xref: /openbmc/linux/arch/x86/kernel/setup.c (revision b78412b8)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *
6  *  Memory region support
7  *	David Parsons <orc@pell.chi.il.us>, July-August 1999
8  *
9  *  Added E820 sanitization routine (removes overlapping memory regions);
10  *  Brian Moyle <bmoyle@mvista.com>, February 2001
11  *
12  * Moved CPU detection code to cpu/${cpu}.c
13  *    Patrick Mochel <mochel@osdl.org>, March 2002
14  *
15  *  Provisions for empty E820 memory regions (reported by certain BIOSes).
16  *  Alex Achenbach <xela@slit.de>, December 2002.
17  *
18  */
19 
20 /*
21  * This file handles the architecture-dependent parts of initialization
22  */
23 
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/seq_file.h>
36 #include <linux/console.h>
37 #include <linux/root_dev.h>
38 #include <linux/highmem.h>
39 #include <linux/export.h>
40 #include <linux/efi.h>
41 #include <linux/init.h>
42 #include <linux/edd.h>
43 #include <linux/iscsi_ibft.h>
44 #include <linux/nodemask.h>
45 #include <linux/kexec.h>
46 #include <linux/dmi.h>
47 #include <linux/pfn.h>
48 #include <linux/pci.h>
49 #include <asm/pci-direct.h>
50 #include <linux/init_ohci1394_dma.h>
51 #include <linux/kvm_para.h>
52 #include <linux/dma-contiguous.h>
53 
54 #include <linux/errno.h>
55 #include <linux/kernel.h>
56 #include <linux/stddef.h>
57 #include <linux/unistd.h>
58 #include <linux/ptrace.h>
59 #include <linux/user.h>
60 #include <linux/delay.h>
61 
62 #include <linux/kallsyms.h>
63 #include <linux/cpufreq.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/ctype.h>
66 #include <linux/uaccess.h>
67 
68 #include <linux/percpu.h>
69 #include <linux/crash_dump.h>
70 #include <linux/tboot.h>
71 #include <linux/jiffies.h>
72 #include <linux/mem_encrypt.h>
73 
74 #include <linux/usb/xhci-dbgp.h>
75 #include <video/edid.h>
76 
77 #include <asm/mtrr.h>
78 #include <asm/apic.h>
79 #include <asm/realmode.h>
80 #include <asm/e820/api.h>
81 #include <asm/mpspec.h>
82 #include <asm/setup.h>
83 #include <asm/efi.h>
84 #include <asm/timer.h>
85 #include <asm/i8259.h>
86 #include <asm/sections.h>
87 #include <asm/io_apic.h>
88 #include <asm/ist.h>
89 #include <asm/setup_arch.h>
90 #include <asm/bios_ebda.h>
91 #include <asm/cacheflush.h>
92 #include <asm/processor.h>
93 #include <asm/bugs.h>
94 #include <asm/kasan.h>
95 
96 #include <asm/vsyscall.h>
97 #include <asm/cpu.h>
98 #include <asm/desc.h>
99 #include <asm/dma.h>
100 #include <asm/iommu.h>
101 #include <asm/gart.h>
102 #include <asm/mmu_context.h>
103 #include <asm/proto.h>
104 
105 #include <asm/paravirt.h>
106 #include <asm/hypervisor.h>
107 #include <asm/olpc_ofw.h>
108 
109 #include <asm/percpu.h>
110 #include <asm/topology.h>
111 #include <asm/apicdef.h>
112 #include <asm/amd_nb.h>
113 #include <asm/mce.h>
114 #include <asm/alternative.h>
115 #include <asm/prom.h>
116 #include <asm/microcode.h>
117 #include <asm/mmu_context.h>
118 #include <asm/kaslr.h>
119 #include <asm/unwind.h>
120 
121 /*
122  * max_low_pfn_mapped: highest direct mapped pfn under 4GB
123  * max_pfn_mapped:     highest direct mapped pfn over 4GB
124  *
125  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
126  * represented by pfn_mapped
127  */
128 unsigned long max_low_pfn_mapped;
129 unsigned long max_pfn_mapped;
130 
131 #ifdef CONFIG_DMI
132 RESERVE_BRK(dmi_alloc, 65536);
133 #endif
134 
135 
136 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
137 unsigned long _brk_end = (unsigned long)__brk_base;
138 
139 #ifdef CONFIG_X86_64
140 int default_cpu_present_to_apicid(int mps_cpu)
141 {
142 	return __default_cpu_present_to_apicid(mps_cpu);
143 }
144 
145 int default_check_phys_apicid_present(int phys_apicid)
146 {
147 	return __default_check_phys_apicid_present(phys_apicid);
148 }
149 #endif
150 
151 struct boot_params boot_params;
152 
153 /*
154  * Machine setup..
