdisk_image(void)
294 {
295 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
296 
297 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
298 
299 	return ramdisk_image;
300 }
301 static u64 __init get_ramdisk_size(void)
302 {
303 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
304 
305 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
306 
307 	return ramdisk_size;
308 }
309 
310 static void __init relocate_initrd(void)
311 {
312 	/* Assume only end is not page aligned */
313 	u64 ramdisk_image = get_ramdisk_image();
314 	u64 ramdisk_size  = get_ramdisk_size();
315 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
316 
317 	/* We need to move the initrd down into directly mapped mem */
318 	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
319 						   area_size, PAGE_SIZE);
320 
321 	if (!relocated_ramdisk)
322 		panic("Cannot find place for new RAMDISK of size %lld\n",
323 		      ramdisk_size);
324 
325 	/* Note: this includes all the mem currently occupied by
326 	   the initrd, we rely on that fact to keep the data intact. */
327 	memblock_reserve(relocated_ramdisk, area_size);
328 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
329 	initrd_end   = initrd_start + ramdisk_size;
330 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
331 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
332 
333 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
334 
335 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
336 		" [mem %#010llx-%#010llx]\n",
337 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
338 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
339 }
340 
341 static void __init early_reserve_initrd(void)
342 {
343 	/* Assume only end is not page aligned */
344 	u64 ramdisk_image = get_ramdisk_image();
345 	u64 ramdisk_size  = get_ramdisk_size();
346 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
347 
348 	if (!boot_params.hdr.type_of_loader ||
349 	    !ramdisk_image || !ramdisk_size)
350 		return;		/* No initrd provided by bootloader */
351 
352 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
353 }
354 static void __init reserve_initrd(void)
355 {
356 	/* Assume only end is not page aligned */
357 	u64 ramdisk_image = get_ramdisk_image();
358 	u64 ramdisk_size  = get_ramdisk_size();
359 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
360 	u64 mapped_size;
361 
362 	if (!boot_params.hdr.type_of_loader ||
363 	    !ramdisk_image || !ramdisk_size)
364 		return;		/* No initrd provided by bootloader */
365 
366 	initrd_start = 0;
367 
368 	mapped_size = memblock_mem_size(max_pfn_mapped);
369 	if (ramdisk_size >= (mapped_size>>1))
370 		panic("initrd too large to handle, "
371 		       "disabling initrd (%lld needed, %lld available)\n",
372 		       ramdisk_size, mapped_size>>1);
373 
374 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
375 			ramdisk_end - 1);
376 
377 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
378 				PFN_DOWN(ramdisk_end))) {
379 		/* All are mapped, easy case */
380 		initrd_start = ramdisk_image + PAGE_OFFSET;
381 		initrd_end = initrd_start + ramdisk_size;
382 		return;
383 	}
384 
385 	relocate_initrd();
386 
387 	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
388 }
389 
390 #else
391 static void __init early_reserve_initrd(void)
392 {
393 }
394 static void __init reserve_initrd(void)
395 {
396 }
397 #endif /* CONFIG_BLK_DEV_INITRD */
398 
399 static void __init parse_setup_data(void)
400 {
401 	struct setup_data *data;
402 	u64 pa_data, pa_next;
403 
404 	pa_data = boot_params.hdr.setup_data;
405 	while (pa_data) {
406 		u32 data_len, data_type;
407 
408 		data = early_memremap(pa_data, sizeof(*data));
409 		data_len = data->len + sizeof(struct setup_data);
410 		data_type = data->type;
411 		pa_next = data->next;
412 		early_memunmap(data, sizeof(*data));
413 
414 		switch (data_type) {
415 		case SETUP_E820_EXT:
416 			e820__memory_setup_extended(pa_data, data_len);
417 			break;
418 		case SETUP_DTB:
419 			add_dtb(pa_data);
420 			break;
421 		case SETUP_EFI:
422 			parse_efi_setup(pa_data, data_len);
423 			break;
424 		default:
425 			break;
426 		}
427 		pa_data = pa_next;
428 	}
429 }
430 
431 static void __init memblock_x86_reserve_range_setup_data(void)
432 {
433 	struct setup_data *data;
434 	u64 pa_data;
435 
436 	pa_data = boot_params.hdr.setup_data;
437 	while (pa_data) {
438 		data = early_memremap(pa_data, sizeof(*data));
439 		memblock_reserve(pa_data, sizeof(*data) + data->len);
440 		pa_data = data->next;
441 		early_memunmap(data, sizeof(*data));
442 	}
443 }
444 
445 /*
446  * --------- Crashkernel reservation ------------------------------
447  */
448 
449 #ifdef CONFIG_KEXEC_CORE
450 
451 /* 16M alignment for crash kernel regions */
452 #define CRASH_ALIGN		(16 << 20)
453 
454 /*
455  * Keep the crash kernel below this limit.  On 32 bits earlier kernels
456  * would limit the kernel to the low 512 MiB due to mapping restrictions.
