xref: /openbmc/linux/arch/x86/kernel/setup.c (revision c93db682)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  * This file contains the setup_arch() code, which handles the architecture-dependent
6  * parts of early kernel initialization.
7  */
8 #include <linux/console.h>
9 #include <linux/crash_dump.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/dmi.h>
12 #include <linux/efi.h>
13 #include <linux/init_ohci1394_dma.h>
14 #include <linux/initrd.h>
15 #include <linux/iscsi_ibft.h>
16 #include <linux/memblock.h>
17 #include <linux/pci.h>
18 #include <linux/root_dev.h>
19 #include <linux/hugetlb.h>
20 #include <linux/tboot.h>
21 #include <linux/usb/xhci-dbgp.h>
22 #include <linux/static_call.h>
23 #include <linux/swiotlb.h>
24 
25 #include <uapi/linux/mount.h>
26 
27 #include <xen/xen.h>
28 
29 #include <asm/apic.h>
30 #include <asm/numa.h>
31 #include <asm/bios_ebda.h>
32 #include <asm/bugs.h>
33 #include <asm/cpu.h>
34 #include <asm/efi.h>
35 #include <asm/gart.h>
36 #include <asm/hypervisor.h>
37 #include <asm/io_apic.h>
38 #include <asm/kasan.h>
39 #include <asm/kaslr.h>
40 #include <asm/mce.h>
41 #include <asm/mtrr.h>
42 #include <asm/realmode.h>
43 #include <asm/olpc_ofw.h>
44 #include <asm/pci-direct.h>
45 #include <asm/prom.h>
46 #include <asm/proto.h>
47 #include <asm/unwind.h>
48 #include <asm/vsyscall.h>
49 #include <linux/vmalloc.h>
50 
51 /*
52  * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
53  * max_pfn_mapped:     highest directly mapped pfn > 4 GB
54  *
55  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
56  * represented by pfn_mapped[].
57  */
58 unsigned long max_low_pfn_mapped;
59 unsigned long max_pfn_mapped;
60 
61 #ifdef CONFIG_DMI
62 RESERVE_BRK(dmi_alloc, 65536);
63 #endif
64 
65 
66 /*
67  * Range of the BSS area. The size of the BSS area is determined
68  * at link time, with RESERVE_BRK() facility reserving additional
69  * chunks.
70  */
71 unsigned long _brk_start = (unsigned long)__brk_base;
72 unsigned long _brk_end   = (unsigned long)__brk_base;
73 
74 struct boot_params boot_params;
75 
76 /*
77  * These are the four main kernel memory regions, we put them into
78  * the resource tree so that kdump tools and other debugging tools
79  * recover it:
80  */
81 
82 static struct resource rodata_resource = {
83 	.name	= "Kernel rodata",
84 	.start	= 0,
85 	.end	= 0,
86 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
87 };
88 
89 static struct resource data_resource = {
90 	.name	= "Kernel data",
91 	.start	= 0,
92 	.end	= 0,
93 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
94 };
95 
96 static struct resource code_resource = {
97 	.name	= "Kernel code",
98 	.start	= 0,
99 	.end	= 0,
100 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
101 };
102 
103 static struct resource bss_resource = {
104 	.name	= "Kernel bss",
105 	.start	= 0,
106 	.end	= 0,
107 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
108 };
109 
110 
111 #ifdef CONFIG_X86_32
112 /* CPU data as detected by the assembly code in head_32.S */
113 struct cpuinfo_x86 new_cpu_data;
114 
115 /* Common CPU data for all CPUs */
116 struct cpuinfo_x86 boot_cpu_data __read_mostly;
117 EXPORT_SYMBOL(boot_cpu_data);
118 
119 unsigned int def_to_bigsmp;
120 
121 struct apm_info apm_info;
122 EXPORT_SYMBOL(apm_info);
123 
124 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
125 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
126 struct ist_info ist_info;
127 EXPORT_SYMBOL(ist_info);
128 #else
129 struct ist_info ist_info;
130 #endif
131 
132 #else
133 struct cpuinfo_x86 boot_cpu_data __read_mostly;
134 EXPORT_SYMBOL(boot_cpu_data);
135 #endif
136 
137 
138 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
139 __visible unsigned long mmu_cr4_features __ro_after_init;
140 #else
141 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
142 #endif
143 
144 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
145 int bootloader_type, bootloader_version;
146 
147 /*
148  * Setup options
149  */
150 struct screen_info screen_info;
151 EXPORT_SYMBOL(screen_info);
152 struct edid_info edid_info;
153 EXPORT_SYMBOL_GPL(edid_info);
154 
155 extern int root_mountflags;
156 
157 unsigned long saved_video_mode;
158 
159 #define RAMDISK_IMAGE_START_MASK	0x07FF
160 #define RAMDISK_PROMPT_FLAG		0x8000
161 #define RAMDISK_LOAD_FLAG		0x4000
162 
163 static char __initdata command_line[COMMAND_LINE_SIZE];
164 #ifdef CONFIG_CMDLINE_BOOL
165 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
166 #endif
167 
168 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
169 struct edd edd;
170 #ifdef CONFIG_EDD_MODULE
171 EXPORT_SYMBOL(edd);
172 #endif
173 /**
174  * copy_edd() - Copy the BIOS EDD information
175  *              from boot_params into a safe place.