155  */
156 static struct resource data_resource = {
157 	.name	= "Kernel data",
158 	.start	= 0,
159 	.end	= 0,
160 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
161 };
162 
163 static struct resource code_resource = {
164 	.name	= "Kernel code",
165 	.start	= 0,
166 	.end	= 0,
167 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
168 };
169 
170 static struct resource bss_resource = {
171 	.name	= "Kernel bss",
172 	.start	= 0,
173 	.end	= 0,
174 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
175 };
176 
177 
178 #ifdef CONFIG_X86_32
179 /* cpu data as detected by the assembly code in head_32.S */
180 struct cpuinfo_x86 new_cpu_data;
181 
182 /* common cpu data for all cpus */
183 struct cpuinfo_x86 boot_cpu_data __read_mostly;
184 EXPORT_SYMBOL(boot_cpu_data);
185 
186 unsigned int def_to_bigsmp;
187 
188 /* for MCA, but anyone else can use it if they want */
189 unsigned int machine_id;
190 unsigned int machine_submodel_id;
191 unsigned int BIOS_revision;
192 
193 struct apm_info apm_info;
194 EXPORT_SYMBOL(apm_info);
195 
196 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
197 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
198 struct ist_info ist_info;
199 EXPORT_SYMBOL(ist_info);
200 #else
201 struct ist_info ist_info;
202 #endif
203 
204 #else
205 struct cpuinfo_x86 boot_cpu_data __read_mostly = {
206 	.x86_phys_bits = MAX_PHYSMEM_BITS,
207 };
208 EXPORT_SYMBOL(boot_cpu_data);
209 #endif
210 
211 
212 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
213 __visible unsigned long mmu_cr4_features __ro_after_init;
214 #else
215 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
216 #endif
217 
218 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
219 int bootloader_type, bootloader_version;
220 
221 /*
222  * Setup options
223  */
224 struct screen_info screen_info;
225 EXPORT_SYMBOL(screen_info);
226 struct edid_info edid_info;
227 EXPORT_SYMBOL_GPL(edid_info);
228 
229 extern int root_mountflags;
230 
231 unsigned long saved_video_mode;
232 
233 #define RAMDISK_IMAGE_START_MASK	0x07FF
234 #define RAMDISK_PROMPT_FLAG		0x8000
235 #define RAMDISK_LOAD_FLAG		0x4000
236 
237 static char __initdata command_line[COMMAND_LINE_SIZE];
238 #ifdef CONFIG_CMDLINE_BOOL
239 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
240 #endif
241 
242 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
243 struct edd edd;
244 #ifdef CONFIG_EDD_MODULE
245 EXPORT_SYMBOL(edd);
246 #endif
247 /**
248  * copy_edd() - Copy the BIOS EDD information
249  *              from boot_params into a safe place.
250  *
251  */
252 static inline void __init copy_edd(void)
253 {
254      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
255 	    sizeof(edd.mbr_signature));
256      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
257      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
258      edd.edd_info_nr = boot_params.eddbuf_entries;
259 }
260 #else
261 static inline void __init copy_edd(void)
262 {
263 }
264 #endif
265 
266 void * __init extend_brk(size_t size, size_t align)
267 {
268 	size_t mask = align - 1;
269 	void *ret;
270 
271 	BUG_ON(_brk_start == 0);
272 	BUG_ON(align & mask);
273 
274 	_brk_end = (_brk_end + mask) & ~mask;
275 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
276 
277 	ret = (void *)_brk_end;
278 	_brk_end += size;
279 
280 	memset(ret, 0, size);
281 
282 	return ret;
283 }
284 
285 #ifdef CONFIG_X86_32
286 static void __init cleanup_highmap(void)
287 {
288 }
289 #endif
290 
291 static void __init reserve_brk(void)
292 {
293 	if (_brk_end > _brk_start)
294 		memblock_reserve(__pa_symbol(_brk_start),
295 				 _brk_end - _brk_start);
296 
297 	/* Mark brk area as locked down and no longer taking any
298 	   new allocations */
299 	_brk_start = 0;
300 }
301 
302 u64 relocated_ramdisk;
303 
304 #ifdef CONFIG_BLK_DEV_INITRD
305 
306 static u64 __init get_ramdisk_image(void)
307 {
308 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
309 
310 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
311 
312 	return ramdisk_image;
313 }
314 static u64 __init get_ramdisk_size(void)
315 {
316 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
317 
318 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
319 
320 	return ramdisk_size;
321 }
322 
323 static void __init relocate_initrd(void)
324 {
325 	/* Assume only end is not page aligned */
326 	u64 ramdisk_image = get_ramdisk_image();
327 	u64 ramdisk_size  = get_ramdisk_size();
328 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
329 
330 	/* We need to move the initrd down into directly mapped mem */
331 	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
332 						   area_size, PAGE_SIZE);
333 
334 	if (!relocated_ramdisk)
335 		panic("Cannot find place for new RAMDISK of size %lld\n",
336 		      ramdisk_size);
337 
338 	/* Note: this includes all the mem currently occupied by
339 	   the initrd, we rely on that fact to keep the data intact. */
340 	memblock_reserve(relocated_ramdisk, area_size);
341 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
342 	initrd_end   = initrd_start + ramdisk_size;
343 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
344 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
345 
346 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
347 
348 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
349 		" [mem %#010llx-%#010llx]\n",
350 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
351 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
352 }
353 
354 static void __init early_reserve_initrd(void)
355 {
356 	/* Assume only end is not page aligned */
357 	u64 ramdisk_image = get_ramdisk_image();
358 	u64 ramdisk_size  = get_ramdisk_size();
359 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
360 
361 	if (!boot_params.hdr.type_of_loader ||
362 	    !ramdisk_image || !ramdisk_size)
363 		return;		/* No initrd provided by bootloader */
364 
365 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
366 }
367 static void __init reserve_initrd(void)
368 {
369 	/* Assume only end is not page aligned */
370 	u64 ramdisk_image = get_ramdisk_image();
371 	u64 ramdisk_size  = get_ramdisk_size();
372 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
373 	u64 mapped_size;
374 
375 	if (!boot_params.hdr.type_of_loader ||
376 	    !ramdisk_image || !ramdisk_size)
377 		return;		/* No initrd provided by bootloader */
378 
379 	/*
380 	 * If SME is active, this memory will be marked encrypted by the
381 	 * kernel when it is accessed (including relocation). However, the
382 	 * ramdisk image was loaded decrypted by the bootloader, so make
383 	 * sure that it is encrypted before accessing it.