457  * On 64bit, old kexec-tools need to under 896MiB.
458  */
459 #ifdef CONFIG_X86_32
460 # define CRASH_ADDR_LOW_MAX	(512 << 20)
461 # define CRASH_ADDR_HIGH_MAX	(512 << 20)
462 #else
463 # define CRASH_ADDR_LOW_MAX	(896UL << 20)
464 # define CRASH_ADDR_HIGH_MAX	MAXMEM
465 #endif
466 
467 static int __init reserve_crashkernel_low(void)
468 {
469 #ifdef CONFIG_X86_64
470 	unsigned long long base, low_base = 0, low_size = 0;
471 	unsigned long total_low_mem;
472 	int ret;
473 
474 	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
475 
476 	/* crashkernel=Y,low */
477 	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
478 	if (ret) {
479 		/*
480 		 * two parts from lib/swiotlb.c:
481 		 * -swiotlb size: user-specified with swiotlb= or default.
482 		 *
483 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
484 		 * to 8M for other buffers that may need to stay low too. Also
485 		 * make sure we allocate enough extra low memory so that we
486 		 * don't run out of DMA buffers for 32-bit devices.
487 		 */
488 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
489 	} else {
490 		/* passed with crashkernel=0,low ? */
491 		if (!low_size)
492 			return 0;
493 	}
494 
495 	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
496 	if (!low_base) {
497 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
498 		       (unsigned long)(low_size >> 20));
499 		return -ENOMEM;
500 	}
501 
502 	ret = memblock_reserve(low_base, low_size);
503 	if (ret) {
504 		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
505 		return ret;
506 	}
507 
508 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
509 		(unsigned long)(low_size >> 20),
510 		(unsigned long)(low_base >> 20),
511 		(unsigned long)(total_low_mem >> 20));
512 
513 	crashk_low_res.start = low_base;
514 	crashk_low_res.end   = low_base + low_size - 1;
515 	insert_resource(&iomem_resource, &crashk_low_res);
516 #endif
517 	return 0;
518 }
519 
520 static void __init reserve_crashkernel(void)
521 {
522 	unsigned long long crash_size, crash_base, total_mem;
523 	bool high = false;
524 	int ret;
525 
526 	total_mem = memblock_phys_mem_size();
527 
528 	/* crashkernel=XM */
529 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
530 	if (ret != 0 || crash_size <= 0) {
531 		/* crashkernel=X,high */
532 		ret = parse_crashkernel_high(boot_command_line, total_mem,
533 					     &crash_size, &crash_base);
534 		if (ret != 0 || crash_size <= 0)
535 			return;
536 		high = true;
537 	}
538 
539 	/* 0 means: find the address automatically */
540 	if (crash_base <= 0) {
541 		/*
542 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
543 		 * as old kexec-tools loads bzImage below that, unless
544 		 * "crashkernel=size[KMG],high" is specified.