176  *
177  */
178 static inline void __init copy_edd(void)
179 {
180      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
181 	    sizeof(edd.mbr_signature));
182      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
183      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
184      edd.edd_info_nr = boot_params.eddbuf_entries;
185 }
186 #else
187 static inline void __init copy_edd(void)
188 {
189 }
190 #endif
191 
192 void * __init extend_brk(size_t size, size_t align)
193 {
194 	size_t mask = align - 1;
195 	void *ret;
196 
197 	BUG_ON(_brk_start == 0);
198 	BUG_ON(align & mask);
199 
200 	_brk_end = (_brk_end + mask) & ~mask;
201 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
202 
203 	ret = (void *)_brk_end;
204 	_brk_end += size;
205 
206 	memset(ret, 0, size);
207 
208 	return ret;
209 }
210 
211 #ifdef CONFIG_X86_32
212 static void __init cleanup_highmap(void)
213 {
214 }
215 #endif
216 
217 static void __init reserve_brk(void)
218 {
219 	if (_brk_end > _brk_start)
220 		memblock_reserve(__pa_symbol(_brk_start),
221 				 _brk_end - _brk_start);
222 
223 	/* Mark brk area as locked down and no longer taking any
224 	   new allocations */
225 	_brk_start = 0;
226 }
227 
228 u64 relocated_ramdisk;
229 
230 #ifdef CONFIG_BLK_DEV_INITRD
231 
232 static u64 __init get_ramdisk_image(void)
233 {
234 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
235 
236 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
237 
238 	if (ramdisk_image == 0)
239 		ramdisk_image = phys_initrd_start;
240 
241 	return ramdisk_image;
242 }
243 static u64 __init get_ramdisk_size(void)
244 {
245 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
246 
247 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
248 
249 	if (ramdisk_size == 0)
250 		ramdisk_size = phys_initrd_size;
251 
252 	return ramdisk_size;
253 }
254 
255 static void __init relocate_initrd(void)
256 {
257 	/* Assume only end is not page aligned */
258 	u64 ramdisk_image = get_ramdisk_image();
259 	u64 ramdisk_size  = get_ramdisk_size();
260 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
261 
262 	/* We need to move the initrd down into directly mapped mem */
263 	relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
264 						      PFN_PHYS(max_pfn_mapped));
265 	if (!relocated_ramdisk)
266 		panic("Cannot find place for new RAMDISK of size %lld\n",
267 		      ramdisk_size);
268 
269 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
270 	initrd_end   = initrd_start + ramdisk_size;
271 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
272 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
273 
274 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
275 
276 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
277 		" [mem %#010llx-%#010llx]\n",
278 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
279 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
280 }
281 
282 static void __init early_reserve_initrd(void)
283 {
284 	/* Assume only end is not page aligned */
285 	u64 ramdisk_image = get_ramdisk_image();
286 	u64 ramdisk_size  = get_ramdisk_size();
287 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
288 
289 	if (!boot_params.hdr.type_of_loader ||
290 	    !ramdisk_image || !ramdisk_size)
291 		return;		/* No initrd provided by bootloader */
292 
293 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
294 }
295 
296 static void __init reserve_initrd(void)
297 {
298 	/* Assume only end is not page aligned */
299 	u64 ramdisk_image = get_ramdisk_image();
300 	u64 ramdisk_size  = get_ramdisk_size();
301 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
302 
303 	if (!boot_params.hdr.type_of_loader ||
304 	    !ramdisk_image || !ramdisk_size)
305 		return;		/* No initrd provided by bootloader */
306 
307 	initrd_start = 0;
308 
309 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
310 			ramdisk_end - 1);
311 
312 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
313 				PFN_DOWN(ramdisk_end))) {
314 		/* All are mapped, easy case */
315 		initrd_start = ramdisk_image + PAGE_OFFSET;
316 		initrd_end = initrd_start + ramdisk_size;
317 		return;
318 	}
319 
320 	relocate_initrd();
321 
322 	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
323 }
324 
325 #else
326 static void __init early_reserve_initrd(void)
327 {
328 }
329 static void __init reserve_initrd(void)
330 {
331 }
332 #endif /* CONFIG_BLK_DEV_INITRD */
333 
334 static void __init parse_setup_data(void)
335 {
336 	struct setup_data *data;
337 	u64 pa_data, pa_next;
338 
339 	pa_data = boot_params.hdr.setup_data;
340 	while (pa_data) {
341 		u32 data_len, data_type;