384 	 */
385 	sme_early_encrypt(ramdisk_image, ramdisk_end - ramdisk_image);
386 
387 	initrd_start = 0;
388 
389 	mapped_size = memblock_mem_size(max_pfn_mapped);
390 	if (ramdisk_size >= (mapped_size>>1))
391 		panic("initrd too large to handle, "
392 		       "disabling initrd (%lld needed, %lld available)\n",
393 		       ramdisk_size, mapped_size>>1);
394 
395 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
396 			ramdisk_end - 1);
397 
398 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
399 				PFN_DOWN(ramdisk_end))) {
400 		/* All are mapped, easy case */
401 		initrd_start = ramdisk_image + PAGE_OFFSET;
402 		initrd_end = initrd_start + ramdisk_size;
403 		return;
404 	}
405 
406 	relocate_initrd();
407 
408 	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
409 }
410 
411 #else
412 static void __init early_reserve_initrd(void)
413 {
414 }
415 static void __init reserve_initrd(void)
416 {
417 }
418 #endif /* CONFIG_BLK_DEV_INITRD */
419 
420 static void __init parse_setup_data(void)
421 {
422 	struct setup_data *data;
423 	u64 pa_data, pa_next;
424 
425 	pa_data = boot_params.hdr.setup_data;
426 	while (pa_data) {
427 		u32 data_len, data_type;
428 
429 		data = early_memremap(pa_data, sizeof(*data));
430 		data_len = data->len + sizeof(struct setup_data);
431 		data_type = data->type;
432 		pa_next = data->next;
433 		early_memunmap(data, sizeof(*data));
434 
435 		switch (data_type) {
436 		case SETUP_E820_EXT:
437 			e820__memory_setup_extended(pa_data, data_len);
438 			break;
439 		case SETUP_DTB:
440 			add_dtb(pa_data);
441 			break;
442 		case SETUP_EFI:
443 			parse_efi_setup(pa_data, data_len);
444 			break;
445 		default:
446 			break;
447 		}
448 		pa_data = pa_next;
449 	}
450 }
451 
452 static void __init memblock_x86_reserve_range_setup_data(void)
453 {
454 	struct setup_data *data;
455 	u64 pa_data;
456 
457 	pa_data = boot_params.hdr.setup_data;
458 	while (pa_data) {
459 		data = early_memremap(pa_data, sizeof(*data));
460 		memblock_reserve(pa_data, sizeof(*data) + data->len);
461 		pa_data = data->next;
462 		early_memunmap(data, sizeof(*data));
463 	}
464 }
465 
466 /*
467  * --------- Crashkernel reservation ------------------------------
468  */
469 
470 #ifdef CONFIG_KEXEC_CORE
471 
472 /* 16M alignment for crash kernel regions */
473 #define CRASH_ALIGN		(16 << 20)
474 
475 /*
476  * Keep the crash kernel below this limit.  On 32 bits earlier kernels
477  * would limit the kernel to the low 512 MiB due to mapping restrictions.
478  * On 64bit, old kexec-tools need to under 896MiB.
479  */
480 #ifdef CONFIG_X86_32
481 # define CRASH_ADDR_LOW_MAX	(512 << 20)
482 # define CRASH_ADDR_HIGH_MAX	(512 << 20)
483 #else
484 # define CRASH_ADDR_LOW_MAX	(896UL << 20)
485 # define CRASH_ADDR_HIGH_MAX	MAXMEM
486 #endif
487 
488 static int __init reserve_crashkernel_low(void)
489 {
490 #ifdef CONFIG_X86_64
491 	unsigned long long base, low_base = 0, low_size = 0;
492 	unsigned long total_low_mem;
493 	int ret;
494 
495 	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
496 
497 	/* crashkernel=Y,low */
498 	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
499 	if (ret) {
500 		/*
501 		 * two parts from lib/swiotlb.c:
502 		 * -swiotlb size: user-specified with swiotlb= or default.
503 		 *
504 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
505 		 * to 8M for other buffers that may need to stay low too. Also
506 		 * make sure we allocate enough extra low memory so that we
507 		 * don't run out of DMA buffers for 32-bit devices.
