xref: /openbmc/linux/arch/x86/kernel/setup.c (revision dd2934a95701576203b2f61e8ded4e4a2f9183ea)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *
6  *  Memory region support
7  *	David Parsons <orc@pell.chi.il.us>, July-August 1999
8  *
9  *  Added E820 sanitization routine (removes overlapping memory regions);
10  *  Brian Moyle <bmoyle@mvista.com>, February 2001
11  *
12  * Moved CPU detection code to cpu/${cpu}.c
13  *    Patrick Mochel <mochel@osdl.org>, March 2002
14  *
15  *  Provisions for empty E820 memory regions (reported by certain BIOSes).
16  *  Alex Achenbach <xela@slit.de>, December 2002.
17  *
18  */
19 
20 /*
21  * This file handles the architecture-dependent parts of initialization
22  */
23 
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/seq_file.h>
36 #include <linux/console.h>
37 #include <linux/root_dev.h>
38 #include <linux/highmem.h>
39 #include <linux/export.h>
40 #include <linux/efi.h>
41 #include <linux/init.h>
42 #include <linux/edd.h>
43 #include <linux/iscsi_ibft.h>
44 #include <linux/nodemask.h>
45 #include <linux/kexec.h>
46 #include <linux/dmi.h>
47 #include <linux/pfn.h>
48 #include <linux/pci.h>
49 #include <asm/pci-direct.h>
50 #include <linux/init_ohci1394_dma.h>
51 #include <linux/kvm_para.h>
52 #include <linux/dma-contiguous.h>
53 #include <xen/xen.h>
54 
55 #include <linux/errno.h>
56 #include <linux/kernel.h>
57 #include <linux/stddef.h>
58 #include <linux/unistd.h>
59 #include <linux/ptrace.h>
60 #include <linux/user.h>
61 #include <linux/delay.h>
62 
63 #include <linux/kallsyms.h>
64 #include <linux/cpufreq.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/ctype.h>
67 #include <linux/uaccess.h>
68 
69 #include <linux/percpu.h>
70 #include <linux/crash_dump.h>
71 #include <linux/tboot.h>
72 #include <linux/jiffies.h>
73 #include <linux/mem_encrypt.h>
74 
75 #include <linux/usb/xhci-dbgp.h>
76 #include <video/edid.h>
77 
78 #include <asm/mtrr.h>
79 #include <asm/apic.h>
80 #include <asm/realmode.h>
81 #include <asm/e820/api.h>
82 #include <asm/mpspec.h>
83 #include <asm/setup.h>
84 #include <asm/efi.h>
85 #include <asm/timer.h>
86 #include <asm/i8259.h>
87 #include <asm/sections.h>
88 #include <asm/io_apic.h>
89 #include <asm/ist.h>
90 #include <asm/setup_arch.h>
91 #include <asm/bios_ebda.h>
92 #include <asm/cacheflush.h>
93 #include <asm/processor.h>
94 #include <asm/bugs.h>
95 #include <asm/kasan.h>
96 
97 #include <asm/vsyscall.h>
98 #include <asm/cpu.h>
99 #include <asm/desc.h>
100 #include <asm/dma.h>
101 #include <asm/iommu.h>
102 #include <asm/gart.h>
103 #include <asm/mmu_context.h>
104 #include <asm/proto.h>
105 
106 #include <asm/paravirt.h>
107 #include <asm/hypervisor.h>
108 #include <asm/olpc_ofw.h>
109 
110 #include <asm/percpu.h>
111 #include <asm/topology.h>
112 #include <asm/apicdef.h>
113 #include <asm/amd_nb.h>
114 #include <asm/mce.h>
115 #include <asm/alternative.h>
116 #include <asm/prom.h>
117 #include <asm/microcode.h>
118 #include <asm/kaslr.h>
119 #include <asm/unwind.h>
120 
121 /*
122  * max_low_pfn_mapped: highest direct mapped pfn under 4GB
123  * max_pfn_mapped:     highest direct mapped pfn over 4GB
124  *
125  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
126  * represented by pfn_mapped
127  */
128 unsigned long max_low_pfn_mapped;
129 unsigned long max_pfn_mapped;
130 
131 #ifdef CONFIG_DMI
132 RESERVE_BRK(dmi_alloc, 65536);
133 #endif
134 
135 
136 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
137 unsigned long _brk_end = (unsigned long)__brk_base;
138 
139 struct boot_params boot_params;
140 
141 /*
142  * Machine setup..