342 
343 		data = early_memremap(pa_data, sizeof(*data));
344 		data_len = data->len + sizeof(struct setup_data);
345 		data_type = data->type;
346 		pa_next = data->next;
347 		early_memunmap(data, sizeof(*data));
348 
349 		switch (data_type) {
350 		case SETUP_E820_EXT:
351 			e820__memory_setup_extended(pa_data, data_len);
352 			break;
353 		case SETUP_DTB:
354 			add_dtb(pa_data);
355 			break;
356 		case SETUP_EFI:
357 			parse_efi_setup(pa_data, data_len);
358 			break;
359 		default:
360 			break;
361 		}
362 		pa_data = pa_next;
363 	}
364 }
365 
366 static void __init memblock_x86_reserve_range_setup_data(void)
367 {
368 	struct setup_data *data;
369 	u64 pa_data;
370 
371 	pa_data = boot_params.hdr.setup_data;
372 	while (pa_data) {
373 		data = early_memremap(pa_data, sizeof(*data));
374 		memblock_reserve(pa_data, sizeof(*data) + data->len);
375 
376 		if (data->type == SETUP_INDIRECT &&
377 		    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
378 			memblock_reserve(((struct setup_indirect *)data->data)->addr,
379 					 ((struct setup_indirect *)data->data)->len);
380 
381 		pa_data = data->next;
382 		early_memunmap(data, sizeof(*data));
383 	}
384 }
385 
386 /*
387  * --------- Crashkernel reservation ------------------------------
388  */
389 
390 #ifdef CONFIG_KEXEC_CORE
391 
392 /* 16M alignment for crash kernel regions */
393 #define CRASH_ALIGN		SZ_16M
394 
395 /*
396  * Keep the crash kernel below this limit.
397  *
398  * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
399  * due to mapping restrictions.
400  *
401  * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
402  * the upper limit of system RAM in 4-level paging mode. Since the kdump
403  * jump could be from 5-level paging to 4-level paging, the jump will fail if
404  * the kernel is put above 64 TB, and during the 1st kernel bootup there's
405  * no good way to detect the paging mode of the target kernel which will be
406  * loaded for dumping.
407  */
408 #ifdef CONFIG_X86_32
409 # define CRASH_ADDR_LOW_MAX	SZ_512M
410 # define CRASH_ADDR_HIGH_MAX	SZ_512M
411 #else
412 # define CRASH_ADDR_LOW_MAX	SZ_4G
413 # define CRASH_ADDR_HIGH_MAX	SZ_64T
414 #endif
415 
416 static int __init reserve_crashkernel_low(void)
417 {
418 #ifdef CONFIG_X86_64
419 	unsigned long long base, low_base = 0, low_size = 0;
420 	unsigned long low_mem_limit;
421 	int ret;
422 
423 	low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
424 
425 	/* crashkernel=Y,low */
426 	ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
427 	if (ret) {
428 		/*
429 		 * two parts from kernel/dma/swiotlb.c:
430 		 * -swiotlb size: user-specified with swiotlb= or default.
431 		 *
432 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
433 		 * to 8M for other buffers that may need to stay low too. Also
434 		 * make sure we allocate enough extra low memory so that we
435 		 * don't run out of DMA buffers for 32-bit devices.
436 		 */
437 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
438 	} else {
439 		/* passed with crashkernel=0,low ? */
440 		if (!low_size)
441 			return 0;
442 	}
443 
444 	low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
445 	if (!low_base) {
446 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
447 		       (unsigned long)(low_size >> 20));
448 		return -ENOMEM;
449 	}
450 
451 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
452 		(unsigned long)(low_size >> 20),
453 		(unsigned long)(low_base >> 20),
454 		(unsigned long)(low_mem_limit >> 20));
455 
456 	crashk_low_res.start = low_base;
457 	crashk_low_res.end   = low_base + low_size - 1;
458 	insert_resource(&iomem_resource, &crashk_low_res);
459 #endif
460 	return 0;
461 }
462 
463 static void __init reserve_crashkernel(void)
464 {
465 	unsigned long long crash_size, crash_base, total_mem;
466 	bool high = false;
467 	int ret;
468 
469 	total_mem = memblock_phys_mem_size();
470 
471 	/* crashkernel=XM */
472 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
473 	if (ret != 0 || crash_size <= 0) {
474 		/* crashkernel=X,high */
475 		ret = parse_crashkernel_high(boot_command_line, total_mem,
476 					     &crash_size, &crash_base);
477 		if (ret != 0 || crash_size <= 0)
478 			return;
479 		high = true;
480 	}
481 
482 	if (xen_pv_domain()) {
483 		pr_info("Ignoring crashkernel for a Xen PV domain\n");
484 		return;
485 	}
486 
487 	/* 0 means: find the address automatically */
488 	if (!crash_base) {
489 		/*
490 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
491 		 * crashkernel=x,high reserves memory over 4G, also allocates
492 		 * 256M extra low memory for DMA buffers and swiotlb.