508 		 */
509 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
510 	} else {
511 		/* passed with crashkernel=0,low ? */
512 		if (!low_size)
513 			return 0;
514 	}
515 
516 	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
517 	if (!low_base) {
518 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
519 		       (unsigned long)(low_size >> 20));
520 		return -ENOMEM;
521 	}
522 
523 	ret = memblock_reserve(low_base, low_size);
524 	if (ret) {
525 		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
526 		return ret;
527 	}
528 
529 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
530 		(unsigned long)(low_size >> 20),
531 		(unsigned long)(low_base >> 20),
532 		(unsigned long)(total_low_mem >> 20));
533 
534 	crashk_low_res.start = low_base;
535 	crashk_low_res.end   = low_base + low_size - 1;
536 	insert_resource(&iomem_resource, &crashk_low_res);
537 #endif
538 	return 0;
539 }
540 
541 static void __init reserve_crashkernel(void)
542 {
543 	unsigned long long crash_size, crash_base, total_mem;
544 	bool high = false;
545 	int ret;
546 
547 	total_mem = memblock_phys_mem_size();
548 
549 	/* crashkernel=XM */
550 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
551 	if (ret != 0 || crash_size <= 0) {
552 		/* crashkernel=X,high */
553 		ret = parse_crashkernel_high(boot_command_line, total_mem,
554 					     &crash_size, &crash_base);
555 		if (ret != 0 || crash_size <= 0)
556 			return;
557 		high = true;
558 	}
559 
560 	/* 0 means: find the address automatically */
561 	if (crash_base <= 0) {
562 		/*
563 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
564 		 * as old kexec-tools loads bzImage below that, unless
565 		 * "crashkernel=size[KMG],high" is specified.
566 		 */
567 		crash_base = memblock_find_in_range(CRASH_ALIGN,
568 						    high ? CRASH_ADDR_HIGH_MAX
569 							 : CRASH_ADDR_LOW_MAX,
570 						    crash_size, CRASH_ALIGN);
571 		if (!crash_base) {
572 			pr_info("crashkernel reservation failed - No suitable area found.\n");
573 			return;
574 		}
575 
576 	} else {
577 		unsigned long long start;
578 
579 		start = memblock_find_in_range(crash_base,
580 					       crash_base + crash_size,
581 					       crash_size, 1 << 20);
582 		if (start != crash_base) {
583 			pr_info("crashkernel reservation failed - memory is in use.\n");
584 			return;
585 		}
586 	}
587 	ret = memblock_reserve(crash_base, crash_size);
588 	if (ret) {
589 		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
590 		return;
591 	}
592 
593 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
594 		memblock_free(crash_base, crash_size);
595 		return;
596 	}
597 
598 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
599 		(unsigned long)(crash_size >> 20),
600 		(unsigned long)(crash_base >> 20),
601 		(unsigned long)(total_mem >> 20));
602 
603 	crashk_res.start = crash_base;
604 	crashk_res.end   = crash_base + crash_size - 1;
605 	insert_resource(&iomem_resource, &crashk_res);
606 }
607 #else
608 static void __init reserve_crashkernel(void)
609 {
610 }
611 #endif
612 
613 static struct resource standard_io_resources[] = {
614 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
615 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
616 	{ .name = "pic1", .start = 0x20, .end = 0x21,
617 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
618 	{ .name = "timer0", .start = 0x40, .end = 0x43,
619 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
620 	{ .name = "timer1", .start = 0x50, .end = 0x53,
621 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
622 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
623 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
624 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
625 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
626 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
627 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
628 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
629 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
630 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
631 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
632 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
633 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
634 };
635 
636 void __init reserve_standard_io_resources(void)
637 {
638 	int i;
639 
640 	/* request I/O space for devices used on all i[345]86 PCs */
641 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
642 		request_resource(&ioport_resource, &standard_io_resources[i]);
643 
644 }
645 
646 static __init void reserve_ibft_region(void)
647 {
648 	unsigned long addr, size = 0;
649 
650 	addr = find_ibft_region(&size);
651 
652 	if (size)
653 		memblock_reserve(addr, size);
654 }
655 
656 static bool __init snb_gfx_workaround_needed(void)
657 {
658 #ifdef CONFIG_PCI
659 	int i;
660 	u16 vendor, devid;
661 	static const __initconst u16 snb_ids[] = {
662 		0x0102,
663 		0x0112,
664 		0x0122,
665 		0x0106,
666 		0x0116,
667 		0x0126,
668 		0x010a,
669 	};
670 
671 	/* Assume no if something weird is going on with PCI */
672 	if (!early_pci_allowed())
673 		return false;
674 
675 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
676 	if (vendor != 0x8086)
677 		return false;
678 
679 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
680 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
681 		if (devid == snb_ids[i])
682 			return true;
683 #endif
684 
685 	return false;
686 }
687 
688 /*
689  * Sandy Bridge graphics has trouble with certain ranges, exclude
690  * them from allocation.