545 		 */
546 		crash_base = memblock_find_in_range(CRASH_ALIGN,
547 						    high ? CRASH_ADDR_HIGH_MAX
548 							 : CRASH_ADDR_LOW_MAX,
549 						    crash_size, CRASH_ALIGN);
550 		if (!crash_base) {
551 			pr_info("crashkernel reservation failed - No suitable area found.\n");
552 			return;
553 		}
554 
555 	} else {
556 		unsigned long long start;
557 
558 		start = memblock_find_in_range(crash_base,
559 					       crash_base + crash_size,
560 					       crash_size, 1 << 20);
561 		if (start != crash_base) {
562 			pr_info("crashkernel reservation failed - memory is in use.\n");
563 			return;
564 		}
565 	}
566 	ret = memblock_reserve(crash_base, crash_size);
567 	if (ret) {
568 		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
569 		return;
570 	}
571 
572 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
573 		memblock_free(crash_base, crash_size);
574 		return;
575 	}
576 
577 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
578 		(unsigned long)(crash_size >> 20),
579 		(unsigned long)(crash_base >> 20),
580 		(unsigned long)(total_mem >> 20));
581 
582 	crashk_res.start = crash_base;
583 	crashk_res.end   = crash_base + crash_size - 1;
584 	insert_resource(&iomem_resource, &crashk_res);
585 }
586 #else
587 static void __init reserve_crashkernel(void)
588 {
589 }
590 #endif
591 
592 static struct resource standard_io_resources[] = {
593 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
594 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
595 	{ .name = "pic1", .start = 0x20, .end = 0x21,
596 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
597 	{ .name = "timer0", .start = 0x40, .end = 0x43,
598 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
599 	{ .name = "timer1", .start = 0x50, .end = 0x53,
600 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
601 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
602 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
603 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
604 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
605 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
606 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
607 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
608 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
609 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
610 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
611 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
612 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
613 };
614 
615 void __init reserve_standard_io_resources(void)
616 {
617 	int i;
618 
619 	/* request I/O space for devices used on all i[345]86 PCs */
620 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
621 		request_resource(&ioport_resource, &standard_io_resources[i]);
622 
623 }
624 
625 static __init void reserve_ibft_region(void)
626 {
627 	unsigned long addr, size = 0;
628 
629 	addr = find_ibft_region(&size);
630 
631 	if (size)
632 		memblock_reserve(addr, size);
633 }
634 
635 static bool __init snb_gfx_workaround_needed(void)
636 {
637 #ifdef CONFIG_PCI
638 	int i;
639 	u16 vendor, devid;
640 	static const __initconst u16 snb_ids[] = {
641 		0x0102,
642 		0x0112,
643 		0x0122,
644 		0x0106,
645 		0x0116,
646 		0x0126,
647 		0x010a,
648 	};
649 
650 	/* Assume no if something weird is going on with PCI */
651 	if (!early_pci_allowed())
652 		return false;
653 
654 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
655 	if (vendor != 0x8086)
656 		return false;
657 
658 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
659 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
660 		if (devid == snb_ids[i])
661 			return true;
662 #endif
663 
664 	return false;
665 }
666 
667 /*
668  * Sandy Bridge graphics has trouble with certain ranges, exclude
669  * them from allocation.
670  */
671 static void __init trim_snb_memory(void)
672 {
673 	static const __initconst unsigned long bad_pages[] = {
674 		0x20050000,
675 		0x20110000,
676 		0x20130000,
677 		0x20138000,
678 		0x40004000,
679 	};
680 	int i;
681 
682 	if (!snb_gfx_workaround_needed())
683 		return;
684 
685 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
686 
687 	/*
688 	 * Reserve all memory below the 1 MB mark that has not
689 	 * already been reserved.