493 		 * But the extra memory is not required for all machines.
494 		 * So try low memory first and fall back to high memory
495 		 * unless "crashkernel=size[KMG],high" is specified.
496 		 */
497 		if (!high)
498 			crash_base = memblock_phys_alloc_range(crash_size,
499 						CRASH_ALIGN, CRASH_ALIGN,
500 						CRASH_ADDR_LOW_MAX);
501 		if (!crash_base)
502 			crash_base = memblock_phys_alloc_range(crash_size,
503 						CRASH_ALIGN, CRASH_ALIGN,
504 						CRASH_ADDR_HIGH_MAX);
505 		if (!crash_base) {
506 			pr_info("crashkernel reservation failed - No suitable area found.\n");
507 			return;
508 		}
509 	} else {
510 		unsigned long long start;
511 
512 		start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
513 						  crash_base + crash_size);
514 		if (start != crash_base) {
515 			pr_info("crashkernel reservation failed - memory is in use.\n");
516 			return;
517 		}
518 	}
519 
520 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
521 		memblock_free(crash_base, crash_size);
522 		return;
523 	}
524 
525 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
526 		(unsigned long)(crash_size >> 20),
527 		(unsigned long)(crash_base >> 20),
528 		(unsigned long)(total_mem >> 20));
529 
530 	crashk_res.start = crash_base;
531 	crashk_res.end   = crash_base + crash_size - 1;
532 	insert_resource(&iomem_resource, &crashk_res);
533 }
534 #else
535 static void __init reserve_crashkernel(void)
536 {
537 }
538 #endif
539 
540 static struct resource standard_io_resources[] = {
541 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
542 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
543 	{ .name = "pic1", .start = 0x20, .end = 0x21,
544 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
545 	{ .name = "timer0", .start = 0x40, .end = 0x43,
546 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
547 	{ .name = "timer1", .start = 0x50, .end = 0x53,
548 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
549 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
550 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
551 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
552 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
553 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
554 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
555 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
556 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
557 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
558 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
559 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
560 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
561 };
562 
563 void __init reserve_standard_io_resources(void)
564 {
565 	int i;
566 
567 	/* request I/O space for devices used on all i[345]86 PCs */
568 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
569 		request_resource(&ioport_resource, &standard_io_resources[i]);
570 
571 }
572 
573 static __init void reserve_ibft_region(void)
574 {
575 	unsigned long addr, size = 0;
576 
577 	addr = find_ibft_region(&size);
578 
579 	if (size)
580 		memblock_reserve(addr, size);
581 }
582 
583 static bool __init snb_gfx_workaround_needed(void)
584 {
585 #ifdef CONFIG_PCI
586 	int i;
587 	u16 vendor, devid;
588 	static const __initconst u16 snb_ids[] = {
589 		0x0102,
590 		0x0112,
591 		0x0122,
592 		0x0106,
593 		0x0116,
594 		0x0126,
595 		0x010a,
596 	};
597 
598 	/* Assume no if something weird is going on with PCI */
599 	if (!early_pci_allowed())
600 		return false;
601 
602 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
603 	if (vendor != 0x8086)
604 		return false;
605 
606 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
607 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
608 		if (devid == snb_ids[i])
609 			return true;
610 #endif
611 
612 	return false;
613 }
614 
615 /*
616  * Sandy Bridge graphics has trouble with certain ranges, exclude
617  * them from allocation.
618  */
619 static void __init trim_snb_memory(void)
620 {
621 	static const __initconst unsigned long bad_pages[] = {
622 		0x20050000,
623 		0x20110000,
624 		0x20130000,
625 		0x20138000,
626 		0x40004000,
627 	};
628 	int i;
629 
630 	if (!snb_gfx_workaround_needed())
631 		return;
632 
633 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
634 
635 	/*
636 	 * SandyBridge integrated graphics devices have a bug that prevents
637 	 * them from accessing certain memory ranges, namely anything below
638 	 * 1M and in the pages listed in bad_pages[] above.
639 	 *
640 	 * To avoid these pages being ever accessed by SNB gfx devices
641 	 * reserve all memory below the 1 MB mark and bad_pages that have
642 	 * not already been reserved at boot time.
643 	 */
644 	memblock_reserve(0, 1<<20);
645 
646 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
647 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
648 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
649 			       bad_pages[i]);
650 	}
651 }
652 
653 static void __init trim_bios_range(void)
654 {
655 	/*
656 	 * A special case is the first 4Kb of memory;
657 	 * This is a BIOS owned area, not kernel ram, but generally
658 	 * not listed as such in the E820 table.