143  */
144 static struct resource data_resource = {
145 	.name	= "Kernel data",
146 	.start	= 0,
147 	.end	= 0,
148 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
149 };
150 
151 static struct resource code_resource = {
152 	.name	= "Kernel code",
153 	.start	= 0,
154 	.end	= 0,
155 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
156 };
157 
158 static struct resource bss_resource = {
159 	.name	= "Kernel bss",
160 	.start	= 0,
161 	.end	= 0,
162 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
163 };
164 
165 
166 #ifdef CONFIG_X86_32
167 /* cpu data as detected by the assembly code in head_32.S */
168 struct cpuinfo_x86 new_cpu_data;
169 
170 /* common cpu data for all cpus */
171 struct cpuinfo_x86 boot_cpu_data __read_mostly;
172 EXPORT_SYMBOL(boot_cpu_data);
173 
174 unsigned int def_to_bigsmp;
175 
176 /* for MCA, but anyone else can use it if they want */
177 unsigned int machine_id;
178 unsigned int machine_submodel_id;
179 unsigned int BIOS_revision;
180 
181 struct apm_info apm_info;
182 EXPORT_SYMBOL(apm_info);
183 
184 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
185 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
186 struct ist_info ist_info;
187 EXPORT_SYMBOL(ist_info);
188 #else
189 struct ist_info ist_info;
190 #endif
191 
192 #else
193 struct cpuinfo_x86 boot_cpu_data __read_mostly;
194 EXPORT_SYMBOL(boot_cpu_data);
195 #endif
196 
197 
198 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
199 __visible unsigned long mmu_cr4_features __ro_after_init;
200 #else
201 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
202 #endif
203 
204 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
205 int bootloader_type, bootloader_version;
206 
207 /*
208  * Setup options
209  */
210 struct screen_info screen_info;
211 EXPORT_SYMBOL(screen_info);
212 struct edid_info edid_info;
213 EXPORT_SYMBOL_GPL(edid_info);
214 
215 extern int root_mountflags;
216 
217 unsigned long saved_video_mode;
218 
219 #define RAMDISK_IMAGE_START_MASK	0x07FF
220 #define RAMDISK_PROMPT_FLAG		0x8000
221 #define RAMDISK_LOAD_FLAG		0x4000
222 
223 static char __initdata command_line[COMMAND_LINE_SIZE];
224 #ifdef CONFIG_CMDLINE_BOOL
225 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
226 #endif
227 
228 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
229 struct edd edd;
230 #ifdef CONFIG_EDD_MODULE
231 EXPORT_SYMBOL(edd);
232 #endif
233 /**
234  * copy_edd() - Copy the BIOS EDD information
235  *              from boot_params into a safe place.
236  *
237  */
238 static inline void __init copy_edd(void)
239 {
240      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
241 	    sizeof(edd.mbr_signature));
242      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
243      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
244      edd.edd_info_nr = boot_params.eddbuf_entries;
245 }
246 #else
247 static inline void __init copy_edd(void)
248 {
249 }
250 #endif
251 
252 void * __init extend_brk(size_t size, size_t align)
253 {
254 	size_t mask = align - 1;
255 	void *ret;
256 
257 	BUG_ON(_brk_start == 0);
258 	BUG_ON(align & mask);
259 
260 	_brk_end = (_brk_end + mask) & ~mask;
261 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
262 
263 	ret = (void *)_brk_end;
264 	_brk_end += size;
265 
266 	memset(ret, 0, size);
267 
268 	return ret;
269 }
270 
271 #ifdef CONFIG_X86_32
272 static void __init cleanup_highmap(void)
273 {
274 }
275 #endif
276 
277 static void __init reserve_brk(void)
278 {
279 	if (_brk_end > _brk_start)
280 		memblock_reserve(__pa_symbol(_brk_start),
281 				 _brk_end - _brk_start);
282 
283 	/* Mark brk area as locked down and no longer taking any
284 	   new allocations */
285 	_brk_start = 0;
286 }
287 
288 u64 relocated_ramdisk;
289 
290 #ifdef CONFIG_BLK_DEV_INITRD
291 
292 static u64 __init get_ramdisk_image(void)
293 {
294 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
295 
296 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
297 
298 	return ramdisk_image;
299 }
300 static u64 __init get_ramdisk_size(void)
301 {
302 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
303 
304 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
305 
306 	return ramdisk_size;
307 }
308 
309 static void __init relocate_initrd(void)
310 {
311 	/* Assume only end is not page aligned */
312 	u64 ramdisk_image = get_ramdisk_image();
313 	u64 ramdisk_size  = get_ramdisk_size();
314 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
315 
316 	/* We need to move the initrd down into directly mapped mem */
317 	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
318 						   area_size, PAGE_SIZE);
319 
320 	if (!relocated_ramdisk)
321 		panic("Cannot find place for new RAMDISK of size %lld\n",
322 		      ramdisk_size);
323 
324 	/* Note: this includes all the mem currently occupied by
325 	   the initrd, we rely on that fact to keep the data intact. */
