xref: /openbmc/linux/arch/x86/kernel/setup.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  * This file contains the setup_arch() code, which handles the architecture-dependent
6  * parts of early kernel initialization.
7  */
8 #include <linux/console.h>
9 #include <linux/crash_dump.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/dmi.h>
12 #include <linux/efi.h>
13 #include <linux/init_ohci1394_dma.h>
14 #include <linux/initrd.h>
15 #include <linux/iscsi_ibft.h>
16 #include <linux/memblock.h>
17 #include <linux/panic_notifier.h>
18 #include <linux/pci.h>
19 #include <linux/root_dev.h>
20 #include <linux/hugetlb.h>
21 #include <linux/tboot.h>
22 #include <linux/usb/xhci-dbgp.h>
23 #include <linux/static_call.h>
24 #include <linux/swiotlb.h>
25 
26 #include <uapi/linux/mount.h>
27 
28 #include <xen/xen.h>
29 
30 #include <asm/apic.h>
31 #include <asm/numa.h>
32 #include <asm/bios_ebda.h>
33 #include <asm/bugs.h>
34 #include <asm/cpu.h>
35 #include <asm/efi.h>
36 #include <asm/gart.h>
37 #include <asm/hypervisor.h>
38 #include <asm/io_apic.h>
39 #include <asm/kasan.h>
40 #include <asm/kaslr.h>
41 #include <asm/mce.h>
42 #include <asm/mtrr.h>
43 #include <asm/realmode.h>
44 #include <asm/olpc_ofw.h>
45 #include <asm/pci-direct.h>
46 #include <asm/prom.h>
47 #include <asm/proto.h>
48 #include <asm/thermal.h>
49 #include <asm/unwind.h>
50 #include <asm/vsyscall.h>
51 #include <linux/vmalloc.h>
52 
53 /*
54  * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
55  * max_pfn_mapped:     highest directly mapped pfn > 4 GB
56  *
57  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
58  * represented by pfn_mapped[].
59  */
60 unsigned long max_low_pfn_mapped;
61 unsigned long max_pfn_mapped;
62 
63 #ifdef CONFIG_DMI
64 RESERVE_BRK(dmi_alloc, 65536);
65 #endif
66 
67 
68 /*
69  * Range of the BSS area. The size of the BSS area is determined
70  * at link time, with RESERVE_BRK() facility reserving additional
71  * chunks.
72  */
73 unsigned long _brk_start = (unsigned long)__brk_base;
74 unsigned long _brk_end   = (unsigned long)__brk_base;
75 
76 struct boot_params boot_params;
77 
78 /*
79  * These are the four main kernel memory regions, we put them into
80  * the resource tree so that kdump tools and other debugging tools
81  * recover it:
82  */
83 
84 static struct resource rodata_resource = {
85 	.name	= "Kernel rodata",
86 	.start	= 0,
87 	.end	= 0,
88 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
89 };
90 
91 static struct resource data_resource = {
92 	.name	= "Kernel data",
93 	.start	= 0,
94 	.end	= 0,
95 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
96 };
97 
98 static struct resource code_resource = {
99 	.name	= "Kernel code",
100 	.start	= 0,
101 	.end	= 0,
102 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
103 };
104 
105 static struct resource bss_resource = {
106 	.name	= "Kernel bss",
107 	.start	= 0,
108 	.end	= 0,
109 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
110 };
111 
112 
113 #ifdef CONFIG_X86_32
114 /* CPU data as detected by the assembly code in head_32.S */
115 struct cpuinfo_x86 new_cpu_data;
116 
117 /* Common CPU data for all CPUs */
118 struct cpuinfo_x86 boot_cpu_data __read_mostly;
119 EXPORT_SYMBOL(boot_cpu_data);
120 
121 unsigned int def_to_bigsmp;
122 
123 struct apm_info apm_info;
124 EXPORT_SYMBOL(apm_info);
125 
126 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
127 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
128 struct ist_info ist_info;
129 EXPORT_SYMBOL(ist_info);
130 #else
131 struct ist_info ist_info;
132 #endif
133 
134 #else
135 struct cpuinfo_x86 boot_cpu_data __read_mostly;
136 EXPORT_SYMBOL(boot_cpu_data);
137 #endif
138 
139 
140 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
141 __visible unsigned long mmu_cr4_features __ro_after_init;