659 	 *
660 	 * This typically reserves additional memory (64KiB by default)
661 	 * since some BIOSes are known to corrupt low memory.  See the
662 	 * Kconfig help text for X86_RESERVE_LOW.
663 	 */
664 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
665 
666 	/*
667 	 * special case: Some BIOSes report the PC BIOS
668 	 * area (640Kb -> 1Mb) as RAM even though it is not.
669 	 * take them out.
670 	 */
671 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
672 
673 	e820__update_table(e820_table);
674 }
675 
676 /* called before trim_bios_range() to spare extra sanitize */
677 static void __init e820_add_kernel_range(void)
678 {
679 	u64 start = __pa_symbol(_text);
680 	u64 size = __pa_symbol(_end) - start;
681 
682 	/*
683 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
684 	 * attempt to fix it by adding the range. We may have a confused BIOS,
685 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
686 	 * exclude kernel range. If we really are running on top non-RAM,
687 	 * we will crash later anyways.
688 	 */
689 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
690 		return;
691 
692 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
693 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
694 	e820__range_add(start, size, E820_TYPE_RAM);
695 }
696 
697 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
698 
699 static int __init parse_reservelow(char *p)
700 {
701 	unsigned long long size;
702 
703 	if (!p)
704 		return -EINVAL;
705 
706 	size = memparse(p, &p);
707 
708 	if (size < 4096)
709 		size = 4096;
710 
711 	if (size > 640*1024)
712 		size = 640*1024;
713 
714 	reserve_low = size;
715 
716 	return 0;
717 }
718 
719 early_param("reservelow", parse_reservelow);
720 
721 static void __init early_reserve_memory(void)
722 {
723 	/*
724 	 * Reserve the memory occupied by the kernel between _text and
725 	 * __end_of_kernel_reserve symbols. Any kernel sections after the
726 	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
727 	 * separate memblock_reserve() or they will be discarded.
728 	 */
729 	memblock_reserve(__pa_symbol(_text),
730 			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
731 
732 	/*
733 	 * The first 4Kb of memory is a BIOS owned area, but generally it is
734 	 * not listed as such in the E820 table.
735 	 *
736 	 * Reserve the first memory page and typically some additional
737 	 * memory (64KiB by default) since some BIOSes are known to corrupt
738 	 * low memory. See the Kconfig help text for X86_RESERVE_LOW.
739 	 *
740 	 * In addition, make sure page 0 is always reserved because on
741 	 * systems with L1TF its contents can be leaked to user processes.
742 	 */
743 	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
744 
745 	early_reserve_initrd();
746 
747 	if (efi_enabled(EFI_BOOT))
748 		efi_memblock_x86_reserve_range();
749 
750 	memblock_x86_reserve_range_setup_data();
751 
752 	reserve_ibft_region();
753 	reserve_bios_regions();
754 }
755 
756 /*
757  * Dump out kernel offset information on panic.
758  */
759 static int
760 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
761 {
762 	if (kaslr_enabled()) {
763 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
764 			 kaslr_offset(),
765 			 __START_KERNEL,
766 			 __START_KERNEL_map,
767 			 MODULES_VADDR-1);
768 	} else {
769 		pr_emerg("Kernel Offset: disabled\n");
770 	}
771 
772 	return 0;
773 }
774 
775 /*
776  * Determine if we were loaded by an EFI loader.  If so, then we have also been
777  * passed the efi memmap, systab, etc., so we should use these data structures
778  * for initialization.  Note, the efi init code path is determined by the
779  * global efi_enabled. This allows the same kernel image to be used on existing
780  * systems (with a traditional BIOS) as well as on EFI systems.
781  */
782 /*
783  * setup_arch - architecture-specific boot-time initializations
784  *
785  * Note: On x86_64, fixmaps are ready for use even before this is called.
786  */
787 
788 void __init setup_arch(char **cmdline_p)
789 {
790 #ifdef CONFIG_X86_32
791 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
792 
793 	/*
794 	 * copy kernel address range established so far and switch
795 	 * to the proper swapper page table
796 	 */
797 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
798 			initial_page_table + KERNEL_PGD_BOUNDARY,
799 			KERNEL_PGD_PTRS);
800 
801 	load_cr3(swapper_pg_dir);
802 	/*
803 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
804 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
805 	 * will not flush anything because the CPU quirk which clears
806 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
807 	 * load_cr3() above the TLB has been flushed already. The
808 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
809 	 * so proper operation is guaranteed.
810 	 */
811 	__flush_tlb_all();
812 #else
813 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
814 	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
815 #endif
816 
817 	/*
818 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
819 	 * reserve_top(), so do this before touching the ioremap area.