326 	memblock_reserve(relocated_ramdisk, area_size);
327 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
328 	initrd_end   = initrd_start + ramdisk_size;
329 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
330 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
331 
332 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
333 
334 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
335 		" [mem %#010llx-%#010llx]\n",
336 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
337 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
338 }
339 
340 static void __init early_reserve_initrd(void)
341 {
342 	/* Assume only end is not page aligned */
343 	u64 ramdisk_image = get_ramdisk_image();
344 	u64 ramdisk_size  = get_ramdisk_size();
345 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
346 
347 	if (!boot_params.hdr.type_of_loader ||
348 	    !ramdisk_image || !ramdisk_size)
349 		return;		/* No initrd provided by bootloader */
350 
351 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
352 }
353 static void __init reserve_initrd(void)
354 {
355 	/* Assume only end is not page aligned */
356 	u64 ramdisk_image = get_ramdisk_image();
357 	u64 ramdisk_size  = get_ramdisk_size();
358 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
359 	u64 mapped_size;
360 
361 	if (!boot_params.hdr.type_of_loader ||
362 	    !ramdisk_image || !ramdisk_size)
363 		return;		/* No initrd provided by bootloader */
364 
365 	initrd_start = 0;
366 
367 	mapped_size = memblock_mem_size(max_pfn_mapped);
368 	if (ramdisk_size >= (mapped_size>>1))
369 		panic("initrd too large to handle, "
370 		       "disabling initrd (%lld needed, %lld available)\n",
371 		       ramdisk_size, mapped_size>>1);
372 
373 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
374 			ramdisk_end - 1);
375 
376 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
377 				PFN_DOWN(ramdisk_end))) {
378 		/* All are mapped, easy case */
379 		initrd_start = ramdisk_image + PAGE_OFFSET;
380 		initrd_end = initrd_start + ramdisk_size;
381 		return;
382 	}
383 
384 	relocate_initrd();
385 
386 	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
387 }
388 
389 #else
390 static void __init early_reserve_initrd(void)
391 {
392 }
393 static void __init reserve_initrd(void)
394 {
395 }
396 #endif /* CONFIG_BLK_DEV_INITRD */
397 
398 static void __init parse_setup_data(void)
399 {
400 	struct setup_data *data;
401 	u64 pa_data, pa_next;
402 
403 	pa_data = boot_params.hdr.setup_data;
404 	while (pa_data) {
405 		u32 data_len, data_type;
406 
407 		data = early_memremap(pa_data, sizeof(*data));
408 		data_len = data->len + sizeof(struct setup_data);
409 		data_type = data->type;
410 		pa_next = data->next;
411 		early_memunmap(data, sizeof(*data));
412 
413 		switch (data_type) {
414 		case SETUP_E820_EXT:
415 			e820__memory_setup_extended(pa_data, data_len);
416 			break;
417 		case SETUP_DTB:
418 			add_dtb(pa_data);
419 			break;
420 		case SETUP_EFI:
421 			parse_efi_setup(pa_data, data_len);
422 			break;
423 		default:
424 			break;
425 		}
426 		pa_data = pa_next;
427 	}
428 }
429 
430 static void __init memblock_x86_reserve_range_setup_data(void)
431 {
432 	struct setup_data *data;
433 	u64 pa_data;
434 
435 	pa_data = boot_params.hdr.setup_data;
436 	while (pa_data) {
437 		data = early_memremap(pa_data, sizeof(*data));
438 		memblock_reserve(pa_data, sizeof(*data) + data->len);
439 		pa_data = data->next;
440 		early_memunmap(data, sizeof(*data));
441 	}
442 }
443 
444 /*
445  * --------- Crashkernel reservation ------------------------------
446  */
447 
448 #ifdef CONFIG_KEXEC_CORE
449 
450 /* 16M alignment for crash kernel regions */
451 #define CRASH_ALIGN		(16 << 20)
452 
453 /*
454  * Keep the crash kernel below this limit.  On 32 bits earlier kernels
455  * would limit the kernel to the low 512 MiB due to mapping restrictions.
456  * On 64bit, old kexec-tools need to under 896MiB.
457  */
458 #ifdef CONFIG_X86_32
459 # define CRASH_ADDR_LOW_MAX	(512 << 20)
460 # define CRASH_ADDR_HIGH_MAX	(512 << 20)
461 #else
462 # define CRASH_ADDR_LOW_MAX	(896UL << 20)
463 # define CRASH_ADDR_HIGH_MAX	MAXMEM
464 #endif
465 
466 static int __init reserve_crashkernel_low(void)
467 {
468 #ifdef CONFIG_X86_64
469 	unsigned long long base, low_base = 0, low_size = 0;
470 	unsigned long total_low_mem;
471 	int ret;
472 
473 	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
474 
475 	/* crashkernel=Y,low */
476 	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
477 	if (ret) {
478 		/*
479 		 * two parts from lib/swiotlb.c:
480 		 * -swiotlb size: user-specified with swiotlb= or default.
481 		 *
482 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
483 		 * to 8M for other buffers that may need to stay low too. Also
484 		 * make sure we allocate enough extra low memory so that we
485 		 * don't run out of DMA buffers for 32-bit devices.