690 	 */
691 	memblock_reserve(0, 1<<20);
692 
693 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
694 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
695 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
696 			       bad_pages[i]);
697 	}
698 }
699 
700 /*
701  * Here we put platform-specific memory range workarounds, i.e.
702  * memory known to be corrupt or otherwise in need to be reserved on
703  * specific platforms.
704  *
705  * If this gets used more widely it could use a real dispatch mechanism.
706  */
707 static void __init trim_platform_memory_ranges(void)
708 {
709 	trim_snb_memory();
710 }
711 
712 static void __init trim_bios_range(void)
713 {
714 	/*
715 	 * A special case is the first 4Kb of memory;
716 	 * This is a BIOS owned area, not kernel ram, but generally
717 	 * not listed as such in the E820 table.
718 	 *
719 	 * This typically reserves additional memory (64KiB by default)
720 	 * since some BIOSes are known to corrupt low memory.  See the
721 	 * Kconfig help text for X86_RESERVE_LOW.
722 	 */
723 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
724 
725 	/*
726 	 * special case: Some BIOSen report the PC BIOS
727 	 * area (640->1Mb) as ram even though it is not.
728 	 * take them out.
729 	 */
730 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
731 
732 	e820__update_table(e820_table);
733 }
734 
735 /* called before trim_bios_range() to spare extra sanitize */
736 static void __init e820_add_kernel_range(void)
737 {
738 	u64 start = __pa_symbol(_text);
739 	u64 size = __pa_symbol(_end) - start;
740 
741 	/*
742 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
743 	 * attempt to fix it by adding the range. We may have a confused BIOS,
744 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
745 	 * exclude kernel range. If we really are running on top non-RAM,
746 	 * we will crash later anyways.
747 	 */
748 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
749 		return;
750 
751 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
752 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
753 	e820__range_add(start, size, E820_TYPE_RAM);
754 }
755 
756 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
757 
758 static int __init parse_reservelow(char *p)
759 {
760 	unsigned long long size;
761 
762 	if (!p)
763 		return -EINVAL;
764 
765 	size = memparse(p, &p);
766 
767 	if (size < 4096)
768 		size = 4096;
769 
770 	if (size > 640*1024)
771 		size = 640*1024;
772 
773 	reserve_low = size;
774 
775 	return 0;
776 }
777 
778 early_param("reservelow", parse_reservelow);
779 
780 static void __init trim_low_memory_range(void)
781 {
782 	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
783 }
784 
785 /*
786  * Dump out kernel offset information on panic.
787  */
788 static int
789 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
790 {
791 	if (kaslr_enabled()) {
792 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
793 			 kaslr_offset(),
794 			 __START_KERNEL,
795 			 __START_KERNEL_map,
796 			 MODULES_VADDR-1);
797 	} else {
798 		pr_emerg("Kernel Offset: disabled\n");
799 	}
800 
801 	return 0;
802 }
803 
804 /*
805  * Determine if we were loaded by an EFI loader.  If so, then we have also been
806  * passed the efi memmap, systab, etc., so we should use these data structures
807  * for initialization.  Note, the efi init code path is determined by the
808  * global efi_enabled. This allows the same kernel image to be used on existing
809  * systems (with a traditional BIOS) as well as on EFI systems.
810  */
811 /*
812  * setup_arch - architecture-specific boot-time initializations
813  *
814  * Note: On x86_64, fixmaps are ready for use even before this is called.
815  */
816 
817 void __init setup_arch(char **cmdline_p)
818 {
819 	memblock_reserve(__pa_symbol(_text),
820 			 (unsigned long)__bss_stop - (unsigned long)_text);
821 
822 	early_reserve_initrd();
823 
824 	/*
825 	 * At this point everything still needed from the boot loader
826 	 * or BIOS or kernel text should be early reserved or marked not
827 	 * RAM in e820. All other memory is free game.