142 #else
143 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
144 #endif
145 
146 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
147 int bootloader_type, bootloader_version;
148 
149 /*
150  * Setup options
151  */
152 struct screen_info screen_info;
153 EXPORT_SYMBOL(screen_info);
154 struct edid_info edid_info;
155 EXPORT_SYMBOL_GPL(edid_info);
156 
157 extern int root_mountflags;
158 
159 unsigned long saved_video_mode;
160 
161 #define RAMDISK_IMAGE_START_MASK	0x07FF
162 #define RAMDISK_PROMPT_FLAG		0x8000
163 #define RAMDISK_LOAD_FLAG		0x4000
164 
165 static char __initdata command_line[COMMAND_LINE_SIZE];
166 #ifdef CONFIG_CMDLINE_BOOL
167 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
168 #endif
169 
170 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
171 struct edd edd;
172 #ifdef CONFIG_EDD_MODULE
173 EXPORT_SYMBOL(edd);
174 #endif
175 /**
176  * copy_edd() - Copy the BIOS EDD information
177  *              from boot_params into a safe place.
178  *
179  */
180 static inline void __init copy_edd(void)
181 {
182      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
183 	    sizeof(edd.mbr_signature));
184      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
185      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
186      edd.edd_info_nr = boot_params.eddbuf_entries;
187 }
188 #else
189 static inline void __init copy_edd(void)
190 {
191 }
192 #endif
193 
194 void * __init extend_brk(size_t size, size_t align)
195 {
196 	size_t mask = align - 1;
197 	void *ret;
198 
199 	BUG_ON(_brk_start == 0);
200 	BUG_ON(align & mask);
201 
202 	_brk_end = (_brk_end + mask) & ~mask;
203 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
204 
205 	ret = (void *)_brk_end;
206 	_brk_end += size;
207 
208 	memset(ret, 0, size);
209 
210 	return ret;
211 }
212 
213 #ifdef CONFIG_X86_32
214 static void __init cleanup_highmap(void)
215 {
216 }
217 #endif
218 
219 static void __init reserve_brk(void)
220 {
221 	if (_brk_end > _brk_start)
222 		memblock_reserve(__pa_symbol(_brk_start),
223 				 _brk_end - _brk_start);
224 
225 	/* Mark brk area as locked down and no longer taking any
226 	   new allocations */
227 	_brk_start = 0;
228 }
229 
230 u64 relocated_ramdisk;
231 
232 #ifdef CONFIG_BLK_DEV_INITRD
233 
234 static u64 __init get_ramdisk_image(void)
235 {
236 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
237 
238 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
239 
240 	if (ramdisk_image == 0)
241 		ramdisk_image = phys_initrd_start;
242 
243 	return ramdisk_image;
244 }
245 static u64 __init get_ramdisk_size(void)
246 {
247 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
248 
249 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
250 
251 	if (ramdisk_size == 0)
252 		ramdisk_size = phys_initrd_size;
253 
254 	return ramdisk_size;
255 }
256 
257 static void __init relocate_initrd(void)
258 {
259 	/* Assume only end is not page aligned */
260 	u64 ramdisk_image = get_ramdisk_image();
261 	u64 ramdisk_size  = get_ramdisk_size();
262 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
263 
264 	/* We need to move the initrd down into directly mapped mem */
265 	relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
266 						      PFN_PHYS(max_pfn_mapped));
267 	if (!relocated_ramdisk)
268 		panic("Cannot find place for new RAMDISK of size %lld\n",
269 		      ramdisk_size);
270 
271 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
272 	initrd_end   = initrd_start + ramdisk_size;
273 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
274 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
275 
276 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
277 
278 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
279 		" [mem %#010llx-%#010llx]\n",