486 		 */
487 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
488 	} else {
489 		/* passed with crashkernel=0,low ? */
490 		if (!low_size)
491 			return 0;
492 	}
493 
494 	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
495 	if (!low_base) {
496 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
497 		       (unsigned long)(low_size >> 20));
498 		return -ENOMEM;
499 	}
500 
501 	ret = memblock_reserve(low_base, low_size);
502 	if (ret) {
503 		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
504 		return ret;
505 	}
506 
507 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
508 		(unsigned long)(low_size >> 20),
509 		(unsigned long)(low_base >> 20),
510 		(unsigned long)(total_low_mem >> 20));
511 
512 	crashk_low_res.start = low_base;
513 	crashk_low_res.end   = low_base + low_size - 1;
514 	insert_resource(&iomem_resource, &crashk_low_res);
515 #endif
516 	return 0;
517 }
518 
519 static void __init reserve_crashkernel(void)
520 {
521 	unsigned long long crash_size, crash_base, total_mem;
522 	bool high = false;
523 	int ret;
524 
525 	total_mem = memblock_phys_mem_size();
526 
527 	/* crashkernel=XM */
528 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
529 	if (ret != 0 || crash_size <= 0) {
530 		/* crashkernel=X,high */
531 		ret = parse_crashkernel_high(boot_command_line, total_mem,
532 					     &crash_size, &crash_base);
533 		if (ret != 0 || crash_size <= 0)
534 			return;
535 		high = true;
536 	}
537 
538 	if (xen_pv_domain()) {
539 		pr_info("Ignoring crashkernel for a Xen PV domain\n");
540 		return;
541 	}
542 
543 	/* 0 means: find the address automatically */
544 	if (crash_base <= 0) {
545 		/*
546 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
547 		 * as old kexec-tools loads bzImage below that, unless
548 		 * "crashkernel=size[KMG],high" is specified.
549 		 */
550 		crash_base = memblock_find_in_range(CRASH_ALIGN,
551 						    high ? CRASH_ADDR_HIGH_MAX
552 							 : CRASH_ADDR_LOW_MAX,
553 						    crash_size, CRASH_ALIGN);
554 		if (!crash_base) {
555 			pr_info("crashkernel reservation failed - No suitable area found.\n");
556 			return;
557 		}
558 
559 	} else {
560 		unsigned long long start;
561 
562 		start = memblock_find_in_range(crash_base,
563 					       crash_base + crash_size,
564 					       crash_size, 1 << 20);
565 		if (start != crash_base) {
566 			pr_info("crashkernel reservation failed - memory is in use.\n");
567 			return;
568 		}
569 	}
570 	ret = memblock_reserve(crash_base, crash_size);
571 	if (ret) {
572 		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
573 		return;
574 	}
575 
576 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
577 		memblock_free(crash_base, crash_size);
578 		return;
579 	}
580 
581 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
582 		(unsigned long)(crash_size >> 20),
583 		(unsigned long)(crash_base >> 20),
584 		(unsigned long)(total_mem >> 20));
585 
586 	crashk_res.start = crash_base;
587 	crashk_res.end   = crash_base + crash_size - 1;
588 	insert_resource(&iomem_resource, &crashk_res);
589 }
590 #else
591 static void __init reserve_crashkernel(void)
592 {
593 }
594 #endif
595 
596 static struct resource standard_io_resources[] = {
597 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
598 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
599 	{ .name = "pic1", .start = 0x20, .end = 0x21,
600 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
601 	{ .name = "timer0", .start = 0x40, .end = 0x43,
602 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
603 	{ .name = "timer1", .start = 0x50, .end = 0x53,
604 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
605 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
606 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
607 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
608 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
609 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
610 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
611 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
612 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
613 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
614 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
615 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
616 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
617 };
618 
619 void __init reserve_standard_io_resources(void)
620 {
621 	int i;
622 
623 	/* request I/O space for devices used on all i[345]86 PCs */
624 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
625 		request_resource(&ioport_resource, &standard_io_resources[i]);
626 
627 }
628 
629 static __init void reserve_ibft_region(void)
630 {
631 	unsigned long addr, size = 0;
632 
633 	addr = find_ibft_region(&size);
634 
635 	if (size)
636 		memblock_reserve(addr, size);
637 }
638 
639 static bool __init snb_gfx_workaround_needed(void)
640 {
641 #ifdef CONFIG_PCI
642 	int i;
643 	u16 vendor, devid;
644 	static const __initconst u16 snb_ids[] = {
645 		0x0102,
646 		0x0112,
647 		0x0122,
648 		0x0106,
649 		0x0116,
650 		0x0126,
651 		0x010a,
652 	};
653 
654 	/* Assume no if something weird is going on with PCI */
655 	if (!early_pci_allowed())
656 		return false;
657 
658 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
659 	if (vendor != 0x8086)
660 		return false;
661 
662 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
663 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
664 		if (devid == snb_ids[i])
665 			return true;
666 #endif
667 
668 	return false;
669 }
670 
671 /*
672  * Sandy Bridge graphics has trouble with certain ranges, exclude
673  * them from allocation.