828 	 */
829 
830 #ifdef CONFIG_X86_32
831 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
832 
833 	/*
834 	 * copy kernel address range established so far and switch
835 	 * to the proper swapper page table
836 	 */
837 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
838 			initial_page_table + KERNEL_PGD_BOUNDARY,
839 			KERNEL_PGD_PTRS);
840 
841 	load_cr3(swapper_pg_dir);
842 	/*
843 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
844 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
845 	 * will not flush anything because the cpu quirk which clears
846 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
847 	 * load_cr3() above the TLB has been flushed already. The
848 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
849 	 * so proper operation is guaranteed.
850 	 */
851 	__flush_tlb_all();
852 #else
853 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
854 #endif
855 
856 	/*
857 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
858 	 * reserve_top(), so do this before touching the ioremap area.
859 	 */
860 	olpc_ofw_detect();
861 
862 	idt_setup_early_traps();
863 	early_cpu_init();
864 	early_ioremap_init();
865 
866 	setup_olpc_ofw_pgd();
867 
868 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
869 	screen_info = boot_params.screen_info;
870 	edid_info = boot_params.edid_info;
871 #ifdef CONFIG_X86_32
872 	apm_info.bios = boot_params.apm_bios_info;
873 	ist_info = boot_params.ist_info;
874 #endif
875 	saved_video_mode = boot_params.hdr.vid_mode;
876 	bootloader_type = boot_params.hdr.type_of_loader;
877 	if ((bootloader_type >> 4) == 0xe) {
878 		bootloader_type &= 0xf;
879 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
880 	}
881 	bootloader_version  = bootloader_type & 0xf;
882 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
883 
884 #ifdef CONFIG_BLK_DEV_RAM
885 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
886 	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
887 	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
888 #endif
889 #ifdef CONFIG_EFI
890 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
891 		     EFI32_LOADER_SIGNATURE, 4)) {
892 		set_bit(EFI_BOOT, &efi.flags);
893 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
894 		     EFI64_LOADER_SIGNATURE, 4)) {
895 		set_bit(EFI_BOOT, &efi.flags);
896 		set_bit(EFI_64BIT, &efi.flags);
897 	}
898 #endif
899 
900 	x86_init.oem.arch_setup();
901 
902 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
903 	e820__memory_setup();
904 	parse_setup_data();
905 
906 	copy_edd();
907 
908 	if (!boot_params.hdr.root_flags)
909 		root_mountflags &= ~MS_RDONLY;
910 	init_mm.start_code = (unsigned long) _text;
911 	init_mm.end_code = (unsigned long) _etext;
912 	init_mm.end_data = (unsigned long) _edata;
913 	init_mm.brk = _brk_end;
914 
915 	mpx_mm_init(&init_mm);
916 
917 	code_resource.start = __pa_symbol(_text);
918 	code_resource.end = __pa_symbol(_etext)-1;
919 	data_resource.start = __pa_symbol(_etext);
920 	data_resource.end = __pa_symbol(_edata)-1;
921 	bss_resource.start = __pa_symbol(__bss_start);
922 	bss_resource.end = __pa_symbol(__bss_stop)-1;
923 
924 #ifdef CONFIG_CMDLINE_BOOL
925 #ifdef CONFIG_CMDLINE_OVERRIDE
926 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
927 #else
928 	if (builtin_cmdline[0]) {
929 		/* append boot loader cmdline to builtin */
930 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
931 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
932 		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
933 	}
934 #endif
935 #endif
936 
937 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
938 	*cmdline_p = command_line;
939 
940 	/*
941 	 * x86_configure_nx() is called before parse_early_param() to detect
942 	 * whether hardware doesn't support NX (so that the early EHCI debug
943 	 * console setup can safely call set_fixmap()). It may then be called
944 	 * again from within noexec_setup() during parsing early parameters
945 	 * to honor the respective command line option.