280 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
281 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
282 }
283 
284 static void __init early_reserve_initrd(void)
285 {
286 	/* Assume only end is not page aligned */
287 	u64 ramdisk_image = get_ramdisk_image();
288 	u64 ramdisk_size  = get_ramdisk_size();
289 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
290 
291 	if (!boot_params.hdr.type_of_loader ||
292 	    !ramdisk_image || !ramdisk_size)
293 		return;		/* No initrd provided by bootloader */
294 
295 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
296 }
297 
298 static void __init reserve_initrd(void)
299 {
300 	/* Assume only end is not page aligned */
301 	u64 ramdisk_image = get_ramdisk_image();
302 	u64 ramdisk_size  = get_ramdisk_size();
303 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
304 
305 	if (!boot_params.hdr.type_of_loader ||
306 	    !ramdisk_image || !ramdisk_size)
307 		return;		/* No initrd provided by bootloader */
308 
309 	initrd_start = 0;
310 
311 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
312 			ramdisk_end - 1);
313 
314 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
315 				PFN_DOWN(ramdisk_end))) {
316 		/* All are mapped, easy case */
317 		initrd_start = ramdisk_image + PAGE_OFFSET;
318 		initrd_end = initrd_start + ramdisk_size;
319 		return;
320 	}
321 
322 	relocate_initrd();
323 
324 	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
325 }
326 
327 #else
328 static void __init early_reserve_initrd(void)
329 {
330 }
331 static void __init reserve_initrd(void)
332 {
333 }
334 #endif /* CONFIG_BLK_DEV_INITRD */
335 
336 static void __init parse_setup_data(void)
337 {
338 	struct setup_data *data;
339 	u64 pa_data, pa_next;
340 
341 	pa_data = boot_params.hdr.setup_data;
342 	while (pa_data) {
343 		u32 data_len, data_type;
344 
345 		data = early_memremap(pa_data, sizeof(*data));
346 		data_len = data->len + sizeof(struct setup_data);
347 		data_type = data->type;
348 		pa_next = data->next;
349 		early_memunmap(data, sizeof(*data));
350 
351 		switch (data_type) {
352 		case SETUP_E820_EXT:
353 			e820__memory_setup_extended(pa_data, data_len);
354 			break;
355 		case SETUP_DTB:
356 			add_dtb(pa_data);
357 			break;
358 		case SETUP_EFI:
359 			parse_efi_setup(pa_data, data_len);
360 			break;
361 		default:
362 			break;
363 		}
364 		pa_data = pa_next;
365 	}
366 }
367 
368 static void __init memblock_x86_reserve_range_setup_data(void)
369 {
370 	struct setup_data *data;
371 	u64 pa_data;
372 
373 	pa_data = boot_params.hdr.setup_data;
374 	while (pa_data) {
375 		data = early_memremap(pa_data, sizeof(*data));
376 		memblock_reserve(pa_data, sizeof(*data) + data->len);
377 
378 		if (data->type == SETUP_INDIRECT &&
379 		    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
380 			memblock_reserve(((struct setup_indirect *)data->data)->addr,
381 					 ((struct setup_indirect *)data->data)->len);
382 
383 		pa_data = data->next;
384 		early_memunmap(data, sizeof(*data));
385 	}
386 }
387 
388 /*
389  * --------- Crashkernel reservation ------------------------------
390  */
391 
392 #ifdef CONFIG_KEXEC_CORE
393 
394 /* 16M alignment for crash kernel regions */
395 #define CRASH_ALIGN		SZ_16M
396 
397 /*
398  * Keep the crash kernel below this limit.
399  *
400  * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
401  * due to mapping restrictions.
402  *
403  * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
404  * the upper limit of system RAM in 4-level paging mode. Since the kdump
405  * jump could be from 5-level paging to 4-level paging, the jump will fail if
406  * the kernel is put above 64 TB, and during the 1st kernel bootup there's
407  * no good way to detect the paging mode of the target kernel which will be
408  * loaded for dumping.