820 	 */
821 	olpc_ofw_detect();
822 
823 	idt_setup_early_traps();
824 	early_cpu_init();
825 	jump_label_init();
826 	static_call_init();
827 	early_ioremap_init();
828 
829 	setup_olpc_ofw_pgd();
830 
831 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
832 	screen_info = boot_params.screen_info;
833 	edid_info = boot_params.edid_info;
834 #ifdef CONFIG_X86_32
835 	apm_info.bios = boot_params.apm_bios_info;
836 	ist_info = boot_params.ist_info;
837 #endif
838 	saved_video_mode = boot_params.hdr.vid_mode;
839 	bootloader_type = boot_params.hdr.type_of_loader;
840 	if ((bootloader_type >> 4) == 0xe) {
841 		bootloader_type &= 0xf;
842 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
843 	}
844 	bootloader_version  = bootloader_type & 0xf;
845 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
846 
847 #ifdef CONFIG_BLK_DEV_RAM
848 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
849 #endif
850 #ifdef CONFIG_EFI
851 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
852 		     EFI32_LOADER_SIGNATURE, 4)) {
853 		set_bit(EFI_BOOT, &efi.flags);
854 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
855 		     EFI64_LOADER_SIGNATURE, 4)) {
856 		set_bit(EFI_BOOT, &efi.flags);
857 		set_bit(EFI_64BIT, &efi.flags);
858 	}
859 #endif
860 
861 	x86_init.oem.arch_setup();
862 
863 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
864 	e820__memory_setup();
865 	parse_setup_data();
866 
867 	copy_edd();
868 
869 	if (!boot_params.hdr.root_flags)
870 		root_mountflags &= ~MS_RDONLY;
871 	init_mm.start_code = (unsigned long) _text;
872 	init_mm.end_code = (unsigned long) _etext;
873 	init_mm.end_data = (unsigned long) _edata;
874 	init_mm.brk = _brk_end;
875 
876 	code_resource.start = __pa_symbol(_text);
877 	code_resource.end = __pa_symbol(_etext)-1;
878 	rodata_resource.start = __pa_symbol(__start_rodata);
879 	rodata_resource.end = __pa_symbol(__end_rodata)-1;
880 	data_resource.start = __pa_symbol(_sdata);
881 	data_resource.end = __pa_symbol(_edata)-1;
882 	bss_resource.start = __pa_symbol(__bss_start);
883 	bss_resource.end = __pa_symbol(__bss_stop)-1;
884 
885 #ifdef CONFIG_CMDLINE_BOOL
886 #ifdef CONFIG_CMDLINE_OVERRIDE
887 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
888 #else
889 	if (builtin_cmdline[0]) {
890 		/* append boot loader cmdline to builtin */
891 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
892 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
893 		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
894 	}
895 #endif
896 #endif
897 
898 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
899 	*cmdline_p = command_line;
900 
901 	/*
902 	 * x86_configure_nx() is called before parse_early_param() to detect
903 	 * whether hardware doesn't support NX (so that the early EHCI debug
904 	 * console setup can safely call set_fixmap()). It may then be called
905 	 * again from within noexec_setup() during parsing early parameters
906 	 * to honor the respective command line option.
907 	 */
908 	x86_configure_nx();
909 
910 	parse_early_param();
911 
912 	/*
913 	 * Do some memory reservations *before* memory is added to
914 	 * memblock, so memblock allocations won't overwrite it.
915 	 * Do it after early param, so we could get (unlikely) panic from
916 	 * serial.
917 	 *
918 	 * After this point everything still needed from the boot loader or
919 	 * firmware or kernel text should be early reserved or marked not
920 	 * RAM in e820. All other memory is free game.
921 	 */
922 	early_reserve_memory();
923 
924 #ifdef CONFIG_MEMORY_HOTPLUG
925 	/*
926 	 * Memory used by the kernel cannot be hot-removed because Linux
927 	 * cannot migrate the kernel pages. When memory hotplug is
928 	 * enabled, we should prevent memblock from allocating memory
929 	 * for the kernel.
930 	 *
931 	 * ACPI SRAT records all hotpluggable memory ranges. But before
932 	 * SRAT is parsed, we don't know about it.
933 	 *
934 	 * The kernel image is loaded into memory at very early time. We
935 	 * cannot prevent this anyway. So on NUMA system, we set any
936 	 * node the kernel resides in as un-hotpluggable.
937 	 *
938 	 * Since on modern servers, one node could have double-digit
939 	 * gigabytes memory, we can assume the memory around the kernel
940 	 * image is also un-hotpluggable. So before SRAT is parsed, just
941 	 * allocate memory near the kernel image to try the best to keep
942 	 * the kernel away from hotpluggable memory.