946 	 */
947 	x86_configure_nx();
948 
949 	parse_early_param();
950 
951 	if (efi_enabled(EFI_BOOT))
952 		efi_memblock_x86_reserve_range();
953 #ifdef CONFIG_MEMORY_HOTPLUG
954 	/*
955 	 * Memory used by the kernel cannot be hot-removed because Linux
956 	 * cannot migrate the kernel pages. When memory hotplug is
957 	 * enabled, we should prevent memblock from allocating memory
958 	 * for the kernel.
959 	 *
960 	 * ACPI SRAT records all hotpluggable memory ranges. But before
961 	 * SRAT is parsed, we don't know about it.
962 	 *
963 	 * The kernel image is loaded into memory at very early time. We
964 	 * cannot prevent this anyway. So on NUMA system, we set any
965 	 * node the kernel resides in as un-hotpluggable.
966 	 *
967 	 * Since on modern servers, one node could have double-digit
968 	 * gigabytes memory, we can assume the memory around the kernel
969 	 * image is also un-hotpluggable. So before SRAT is parsed, just
970 	 * allocate memory near the kernel image to try the best to keep
971 	 * the kernel away from hotpluggable memory.
972 	 */
973 	if (movable_node_is_enabled())
974 		memblock_set_bottom_up(true);
975 #endif
976 
977 	x86_report_nx();
978 
979 	/* after early param, so could get panic from serial */
980 	memblock_x86_reserve_range_setup_data();
981 
982 	if (acpi_mps_check()) {
983 #ifdef CONFIG_X86_LOCAL_APIC
984 		disable_apic = 1;
985 #endif
986 		setup_clear_cpu_cap(X86_FEATURE_APIC);
987 	}
988 
989 #ifdef CONFIG_PCI
990 	if (pci_early_dump_regs)
991 		early_dump_pci_devices();
992 #endif
993 
994 	e820__reserve_setup_data();
995 	e820__finish_early_params();
996 
997 	if (efi_enabled(EFI_BOOT))
998 		efi_init();
999 
1000 	dmi_scan_machine();
1001 	dmi_memdev_walk();
1002 	dmi_set_dump_stack_arch_desc();
1003 
1004 	/*
1005 	 * VMware detection requires dmi to be available, so this
1006 	 * needs to be done after dmi_scan_machine(), for the boot CPU.
1007 	 */
1008 	init_hypervisor_platform();
1009 
1010 	x86_init.resources.probe_roms();
1011 
1012 	/* after parse_early_param, so could debug it */
1013 	insert_resource(&iomem_resource, &code_resource);
1014 	insert_resource(&iomem_resource, &data_resource);
1015 	insert_resource(&iomem_resource, &bss_resource);
1016 
1017 	e820_add_kernel_range();
1018 	trim_bios_range();
1019 #ifdef CONFIG_X86_32
1020 	if (ppro_with_ram_bug()) {
1021 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1022 				  E820_TYPE_RESERVED);
1023 		e820__update_table(e820_table);
1024 		printk(KERN_INFO "fixed physical RAM map:\n");
1025 		e820__print_table("bad_ppro");
1026 	}
1027 #else
1028 	early_gart_iommu_check();
1029 #endif
1030 
1031 	/*
1032 	 * partially used pages are not usable - thus
1033 	 * we are rounding upwards:
1034 	 */
1035 	max_pfn = e820__end_of_ram_pfn();
1036 
1037 	/* update e820 for memory not covered by WB MTRRs */
1038 	mtrr_bp_init();
1039 	if (mtrr_trim_uncached_memory(max_pfn))
1040 		max_pfn = e820__end_of_ram_pfn();
1041 
1042 	max_possible_pfn = max_pfn;
1043 
1044 	/*
1045 	 * This call is required when the CPU does not support PAT. If
1046 	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1047 	 * effect.
1048 	 */
1049 	init_cache_modes();
1050 
1051 	/*
1052 	 * Define random base addresses for memory sections after max_pfn is
1053 	 * defined and before each memory section base is used.