674  */
675 static void __init trim_snb_memory(void)
676 {
677 	static const __initconst unsigned long bad_pages[] = {
678 		0x20050000,
679 		0x20110000,
680 		0x20130000,
681 		0x20138000,
682 		0x40004000,
683 	};
684 	int i;
685 
686 	if (!snb_gfx_workaround_needed())
687 		return;
688 
689 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
690 
691 	/*
692 	 * Reserve all memory below the 1 MB mark that has not
693 	 * already been reserved.
694 	 */
695 	memblock_reserve(0, 1<<20);
696 
697 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
698 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
699 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
700 			       bad_pages[i]);
701 	}
702 }
703 
704 /*
705  * Here we put platform-specific memory range workarounds, i.e.
706  * memory known to be corrupt or otherwise in need to be reserved on
707  * specific platforms.
708  *
709  * If this gets used more widely it could use a real dispatch mechanism.
710  */
711 static void __init trim_platform_memory_ranges(void)
712 {
713 	trim_snb_memory();
714 }
715 
716 static void __init trim_bios_range(void)
717 {
718 	/*
719 	 * A special case is the first 4Kb of memory;
720 	 * This is a BIOS owned area, not kernel ram, but generally
721 	 * not listed as such in the E820 table.
722 	 *
723 	 * This typically reserves additional memory (64KiB by default)
724 	 * since some BIOSes are known to corrupt low memory.  See the
725 	 * Kconfig help text for X86_RESERVE_LOW.
726 	 */
727 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
728 
729 	/*
730 	 * special case: Some BIOSen report the PC BIOS
731 	 * area (640->1Mb) as ram even though it is not.
732 	 * take them out.
733 	 */
734 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
735 
736 	e820__update_table(e820_table);
737 }
738 
739 /* called before trim_bios_range() to spare extra sanitize */
740 static void __init e820_add_kernel_range(void)
741 {
742 	u64 start = __pa_symbol(_text);
743 	u64 size = __pa_symbol(_end) - start;
744 
745 	/*
746 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
747 	 * attempt to fix it by adding the range. We may have a confused BIOS,
748 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
749 	 * exclude kernel range. If we really are running on top non-RAM,
750 	 * we will crash later anyways.
751 	 */
752 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
753 		return;
754 
755 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
756 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
757 	e820__range_add(start, size, E820_TYPE_RAM);
758 }
759 
760 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
761 
762 static int __init parse_reservelow(char *p)
763 {
764 	unsigned long long size;
765 
766 	if (!p)
767 		return -EINVAL;
768 
769 	size = memparse(p, &p);
770 
771 	if (size < 4096)
772 		size = 4096;
773 
774 	if (size > 640*1024)
775 		size = 640*1024;
776 
777 	reserve_low = size;
778 
779 	return 0;
780 }
781 
782 early_param("reservelow", parse_reservelow);
783 
784 static void __init trim_low_memory_range(void)
785 {
786 	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
787 }
788 
789 /*
790  * Dump out kernel offset information on panic.
791  */
792 static int
793 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
794 {
795 	if (kaslr_enabled()) {
796 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
797 			 kaslr_offset(),
798 			 __START_KERNEL,
799 			 __START_KERNEL_map,
800 			 MODULES_VADDR-1);
801 	} else {
802 		pr_emerg("Kernel Offset: disabled\n");
803 	}
804 
805 	return 0;
806 }
807 
808 /*
809  * Determine if we were loaded by an EFI loader.  If so, then we have also been
810  * passed the efi memmap, systab, etc., so we should use these data structures
811  * for initialization.  Note, the efi init code path is determined by the
812  * global efi_enabled. This allows the same kernel image to be used on existing
813  * systems (with a traditional BIOS) as well as on EFI systems.
814  */
815 /*
816  * setup_arch - architecture-specific boot-time initializations
817  *
818  * Note: On x86_64, fixmaps are ready for use even before this is called.
819  */
820 
821 void __init setup_arch(char **cmdline_p)
822 {
823 	memblock_reserve(__pa_symbol(_text),
824 			 (unsigned long)__bss_stop - (unsigned long)_text);
825 
826 	/*
827 	 * Make sure page 0 is always reserved because on systems with
828 	 * L1TF its contents can be leaked to user processes.
829 	 */
830 	memblock_reserve(0, PAGE_SIZE);
831 
832 	early_reserve_initrd();
833 
834 	/*
835 	 * At this point everything still needed from the boot loader
836 	 * or BIOS or kernel text should be early reserved or marked not
837 	 * RAM in e820. All other memory is free game.
838 	 */
839 
840 #ifdef CONFIG_X86_32
841 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
842 
843 	/*
844 	 * copy kernel address range established so far and switch
845 	 * to the proper swapper page table
846 	 */
847 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
848 			initial_page_table + KERNEL_PGD_BOUNDARY,
849 			KERNEL_PGD_PTRS);
850 
851 	load_cr3(swapper_pg_dir);
852 	/*
853 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
854 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
855 	 * will not flush anything because the cpu quirk which clears
856 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
857 	 * load_cr3() above the TLB has been flushed already. The
858 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
859 	 * so proper operation is guaranteed.