943 	 */
944 	if (movable_node_is_enabled())
945 		memblock_set_bottom_up(true);
946 #endif
947 
948 	x86_report_nx();
949 
950 	if (acpi_mps_check()) {
951 #ifdef CONFIG_X86_LOCAL_APIC
952 		disable_apic = 1;
953 #endif
954 		setup_clear_cpu_cap(X86_FEATURE_APIC);
955 	}
956 
957 	e820__reserve_setup_data();
958 	e820__finish_early_params();
959 
960 	if (efi_enabled(EFI_BOOT))
961 		efi_init();
962 
963 	dmi_setup();
964 
965 	/*
966 	 * VMware detection requires dmi to be available, so this
967 	 * needs to be done after dmi_setup(), for the boot CPU.
968 	 */
969 	init_hypervisor_platform();
970 
971 	tsc_early_init();
972 	x86_init.resources.probe_roms();
973 
974 	/* after parse_early_param, so could debug it */
975 	insert_resource(&iomem_resource, &code_resource);
976 	insert_resource(&iomem_resource, &rodata_resource);
977 	insert_resource(&iomem_resource, &data_resource);
978 	insert_resource(&iomem_resource, &bss_resource);
979 
980 	e820_add_kernel_range();
981 	trim_bios_range();
982 #ifdef CONFIG_X86_32
983 	if (ppro_with_ram_bug()) {
984 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
985 				  E820_TYPE_RESERVED);
986 		e820__update_table(e820_table);
987 		printk(KERN_INFO "fixed physical RAM map:\n");
988 		e820__print_table("bad_ppro");
989 	}
990 #else
991 	early_gart_iommu_check();
992 #endif
993 
994 	/*
995 	 * partially used pages are not usable - thus
996 	 * we are rounding upwards:
997 	 */
998 	max_pfn = e820__end_of_ram_pfn();
999 
1000 	/* update e820 for memory not covered by WB MTRRs */
1001 	mtrr_bp_init();
1002 	if (mtrr_trim_uncached_memory(max_pfn))
1003 		max_pfn = e820__end_of_ram_pfn();
1004 
1005 	max_possible_pfn = max_pfn;
1006 
1007 	/*
1008 	 * This call is required when the CPU does not support PAT. If
1009 	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1010 	 * effect.
1011 	 */
1012 	init_cache_modes();
1013 
1014 	/*
1015 	 * Define random base addresses for memory sections after max_pfn is
1016 	 * defined and before each memory section base is used.
1017 	 */
1018 	kernel_randomize_memory();
1019 
1020 #ifdef CONFIG_X86_32
1021 	/* max_low_pfn get updated here */
1022 	find_low_pfn_range();
1023 #else
1024 	check_x2apic();
1025 
1026 	/* How many end-of-memory variables you have, grandma! */
1027 	/* need this before calling reserve_initrd */
1028 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1029 		max_low_pfn = e820__end_of_low_ram_pfn();
1030 	else
1031 		max_low_pfn = max_pfn;
1032 
1033 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1034 #endif
1035 
1036 	/*
1037 	 * Find and reserve possible boot-time SMP configuration:
1038 	 */
1039 	find_smp_config();
1040 
1041 	early_alloc_pgt_buf();
1042 
1043 	/*
1044 	 * Need to conclude brk, before e820__memblock_setup()
1045 	 * it could use memblock_find_in_range, could overlap with
1046 	 * brk area.
1047 	 */
1048 	reserve_brk();
1049 
1050 	cleanup_highmap();
1051 
1052 	memblock_set_current_limit(ISA_END_ADDRESS);
1053 	e820__memblock_setup();
1054 
1055 	/*
1056 	 * Needs to run after memblock setup because it needs the physical
1057 	 * memory size.
1058 	 */
1059 	sev_setup_arch();
1060 
1061 	efi_fake_memmap();
1062 	efi_find_mirror();
1063 	efi_esrt_init();
1064 	efi_mokvar_table_init();
1065 
1066 	/*
1067 	 * The EFI specification says that boot service code won't be
1068 	 * called after ExitBootServices(). This is, in fact, a lie.
1069 	 */
1070 	efi_reserve_boot_services();
1071 
1072 	/* preallocate 4k for mptable mpc */
1073 	e820__memblock_alloc_reserved_mpc_new();
1074 
1075 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1076 	setup_bios_corruption_check();
1077 #endif
1078 
1079 #ifdef CONFIG_X86_32
1080 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1081 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1082 #endif
1083 
1084 	reserve_real_mode();
1085 
1086 	/*
1087 	 * Reserving memory causing GPU hangs on Sandy Bridge integrated
1088 	 * graphics devices should be done after we allocated memory under
1089 	 * 1M for the real mode trampoline.
1090 	 */
1091 	trim_snb_memory();
1092 
1093 	init_mem_mapping();
1094 
1095 	idt_setup_early_pf();
1096 
1097 	/*
1098 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1099 	 * with the current CR4 value.  This may not be necessary, but
1100 	 * auditing all the early-boot CR4 manipulation would be needed to
1101 	 * rule it out.