691  */
692 static void __init trim_snb_memory(void)
693 {
694 	static const __initconst unsigned long bad_pages[] = {
695 		0x20050000,
696 		0x20110000,
697 		0x20130000,
698 		0x20138000,
699 		0x40004000,
700 	};
701 	int i;
702 
703 	if (!snb_gfx_workaround_needed())
704 		return;
705 
706 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
707 
708 	/*
709 	 * Reserve all memory below the 1 MB mark that has not
710 	 * already been reserved.
711 	 */
712 	memblock_reserve(0, 1<<20);
713 
714 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
715 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
716 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
717 			       bad_pages[i]);
718 	}
719 }
720 
721 /*
722  * Here we put platform-specific memory range workarounds, i.e.
723  * memory known to be corrupt or otherwise in need to be reserved on
724  * specific platforms.
725  *
726  * If this gets used more widely it could use a real dispatch mechanism.
727  */
728 static void __init trim_platform_memory_ranges(void)
729 {
730 	trim_snb_memory();
731 }
732 
733 static void __init trim_bios_range(void)
734 {
735 	/*
736 	 * A special case is the first 4Kb of memory;
737 	 * This is a BIOS owned area, not kernel ram, but generally
738 	 * not listed as such in the E820 table.
739 	 *
740 	 * This typically reserves additional memory (64KiB by default)
741 	 * since some BIOSes are known to corrupt low memory.  See the
742 	 * Kconfig help text for X86_RESERVE_LOW.
743 	 */
744 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
745 
746 	/*
747 	 * special case: Some BIOSen report the PC BIOS
748 	 * area (640->1Mb) as ram even though it is not.
749 	 * take them out.
750 	 */
751 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
752 
753 	e820__update_table(e820_table);
754 }
755 
756 /* called before trim_bios_range() to spare extra sanitize */
757 static void __init e820_add_kernel_range(void)
758 {
759 	u64 start = __pa_symbol(_text);
760 	u64 size = __pa_symbol(_end) - start;
761 
762 	/*
763 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
764 	 * attempt to fix it by adding the range. We may have a confused BIOS,
765 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
766 	 * exclude kernel range. If we really are running on top non-RAM,
767 	 * we will crash later anyways.
768 	 */
769 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
770 		return;
771 
772 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
773 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
774 	e820__range_add(start, size, E820_TYPE_RAM);
775 }
776 
777 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
778 
779 static int __init parse_reservelow(char *p)
780 {
781 	unsigned long long size;
782 
783 	if (!p)
784 		return -EINVAL;
785 
786 	size = memparse(p, &p);
787 
788 	if (size < 4096)
789 		size = 4096;
790 
791 	if (size > 640*1024)
792 		size = 640*1024;
793 
794 	reserve_low = size;
795 
796 	return 0;
797 }
798 
799 early_param("reservelow", parse_reservelow);
800 
801 static void __init trim_low_memory_range(void)
802 {
803 	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
804 }
805 
806 /*
807  * Dump out kernel offset information on panic.
808  */
809 static int
810 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
811 {
812 	if (kaslr_enabled()) {
813 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
814 			 kaslr_offset(),
815 			 __START_KERNEL,
816 			 __START_KERNEL_map,
817 			 MODULES_VADDR-1);
818 	} else {
819 		pr_emerg("Kernel Offset: disabled\n");
820 	}
821 
822 	return 0;
823 }
824 
825 static void __init simple_udelay_calibration(void)
826 {
827 	unsigned int tsc_khz, cpu_khz;
828 	unsigned long lpj;
829 
830 	if (!boot_cpu_has(X86_FEATURE_TSC))
831 		return;
832 
833 	cpu_khz = x86_platform.calibrate_cpu();
834 	tsc_khz = x86_platform.calibrate_tsc();
835 
836 	tsc_khz = tsc_khz ? : cpu_khz;
837 	if (!tsc_khz)
838 		return;
839 
840 	lpj = tsc_khz * 1000;
841 	do_div(lpj, HZ);
842 	loops_per_jiffy = lpj;
843 }
844 
845 /*
846  * Determine if we were loaded by an EFI loader.  If so, then we have also been
847  * passed the efi memmap, systab, etc., so we should use these data structures
848  * for initialization.  Note, the efi init code path is determined by the
849  * global efi_enabled. This allows the same kernel image to be used on existing
850  * systems (with a traditional BIOS) as well as on EFI systems.
851  */
852 /*
853  * setup_arch - architecture-specific boot-time initializations
854  *
855  * Note: On x86_64, fixmaps are ready for use even before this is called.
856  */
857 
858 void __init setup_arch(char **cmdline_p)
859 {
860 	memblock_reserve(__pa_symbol(_text),
861 			 (unsigned long)__bss_stop - (unsigned long)_text);
862 
863 	early_reserve_initrd();
864 
865 	/*
866 	 * At this point everything still needed from the boot loader
867 	 * or BIOS or kernel text should be early reserved or marked not
868 	 * RAM in e820. All other memory is free game.
869 	 */
870 
871 #ifdef CONFIG_X86_32
872 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
873 
874 	/*
875 	 * copy kernel address range established so far and switch
876 	 * to the proper swapper page table
877 	 */
878 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
879 			initial_page_table + KERNEL_PGD_BOUNDARY,
880 			KERNEL_PGD_PTRS);
881 
882 	load_cr3(swapper_pg_dir);
883 	/*
884 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
885 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
886 	 * will not flush anything because the cpu quirk which clears
887 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
888 	 * load_cr3() above the TLB has been flushed already. The
889 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
890 	 * so proper operation is guaranteed.