860 	 */
861 	__flush_tlb_all();
862 #else
863 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
864 	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
865 #endif
866 
867 	/*
868 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
869 	 * reserve_top(), so do this before touching the ioremap area.
870 	 */
871 	olpc_ofw_detect();
872 
873 	idt_setup_early_traps();
874 	early_cpu_init();
875 	arch_init_ideal_nops();
876 	jump_label_init();
877 	early_ioremap_init();
878 
879 	setup_olpc_ofw_pgd();
880 
881 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
882 	screen_info = boot_params.screen_info;
883 	edid_info = boot_params.edid_info;
884 #ifdef CONFIG_X86_32
885 	apm_info.bios = boot_params.apm_bios_info;
886 	ist_info = boot_params.ist_info;
887 #endif
888 	saved_video_mode = boot_params.hdr.vid_mode;
889 	bootloader_type = boot_params.hdr.type_of_loader;
890 	if ((bootloader_type >> 4) == 0xe) {
891 		bootloader_type &= 0xf;
892 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
893 	}
894 	bootloader_version  = bootloader_type & 0xf;
895 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
896 
897 #ifdef CONFIG_BLK_DEV_RAM
898 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
899 	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
900 	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
901 #endif
902 #ifdef CONFIG_EFI
903 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
904 		     EFI32_LOADER_SIGNATURE, 4)) {
905 		set_bit(EFI_BOOT, &efi.flags);
906 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
907 		     EFI64_LOADER_SIGNATURE, 4)) {
908 		set_bit(EFI_BOOT, &efi.flags);
909 		set_bit(EFI_64BIT, &efi.flags);
910 	}
911 #endif
912 
913 	x86_init.oem.arch_setup();
914 
915 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
916 	e820__memory_setup();
917 	parse_setup_data();
918 
919 	copy_edd();
920 
921 	if (!boot_params.hdr.root_flags)
922 		root_mountflags &= ~MS_RDONLY;
923 	init_mm.start_code = (unsigned long) _text;
924 	init_mm.end_code = (unsigned long) _etext;
925 	init_mm.end_data = (unsigned long) _edata;
926 	init_mm.brk = _brk_end;
927 
928 	mpx_mm_init(&init_mm);
929 
930 	code_resource.start = __pa_symbol(_text);
931 	code_resource.end = __pa_symbol(_etext)-1;
932 	data_resource.start = __pa_symbol(_etext);
933 	data_resource.end = __pa_symbol(_edata)-1;
934 	bss_resource.start = __pa_symbol(__bss_start);
935 	bss_resource.end = __pa_symbol(__bss_stop)-1;
936 
937 #ifdef CONFIG_CMDLINE_BOOL
938 #ifdef CONFIG_CMDLINE_OVERRIDE
939 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
940 #else
941 	if (builtin_cmdline[0]) {
942 		/* append boot loader cmdline to builtin */
943 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
944 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
945 		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
946 	}
947 #endif
948 #endif
949 
950 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
951 	*cmdline_p = command_line;
952 
953 	/*
954 	 * x86_configure_nx() is called before parse_early_param() to detect
955 	 * whether hardware doesn't support NX (so that the early EHCI debug
956 	 * console setup can safely call set_fixmap()). It may then be called
957 	 * again from within noexec_setup() during parsing early parameters
958 	 * to honor the respective command line option.
959 	 */
960 	x86_configure_nx();
961 
962 	parse_early_param();
963 
964 	if (efi_enabled(EFI_BOOT))
965 		efi_memblock_x86_reserve_range();
966 #ifdef CONFIG_MEMORY_HOTPLUG
967 	/*
968 	 * Memory used by the kernel cannot be hot-removed because Linux
969 	 * cannot migrate the kernel pages. When memory hotplug is
970 	 * enabled, we should prevent memblock from allocating memory
971 	 * for the kernel.
972 	 *
973 	 * ACPI SRAT records all hotpluggable memory ranges. But before
974 	 * SRAT is parsed, we don't know about it.
975 	 *
976 	 * The kernel image is loaded into memory at very early time. We
977 	 * cannot prevent this anyway. So on NUMA system, we set any
978 	 * node the kernel resides in as un-hotpluggable.
979 	 *
980 	 * Since on modern servers, one node could have double-digit
981 	 * gigabytes memory, we can assume the memory around the kernel
982 	 * image is also un-hotpluggable. So before SRAT is parsed, just
983 	 * allocate memory near the kernel image to try the best to keep
984 	 * the kernel away from hotpluggable memory.