1102 	 *
1103 	 * Mask off features that don't work outside long mode (just
1104 	 * PCIDE for now).
1105 	 */
1106 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1107 
1108 	memblock_set_current_limit(get_max_mapped());
1109 
1110 	/*
1111 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1112 	 */
1113 
1114 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1115 	if (init_ohci1394_dma_early)
1116 		init_ohci1394_dma_on_all_controllers();
1117 #endif
1118 	/* Allocate bigger log buffer */
1119 	setup_log_buf(1);
1120 
1121 	if (efi_enabled(EFI_BOOT)) {
1122 		switch (boot_params.secure_boot) {
1123 		case efi_secureboot_mode_disabled:
1124 			pr_info("Secure boot disabled\n");
1125 			break;
1126 		case efi_secureboot_mode_enabled:
1127 			pr_info("Secure boot enabled\n");
1128 			break;
1129 		default:
1130 			pr_info("Secure boot could not be determined\n");
1131 			break;
1132 		}
1133 	}
1134 
1135 	reserve_initrd();
1136 
1137 	acpi_table_upgrade();
1138 	/* Look for ACPI tables and reserve memory occupied by them. */
1139 	acpi_boot_table_init();
1140 
1141 	vsmp_init();
1142 
1143 	io_delay_init();
1144 
1145 	early_platform_quirks();
1146 
1147 	early_acpi_boot_init();
1148 
1149 	initmem_init();
1150 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1151 
1152 	if (boot_cpu_has(X86_FEATURE_GBPAGES))
1153 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1154 
1155 	/*
1156 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1157 	 * won't consume hotpluggable memory.
1158 	 */
1159 	reserve_crashkernel();
1160 
1161 	memblock_find_dma_reserve();
1162 
1163 	if (!early_xdbc_setup_hardware())
1164 		early_xdbc_register_console();
1165 
1166 	x86_init.paging.pagetable_init();
1167 
1168 	kasan_init();
1169 
1170 	/*
1171 	 * Sync back kernel address range.
1172 	 *
1173 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1174 	 * this call?
1175 	 */
1176 	sync_initial_page_table();
1177 
1178 	tboot_probe();
1179 
1180 	map_vsyscall();
1181 
1182 	generic_apic_probe();
1183 
1184 	early_quirks();
1185 
1186 	/*
1187 	 * Read APIC and some other early information from ACPI tables.
1188 	 */
1189 	acpi_boot_init();
1190 	x86_dtb_init();
1191 
1192 	/*
1193 	 * get boot-time SMP configuration:
1194 	 */
1195 	get_smp_config();
1196 
1197 	/*
1198 	 * Systems w/o ACPI and mptables might not have it mapped the local
1199 	 * APIC yet, but prefill_possible_map() might need to access it.
1200 	 */
1201 	init_apic_mappings();
1202 
1203 	prefill_possible_map();
1204 
1205 	init_cpu_to_node();
1206 	init_gi_nodes();
1207 
1208 	io_apic_init_mappings();
1209 
1210 	x86_init.hyper.guest_late_init();
1211 
1212 	e820__reserve_resources();
1213 	e820__register_nosave_regions(max_pfn);
1214 
1215 	x86_init.resources.reserve_resources();
1216 
1217 	e820__setup_pci_gap();
1218 
1219 #ifdef CONFIG_VT
1220 #if defined(CONFIG_VGA_CONSOLE)
1221 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1222 		conswitchp = &vga_con;
1223 #endif
1224 #endif
1225 	x86_init.oem.banner();
1226 
1227 	x86_init.timers.wallclock_init();
1228 
1229 	mcheck_init();
1230 
1231 	register_refined_jiffies(CLOCK_TICK_RATE);
1232 
1233 #ifdef CONFIG_EFI
1234 	if (efi_enabled(EFI_BOOT))
1235 		efi_apply_memmap_quirks();
1236 #endif
1237 
1238 	unwind_init();
1239 }
1240 
1241 #ifdef CONFIG_X86_32
1242 
1243 static struct resource video_ram_resource = {
1244 	.name	= "Video RAM area",
1245 	.start	= 0xa0000,
1246 	.end	= 0xbffff,
1247 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1248 };
1249 
1250 void __init i386_reserve_resources(void)
1251 {
1252 	request_resource(&iomem_resource, &video_ram_resource);
1253 	reserve_standard_io_resources();
1254 }
1255 
1256 #endif /* CONFIG_X86_32 */
1257 
1258 static struct notifier_block kernel_offset_notifier = {
1259 	.notifier_call = dump_kernel_offset
1260 };
1261 
1262 static int __init register_kernel_offset_dumper(void)
1263 {
1264 	atomic_notifier_chain_register(&panic_notifier_list,
1265 					&kernel_offset_notifier);
1266 	return 0;
1267 }
1268 __initcall(register_kernel_offset_dumper);
1269