891 	 */
892 	__flush_tlb_all();
893 #else
894 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
895 #endif
896 
897 	/*
898 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
899 	 * reserve_top(), so do this before touching the ioremap area.
900 	 */
901 	olpc_ofw_detect();
902 
903 	idt_setup_early_traps();
904 	early_cpu_init();
905 	early_ioremap_init();
906 
907 	setup_olpc_ofw_pgd();
908 
909 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
910 	screen_info = boot_params.screen_info;
911 	edid_info = boot_params.edid_info;
912 #ifdef CONFIG_X86_32
913 	apm_info.bios = boot_params.apm_bios_info;
914 	ist_info = boot_params.ist_info;
915 #endif
916 	saved_video_mode = boot_params.hdr.vid_mode;
917 	bootloader_type = boot_params.hdr.type_of_loader;
918 	if ((bootloader_type >> 4) == 0xe) {
919 		bootloader_type &= 0xf;
920 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
921 	}
922 	bootloader_version  = bootloader_type & 0xf;
923 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
924 
925 #ifdef CONFIG_BLK_DEV_RAM
926 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
927 	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
928 	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
929 #endif
930 #ifdef CONFIG_EFI
931 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
932 		     EFI32_LOADER_SIGNATURE, 4)) {
933 		set_bit(EFI_BOOT, &efi.flags);
934 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
935 		     EFI64_LOADER_SIGNATURE, 4)) {
936 		set_bit(EFI_BOOT, &efi.flags);
937 		set_bit(EFI_64BIT, &efi.flags);
938 	}
939 
940 	if (efi_enabled(EFI_BOOT))
941 		efi_memblock_x86_reserve_range();
942 #endif
943 
944 	x86_init.oem.arch_setup();
945 
946 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
947 	e820__memory_setup();
948 	parse_setup_data();
949 
950 	copy_edd();
951 
952 	if (!boot_params.hdr.root_flags)
953 		root_mountflags &= ~MS_RDONLY;
954 	init_mm.start_code = (unsigned long) _text;
955 	init_mm.end_code = (unsigned long) _etext;
956 	init_mm.end_data = (unsigned long) _edata;
957 	init_mm.brk = _brk_end;
958 
959 	mpx_mm_init(&init_mm);
960 
961 	code_resource.start = __pa_symbol(_text);
962 	code_resource.end = __pa_symbol(_etext)-1;
963 	data_resource.start = __pa_symbol(_etext);
964 	data_resource.end = __pa_symbol(_edata)-1;
965 	bss_resource.start = __pa_symbol(__bss_start);
966 	bss_resource.end = __pa_symbol(__bss_stop)-1;
967 
968 #ifdef CONFIG_CMDLINE_BOOL
969 #ifdef CONFIG_CMDLINE_OVERRIDE
970 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
971 #else
972 	if (builtin_cmdline[0]) {
973 		/* append boot loader cmdline to builtin */
974 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
975 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
976 		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
977 	}
978 #endif
979 #endif
980 
981 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
982 	*cmdline_p = command_line;
983 
984 	/*
985 	 * x86_configure_nx() is called before parse_early_param() to detect
986 	 * whether hardware doesn't support NX (so that the early EHCI debug
987 	 * console setup can safely call set_fixmap()). It may then be called
988 	 * again from within noexec_setup() during parsing early parameters
989 	 * to honor the respective command line option.
990 	 */
991 	x86_configure_nx();
992 
993 	parse_early_param();
994 
995 #ifdef CONFIG_MEMORY_HOTPLUG
996 	/*
997 	 * Memory used by the kernel cannot be hot-removed because Linux
998 	 * cannot migrate the kernel pages. When memory hotplug is
999 	 * enabled, we should prevent memblock from allocating memory
1000 	 * for the kernel.
1001 	 *
1002 	 * ACPI SRAT records all hotpluggable memory ranges. But before
1003 	 * SRAT is parsed, we don't know about it.
1004 	 *
1005 	 * The kernel image is loaded into memory at very early time. We
1006 	 * cannot prevent this anyway. So on NUMA system, we set any
1007 	 * node the kernel resides in as un-hotpluggable.
1008 	 *
1009 	 * Since on modern servers, one node could have double-digit
1010 	 * gigabytes memory, we can assume the memory around the kernel
1011 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1012 	 * allocate memory near the kernel image to try the best to keep
1013 	 * the kernel away from hotpluggable memory.