985 	 */
986 	if (movable_node_is_enabled())
987 		memblock_set_bottom_up(true);
988 #endif
989 
990 	x86_report_nx();
991 
992 	/* after early param, so could get panic from serial */
993 	memblock_x86_reserve_range_setup_data();
994 
995 	if (acpi_mps_check()) {
996 #ifdef CONFIG_X86_LOCAL_APIC
997 		disable_apic = 1;
998 #endif
999 		setup_clear_cpu_cap(X86_FEATURE_APIC);
1000 	}
1001 
1002 	e820__reserve_setup_data();
1003 	e820__finish_early_params();
1004 
1005 	if (efi_enabled(EFI_BOOT))
1006 		efi_init();
1007 
1008 	dmi_scan_machine();
1009 	dmi_memdev_walk();
1010 	dmi_set_dump_stack_arch_desc();
1011 
1012 	/*
1013 	 * VMware detection requires dmi to be available, so this
1014 	 * needs to be done after dmi_scan_machine(), for the boot CPU.
1015 	 */
1016 	init_hypervisor_platform();
1017 
1018 	tsc_early_init();
1019 	x86_init.resources.probe_roms();
1020 
1021 	/* after parse_early_param, so could debug it */
1022 	insert_resource(&iomem_resource, &code_resource);
1023 	insert_resource(&iomem_resource, &data_resource);
1024 	insert_resource(&iomem_resource, &bss_resource);
1025 
1026 	e820_add_kernel_range();
1027 	trim_bios_range();
1028 #ifdef CONFIG_X86_32
1029 	if (ppro_with_ram_bug()) {
1030 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1031 				  E820_TYPE_RESERVED);
1032 		e820__update_table(e820_table);
1033 		printk(KERN_INFO "fixed physical RAM map:\n");
1034 		e820__print_table("bad_ppro");
1035 	}
1036 #else
1037 	early_gart_iommu_check();
1038 #endif
1039 
1040 	/*
1041 	 * partially used pages are not usable - thus
1042 	 * we are rounding upwards:
1043 	 */
1044 	max_pfn = e820__end_of_ram_pfn();
1045 
1046 	/* update e820 for memory not covered by WB MTRRs */
1047 	mtrr_bp_init();
1048 	if (mtrr_trim_uncached_memory(max_pfn))
1049 		max_pfn = e820__end_of_ram_pfn();
1050 
1051 	max_possible_pfn = max_pfn;
1052 
1053 	/*
1054 	 * This call is required when the CPU does not support PAT. If
1055 	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1056 	 * effect.
1057 	 */
1058 	init_cache_modes();
1059 
1060 	/*
1061 	 * Define random base addresses for memory sections after max_pfn is
1062 	 * defined and before each memory section base is used.
1063 	 */
1064 	kernel_randomize_memory();
1065 
1066 #ifdef CONFIG_X86_32
1067 	/* max_low_pfn get updated here */
1068 	find_low_pfn_range();
1069 #else
1070 	check_x2apic();
1071 
1072 	/* How many end-of-memory variables you have, grandma! */
1073 	/* need this before calling reserve_initrd */
1074 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1075 		max_low_pfn = e820__end_of_low_ram_pfn();
1076 	else
1077 		max_low_pfn = max_pfn;
1078 
1079 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1080 #endif
1081 
1082 	/*
1083 	 * Find and reserve possible boot-time SMP configuration:
1084 	 */
1085 	find_smp_config();
1086 
1087 	reserve_ibft_region();
1088 
1089 	early_alloc_pgt_buf();
1090 
1091 	/*
1092 	 * Need to conclude brk, before e820__memblock_setup()
1093 	 *  it could use memblock_find_in_range, could overlap with
1094 	 *  brk area.
1095 	 */
1096 	reserve_brk();
1097 
1098 	cleanup_highmap();
1099 
1100 	memblock_set_current_limit(ISA_END_ADDRESS);
1101 	e820__memblock_setup();
1102 
1103 	reserve_bios_regions();
1104 
1105 	if (efi_enabled(EFI_MEMMAP)) {
1106 		efi_fake_memmap();
1107 		efi_find_mirror();
1108 		efi_esrt_init();
1109 
1110 		/*
1111 		 * The EFI specification says that boot service code won't be
1112 		 * called after ExitBootServices(). This is, in fact, a lie.
1113 		 */
1114 		efi_reserve_boot_services();
1115 	}
1116 
1117 	/* preallocate 4k for mptable mpc */
1118 	e820__memblock_alloc_reserved_mpc_new();
1119 
1120 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1121 	setup_bios_corruption_check();
1122 #endif
1123 
1124 #ifdef CONFIG_X86_32
1125 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1126 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1127 #endif
1128 
1129 	reserve_real_mode();
1130 
1131 	trim_platform_memory_ranges();
1132 	trim_low_memory_range();
1133 
1134 	init_mem_mapping();
1135 
1136 	idt_setup_early_pf();
1137 
1138 	/*
1139 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1140 	 * with the current CR4 value.  This may not be necessary, but
1141 	 * auditing all the early-boot CR4 manipulation would be needed to
1142 	 * rule it out.