1054 	 */
1055 	kernel_randomize_memory();
1056 
1057 #ifdef CONFIG_X86_32
1058 	/* max_low_pfn get updated here */
1059 	find_low_pfn_range();
1060 #else
1061 	check_x2apic();
1062 
1063 	/* How many end-of-memory variables you have, grandma! */
1064 	/* need this before calling reserve_initrd */
1065 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1066 		max_low_pfn = e820__end_of_low_ram_pfn();
1067 	else
1068 		max_low_pfn = max_pfn;
1069 
1070 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1071 #endif
1072 
1073 	/*
1074 	 * Find and reserve possible boot-time SMP configuration:
1075 	 */
1076 	find_smp_config();
1077 
1078 	reserve_ibft_region();
1079 
1080 	early_alloc_pgt_buf();
1081 
1082 	/*
1083 	 * Need to conclude brk, before e820__memblock_setup()
1084 	 *  it could use memblock_find_in_range, could overlap with
1085 	 *  brk area.
1086 	 */
1087 	reserve_brk();
1088 
1089 	cleanup_highmap();
1090 
1091 	memblock_set_current_limit(ISA_END_ADDRESS);
1092 	e820__memblock_setup();
1093 
1094 	reserve_bios_regions();
1095 
1096 	if (efi_enabled(EFI_MEMMAP)) {
1097 		efi_fake_memmap();
1098 		efi_find_mirror();
1099 		efi_esrt_init();
1100 
1101 		/*
1102 		 * The EFI specification says that boot service code won't be
1103 		 * called after ExitBootServices(). This is, in fact, a lie.
1104 		 */
1105 		efi_reserve_boot_services();
1106 	}
1107 
1108 	/* preallocate 4k for mptable mpc */
1109 	e820__memblock_alloc_reserved_mpc_new();
1110 
1111 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1112 	setup_bios_corruption_check();
1113 #endif
1114 
1115 #ifdef CONFIG_X86_32
1116 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1117 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1118 #endif
1119 
1120 	reserve_real_mode();
1121 
1122 	trim_platform_memory_ranges();
1123 	trim_low_memory_range();
1124 
1125 	init_mem_mapping();
1126 
1127 	idt_setup_early_pf();
1128 
1129 	/*
1130 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1131 	 * with the current CR4 value.  This may not be necessary, but
1132 	 * auditing all the early-boot CR4 manipulation would be needed to
1133 	 * rule it out.
1134 	 *
1135 	 * Mask off features that don't work outside long mode (just
1136 	 * PCIDE for now).
1137 	 */
1138 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1139 
1140 	memblock_set_current_limit(get_max_mapped());
1141 
1142 	/*
1143 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1144 	 */
1145 
1146 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1147 	if (init_ohci1394_dma_early)
1148 		init_ohci1394_dma_on_all_controllers();
1149 #endif
1150 	/* Allocate bigger log buffer */
1151 	setup_log_buf(1);
1152 
1153 	if (efi_enabled(EFI_BOOT)) {
1154 		switch (boot_params.secure_boot) {
1155 		case efi_secureboot_mode_disabled:
1156 			pr_info("Secure boot disabled\n");
1157 			break;
1158 		case efi_secureboot_mode_enabled:
1159 			pr_info("Secure boot enabled\n");
1160 			break;
1161 		default:
1162 			pr_info("Secure boot could not be determined\n");
1163 			break;
1164 		}
1165 	}
1166 
1167 	reserve_initrd();
1168 
1169 	acpi_table_upgrade();
1170 
1171 	vsmp_init();
1172 
1173 	io_delay_init();
1174 
1175 	early_platform_quirks();
1176 
1177 	/*
1178 	 * Parse the ACPI tables for possible boot-time SMP configuration.