1014 	 */
1015 	if (movable_node_is_enabled())
1016 		memblock_set_bottom_up(true);
1017 #endif
1018 
1019 	x86_report_nx();
1020 
1021 	/* after early param, so could get panic from serial */
1022 	memblock_x86_reserve_range_setup_data();
1023 
1024 	if (acpi_mps_check()) {
1025 #ifdef CONFIG_X86_LOCAL_APIC
1026 		disable_apic = 1;
1027 #endif
1028 		setup_clear_cpu_cap(X86_FEATURE_APIC);
1029 	}
1030 
1031 #ifdef CONFIG_PCI
1032 	if (pci_early_dump_regs)
1033 		early_dump_pci_devices();
1034 #endif
1035 
1036 	e820__reserve_setup_data();
1037 	e820__finish_early_params();
1038 
1039 	if (efi_enabled(EFI_BOOT))
1040 		efi_init();
1041 
1042 	dmi_scan_machine();
1043 	dmi_memdev_walk();
1044 	dmi_set_dump_stack_arch_desc();
1045 
1046 	/*
1047 	 * VMware detection requires dmi to be available, so this
1048 	 * needs to be done after dmi_scan_machine, for the BP.
1049 	 */
1050 	init_hypervisor_platform();
1051 
1052 	simple_udelay_calibration();
1053 
1054 	x86_init.resources.probe_roms();
1055 
1056 	/* after parse_early_param, so could debug it */
1057 	insert_resource(&iomem_resource, &code_resource);
1058 	insert_resource(&iomem_resource, &data_resource);
1059 	insert_resource(&iomem_resource, &bss_resource);
1060 
1061 	e820_add_kernel_range();
1062 	trim_bios_range();
1063 #ifdef CONFIG_X86_32
1064 	if (ppro_with_ram_bug()) {
1065 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1066 				  E820_TYPE_RESERVED);
1067 		e820__update_table(e820_table);
1068 		printk(KERN_INFO "fixed physical RAM map:\n");
1069 		e820__print_table("bad_ppro");
1070 	}
1071 #else
1072 	early_gart_iommu_check();
1073 #endif
1074 
1075 	/*
1076 	 * partially used pages are not usable - thus
1077 	 * we are rounding upwards:
1078 	 */
1079 	max_pfn = e820__end_of_ram_pfn();
1080 
1081 	/* update e820 for memory not covered by WB MTRRs */
1082 	mtrr_bp_init();
1083 	if (mtrr_trim_uncached_memory(max_pfn))
1084 		max_pfn = e820__end_of_ram_pfn();
1085 
1086 	max_possible_pfn = max_pfn;
1087 
1088 	/*
1089 	 * This call is required when the CPU does not support PAT. If
1090 	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1091 	 * effect.
1092 	 */
1093 	init_cache_modes();
1094 
1095 	/*
1096 	 * Define random base addresses for memory sections after max_pfn is
1097 	 * defined and before each memory section base is used.
1098 	 */
1099 	kernel_randomize_memory();
1100 
1101 #ifdef CONFIG_X86_32
1102 	/* max_low_pfn get updated here */
1103 	find_low_pfn_range();
1104 #else
1105 	check_x2apic();
1106 
1107 	/* How many end-of-memory variables you have, grandma! */
1108 	/* need this before calling reserve_initrd */
1109 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1110 		max_low_pfn = e820__end_of_low_ram_pfn();
1111 	else
1112 		max_low_pfn = max_pfn;
1113 
1114 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1115 #endif
1116 
1117 	/*
1118 	 * Find and reserve possible boot-time SMP configuration:
1119 	 */
1120 	find_smp_config();
1121 
1122 	reserve_ibft_region();
1123 
1124 	early_alloc_pgt_buf();
1125 
1126 	/*
1127 	 * Need to conclude brk, before e820__memblock_setup()
1128 	 *  it could use memblock_find_in_range, could overlap with
1129 	 *  brk area.
1130 	 */
1131 	reserve_brk();
1132 
1133 	cleanup_highmap();
1134 
1135 	memblock_set_current_limit(ISA_END_ADDRESS);
1136 	e820__memblock_setup();
1137 
1138 	if (!early_xdbc_setup_hardware())
1139 		early_xdbc_register_console();
1140 
1141 	reserve_bios_regions();
1142 
1143 	if (efi_enabled(EFI_MEMMAP)) {
1144 		efi_fake_memmap();
1145 		efi_find_mirror();
1146 		efi_esrt_init();
1147 
1148 		/*
1149 		 * The EFI specification says that boot service code won't be
1150 		 * called after ExitBootServices(). This is, in fact, a lie.
1151 		 */
1152 		efi_reserve_boot_services();
1153 	}
1154 
1155 	/* preallocate 4k for mptable mpc */
1156 	e820__memblock_alloc_reserved_mpc_new();
1157 
1158 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1159 	setup_bios_corruption_check();
1160 #endif
1161 
1162 #ifdef CONFIG_X86_32
1163 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1164 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1165 #endif
1166 
1167 	reserve_real_mode();
1168 
1169 	trim_platform_memory_ranges();
1170 	trim_low_memory_range();
1171 
1172 	init_mem_mapping();
1173 
1174 	idt_setup_early_pf();
1175 
1176 	/*
1177 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1178 	 * with the current CR4 value.  This may not be necessary, but
1179 	 * auditing all the early-boot CR4 manipulation would be needed to
1180 	 * rule it out.
1181 	 *
1182 	 * Mask off features that don't work outside long mode (just
1183 	 * PCIDE for now).