1143 	 *
1144 	 * Mask off features that don't work outside long mode (just
1145 	 * PCIDE for now).
1146 	 */
1147 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1148 
1149 	memblock_set_current_limit(get_max_mapped());
1150 
1151 	/*
1152 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1153 	 */
1154 
1155 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1156 	if (init_ohci1394_dma_early)
1157 		init_ohci1394_dma_on_all_controllers();
1158 #endif
1159 	/* Allocate bigger log buffer */
1160 	setup_log_buf(1);
1161 
1162 	if (efi_enabled(EFI_BOOT)) {
1163 		switch (boot_params.secure_boot) {
1164 		case efi_secureboot_mode_disabled:
1165 			pr_info("Secure boot disabled\n");
1166 			break;
1167 		case efi_secureboot_mode_enabled:
1168 			pr_info("Secure boot enabled\n");
1169 			break;
1170 		default:
1171 			pr_info("Secure boot could not be determined\n");
1172 			break;
1173 		}
1174 	}
1175 
1176 	reserve_initrd();
1177 
1178 	acpi_table_upgrade();
1179 
1180 	vsmp_init();
1181 
1182 	io_delay_init();
1183 
1184 	early_platform_quirks();
1185 
1186 	/*
1187 	 * Parse the ACPI tables for possible boot-time SMP configuration.
1188 	 */
1189 	acpi_boot_table_init();
1190 
1191 	early_acpi_boot_init();
1192 
1193 	initmem_init();
1194 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1195 
1196 	/*
1197 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1198 	 * won't consume hotpluggable memory.
1199 	 */
1200 	reserve_crashkernel();
1201 
1202 	memblock_find_dma_reserve();
1203 
1204 	if (!early_xdbc_setup_hardware())
1205 		early_xdbc_register_console();
1206 
1207 	x86_init.paging.pagetable_init();
1208 
1209 	kasan_init();
1210 
1211 	/*
1212 	 * Sync back kernel address range.
1213 	 *
1214 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1215 	 * this call?
1216 	 */
1217 	sync_initial_page_table();
1218 
1219 	tboot_probe();
1220 
1221 	map_vsyscall();
1222 
1223 	generic_apic_probe();
1224 
1225 	early_quirks();
1226 
1227 	/*
1228 	 * Read APIC and some other early information from ACPI tables.
1229 	 */
1230 	acpi_boot_init();
1231 	sfi_init();
1232 	x86_dtb_init();
1233 
1234 	/*
1235 	 * get boot-time SMP configuration:
1236 	 */
1237 	get_smp_config();
1238 
1239 	/*
1240 	 * Systems w/o ACPI and mptables might not have it mapped the local
1241 	 * APIC yet, but prefill_possible_map() might need to access it.
1242 	 */
1243 	init_apic_mappings();
1244 
1245 	prefill_possible_map();
1246 
1247 	init_cpu_to_node();
1248 
1249 	io_apic_init_mappings();
1250 
1251 	x86_init.hyper.guest_late_init();
1252 
1253 	e820__reserve_resources();
1254 	e820__register_nosave_regions(max_low_pfn);
1255 
1256 	x86_init.resources.reserve_resources();
1257 
1258 	e820__setup_pci_gap();
1259 
1260 #ifdef CONFIG_VT
1261 #if defined(CONFIG_VGA_CONSOLE)
1262 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1263 		conswitchp = &vga_con;
1264 #elif defined(CONFIG_DUMMY_CONSOLE)
1265 	conswitchp = &dummy_con;
1266 #endif
1267 #endif
1268 	x86_init.oem.banner();
1269 
1270 	x86_init.timers.wallclock_init();
1271 
1272 	mcheck_init();
1273 
1274 	register_refined_jiffies(CLOCK_TICK_RATE);
1275 
1276 #ifdef CONFIG_EFI
1277 	if (efi_enabled(EFI_BOOT))
1278 		efi_apply_memmap_quirks();
1279 #endif
1280 
1281 	unwind_init();
1282 }
1283 
1284 #ifdef CONFIG_X86_32
1285 
1286 static struct resource video_ram_resource = {
1287 	.name	= "Video RAM area",
1288 	.start	= 0xa0000,
1289 	.end	= 0xbffff,
1290 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1291 };
1292 
1293 void __init i386_reserve_resources(void)
1294 {
1295 	request_resource(&iomem_resource, &video_ram_resource);
1296 	reserve_standard_io_resources();
1297 }
1298 
1299 #endif /* CONFIG_X86_32 */
1300 
1301 static struct notifier_block kernel_offset_notifier = {
1302 	.notifier_call = dump_kernel_offset
1303 };
1304 
1305 static int __init register_kernel_offset_dumper(void)
1306 {
1307 	atomic_notifier_chain_register(&panic_notifier_list,
1308 					&kernel_offset_notifier);
1309 	return 0;
1310 }
1311 __initcall(register_kernel_offset_dumper);
1312