1179 	 */
1180 	acpi_boot_table_init();
1181 
1182 	early_acpi_boot_init();
1183 
1184 	initmem_init();
1185 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1186 
1187 	/*
1188 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1189 	 * won't consume hotpluggable memory.
1190 	 */
1191 	reserve_crashkernel();
1192 
1193 	memblock_find_dma_reserve();
1194 
1195 #ifdef CONFIG_KVM_GUEST
1196 	kvmclock_init();
1197 #endif
1198 
1199 	tsc_early_delay_calibrate();
1200 	if (!early_xdbc_setup_hardware())
1201 		early_xdbc_register_console();
1202 
1203 	x86_init.paging.pagetable_init();
1204 
1205 	kasan_init();
1206 
1207 	/*
1208 	 * Sync back kernel address range.
1209 	 *
1210 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1211 	 * this call?
1212 	 */
1213 	sync_initial_page_table();
1214 
1215 	tboot_probe();
1216 
1217 	map_vsyscall();
1218 
1219 	generic_apic_probe();
1220 
1221 	early_quirks();
1222 
1223 	/*
1224 	 * Read APIC and some other early information from ACPI tables.
1225 	 */
1226 	acpi_boot_init();
1227 	sfi_init();
1228 	x86_dtb_init();
1229 
1230 	/*
1231 	 * get boot-time SMP configuration:
1232 	 */
1233 	get_smp_config();
1234 
1235 	/*
1236 	 * Systems w/o ACPI and mptables might not have it mapped the local
1237 	 * APIC yet, but prefill_possible_map() might need to access it.
1238 	 */
1239 	init_apic_mappings();
1240 
1241 	prefill_possible_map();
1242 
1243 	init_cpu_to_node();
1244 
1245 	io_apic_init_mappings();
1246 
1247 	x86_init.hyper.guest_late_init();
1248 
1249 	e820__reserve_resources();
1250 	e820__register_nosave_regions(max_low_pfn);
1251 
1252 	x86_init.resources.reserve_resources();
1253 
1254 	e820__setup_pci_gap();
1255 
1256 #ifdef CONFIG_VT
1257 #if defined(CONFIG_VGA_CONSOLE)
1258 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1259 		conswitchp = &vga_con;
1260 #elif defined(CONFIG_DUMMY_CONSOLE)
1261 	conswitchp = &dummy_con;
1262 #endif
1263 #endif
1264 	x86_init.oem.banner();
1265 
1266 	x86_init.timers.wallclock_init();
1267 
1268 	mcheck_init();
1269 
1270 	arch_init_ideal_nops();
1271 
1272 	register_refined_jiffies(CLOCK_TICK_RATE);
1273 
1274 #ifdef CONFIG_EFI
1275 	if (efi_enabled(EFI_BOOT))
1276 		efi_apply_memmap_quirks();
1277 #endif
1278 
1279 	unwind_init();
1280 }
1281 
1282 #ifdef CONFIG_X86_32
1283 
1284 static struct resource video_ram_resource = {
1285 	.name	= "Video RAM area",
1286 	.start	= 0xa0000,
1287 	.end	= 0xbffff,
1288 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1289 };
1290 
1291 void __init i386_reserve_resources(void)
1292 {
1293 	request_resource(&iomem_resource, &video_ram_resource);
1294 	reserve_standard_io_resources();
1295 }
1296 
1297 #endif /* CONFIG_X86_32 */
1298 
1299 static struct notifier_block kernel_offset_notifier = {
1300 	.notifier_call = dump_kernel_offset
1301 };
1302 
1303 static int __init register_kernel_offset_dumper(void)
1304 {
1305 	atomic_notifier_chain_register(&panic_notifier_list,
1306 					&kernel_offset_notifier);
1307 	return 0;
1308 }
1309 __initcall(register_kernel_offset_dumper);
1310 
1311 void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1312 {
1313 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
1314 		return;
1315 
1316 	seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1317 }
1318