1184 	 */
1185 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1186 
1187 	memblock_set_current_limit(get_max_mapped());
1188 
1189 	/*
1190 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1191 	 */
1192 
1193 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1194 	if (init_ohci1394_dma_early)
1195 		init_ohci1394_dma_on_all_controllers();
1196 #endif
1197 	/* Allocate bigger log buffer */
1198 	setup_log_buf(1);
1199 
1200 	if (efi_enabled(EFI_BOOT)) {
1201 		switch (boot_params.secure_boot) {
1202 		case efi_secureboot_mode_disabled:
1203 			pr_info("Secure boot disabled\n");
1204 			break;
1205 		case efi_secureboot_mode_enabled:
1206 			pr_info("Secure boot enabled\n");
1207 			break;
1208 		default:
1209 			pr_info("Secure boot could not be determined\n");
1210 			break;
1211 		}
1212 	}
1213 
1214 	reserve_initrd();
1215 
1216 	acpi_table_upgrade();
1217 
1218 	vsmp_init();
1219 
1220 	io_delay_init();
1221 
1222 	early_platform_quirks();
1223 
1224 	/*
1225 	 * Parse the ACPI tables for possible boot-time SMP configuration.
1226 	 */
1227 	acpi_boot_table_init();
1228 
1229 	early_acpi_boot_init();
1230 
1231 	initmem_init();
1232 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1233 
1234 	/*
1235 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1236 	 * won't consume hotpluggable memory.
1237 	 */
1238 	reserve_crashkernel();
1239 
1240 	memblock_find_dma_reserve();
1241 
1242 #ifdef CONFIG_KVM_GUEST
1243 	kvmclock_init();
1244 #endif
1245 
1246 	x86_init.paging.pagetable_init();
1247 
1248 	kasan_init();
1249 
1250 #ifdef CONFIG_X86_32
1251 	/* sync back kernel address range */
1252 	clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1253 			swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1254 			KERNEL_PGD_PTRS);
1255 
1256 	/*
1257 	 * sync back low identity map too.  It is used for example
1258 	 * in the 32-bit EFI stub.
1259 	 */
1260 	clone_pgd_range(initial_page_table,
1261 			swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1262 			min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1263 #endif
1264 
1265 	tboot_probe();
1266 
1267 	map_vsyscall();
1268 
1269 	generic_apic_probe();
1270 
1271 	early_quirks();
1272 
1273 	/*
1274 	 * Read APIC and some other early information from ACPI tables.
1275 	 */
1276 	acpi_boot_init();
1277 	sfi_init();
1278 	x86_dtb_init();
1279 
1280 	/*
1281 	 * get boot-time SMP configuration:
1282 	 */
1283 	get_smp_config();
1284 
1285 	/*
1286 	 * Systems w/o ACPI and mptables might not have it mapped the local
1287 	 * APIC yet, but prefill_possible_map() might need to access it.
1288 	 */
1289 	init_apic_mappings();
1290 
1291 	prefill_possible_map();
1292 
1293 	init_cpu_to_node();
1294 
1295 	io_apic_init_mappings();
1296 
1297 	kvm_guest_init();
1298 
1299 	e820__reserve_resources();
1300 	e820__register_nosave_regions(max_low_pfn);
1301 
1302 	x86_init.resources.reserve_resources();
1303 
1304 	e820__setup_pci_gap();
1305 
1306 #ifdef CONFIG_VT
1307 #if defined(CONFIG_VGA_CONSOLE)
1308 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1309 		conswitchp = &vga_con;
1310 #elif defined(CONFIG_DUMMY_CONSOLE)
1311 	conswitchp = &dummy_con;
1312 #endif
1313 #endif
1314 	x86_init.oem.banner();
1315 
1316 	x86_init.timers.wallclock_init();
1317 
1318 	mcheck_init();
1319 
1320 	arch_init_ideal_nops();
1321 
1322 	register_refined_jiffies(CLOCK_TICK_RATE);
1323 
1324 #ifdef CONFIG_EFI
1325 	if (efi_enabled(EFI_BOOT))
1326 		efi_apply_memmap_quirks();
1327 #endif
1328 
1329 	unwind_init();
1330 }
1331 
1332 #ifdef CONFIG_X86_32
1333 
1334 static struct resource video_ram_resource = {
1335 	.name	= "Video RAM area",
1336 	.start	= 0xa0000,
1337 	.end	= 0xbffff,
1338 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1339 };
1340 
1341 void __init i386_reserve_resources(void)
1342 {
1343 	request_resource(&iomem_resource, &video_ram_resource);
1344 	reserve_standard_io_resources();
1345 }
1346 
1347 #endif /* CONFIG_X86_32 */
1348 
1349 static struct notifier_block kernel_offset_notifier = {
1350 	.notifier_call = dump_kernel_offset
1351 };
1352 
1353 static int __init register_kernel_offset_dumper(void)
1354 {
1355 	atomic_notifier_chain_register(&panic_notifier_list,
1356 					&kernel_offset_notifier);
1357 	return 0;
1358 }
1359 __initcall(register_kernel_offset_dumper);
1360 
1361 void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1362 {
1363 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
1364 		return;
1365 
1366 	seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1367 }
1368