409  */
410 #ifdef CONFIG_X86_32
411 # define CRASH_ADDR_LOW_MAX	SZ_512M
412 # define CRASH_ADDR_HIGH_MAX	SZ_512M
413 #else
414 # define CRASH_ADDR_LOW_MAX	SZ_4G
415 # define CRASH_ADDR_HIGH_MAX	SZ_64T
416 #endif
417 
418 static int __init reserve_crashkernel_low(void)
419 {
420 #ifdef CONFIG_X86_64
421 	unsigned long long base, low_base = 0, low_size = 0;
422 	unsigned long low_mem_limit;
423 	int ret;
424 
425 	low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
426 
427 	/* crashkernel=Y,low */
428 	ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
429 	if (ret) {
430 		/*
431 		 * two parts from kernel/dma/swiotlb.c:
432 		 * -swiotlb size: user-specified with swiotlb= or default.
433 		 *
434 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
435 		 * to 8M for other buffers that may need to stay low too. Also
436 		 * make sure we allocate enough extra low memory so that we
437 		 * don't run out of DMA buffers for 32-bit devices.
438 		 */
439 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
440 	} else {
441 		/* passed with crashkernel=0,low ? */
442 		if (!low_size)
443 			return 0;
444 	}
445 
446 	low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
447 	if (!low_base) {
448 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
449 		       (unsigned long)(low_size >> 20));
450 		return -ENOMEM;
451 	}
452 
453 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
454 		(unsigned long)(low_size >> 20),
455 		(unsigned long)(low_base >> 20),
456 		(unsigned long)(low_mem_limit >> 20));
457 
458 	crashk_low_res.start = low_base;
459 	crashk_low_res.end   = low_base + low_size - 1;
460 	insert_resource(&iomem_resource, &crashk_low_res);
461 #endif
462 	return 0;
463 }
464 
465 static void __init reserve_crashkernel(void)
466 {
467 	unsigned long long crash_size, crash_base, total_mem;
468 	bool high = false;
469 	int ret;
470 
471 	total_mem = memblock_phys_mem_size();
472 
473 	/* crashkernel=XM */
474 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
475 	if (ret != 0 || crash_size <= 0) {
476 		/* crashkernel=X,high */
477 		ret = parse_crashkernel_high(boot_command_line, total_mem,
478 					     &crash_size, &crash_base);
479 		if (ret != 0 || crash_size <= 0)
480 			return;
481 		high = true;
482 	}
483 
484 	if (xen_pv_domain()) {
485 		pr_info("Ignoring crashkernel for a Xen PV domain\n");
486 		return;
487 	}
488 
489 	/* 0 means: find the address automatically */
490 	if (!crash_base) {
491 		/*
492 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
493 		 * crashkernel=x,high reserves memory over 4G, also allocates
494 		 * 256M extra low memory for DMA buffers and swiotlb.
495 		 * But the extra memory is not required for all machines.
496 		 * So try low memory first and fall back to high memory
497 		 * unless "crashkernel=size[KMG],high" is specified.
498 		 */
499 		if (!high)
500 			crash_base = memblock_phys_alloc_range(crash_size,
501 						CRASH_ALIGN, CRASH_ALIGN,
502 						CRASH_ADDR_LOW_MAX);
503 		if (!crash_base)
504 			crash_base = memblock_phys_alloc_range(crash_size,
505 						CRASH_ALIGN, CRASH_ALIGN,
506 						CRASH_ADDR_HIGH_MAX);
507 		if (!crash_base) {
508 			pr_info("crashkernel reservation failed - No suitable area found.\n");
509 			return;
510 		}
511 	} else {
512 		unsigned long long start;
513 
514 		start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
515 						  crash_base + crash_size);
516 		if (start != crash_base) {
517 			pr_info("crashkernel reservation failed - memory is in use.\n");
518 			return;
519 		}
520 	}
521 
522 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
523 		memblock_free(crash_base, crash_size);
524 		return;
525 	}
526 
527 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
528 		(unsigned long)(crash_size >> 20),
529 		(unsigned long)(crash_base >> 20),
530 		(unsigned long)(total_mem >> 20));
531 
532 	crashk_res.start = crash_base;
533 	crashk_res.end   = crash_base + crash_size - 1;
534 	insert_resource(&iomem_resource, &crashk_res);
535 }
536 #else
537 static void __init reserve_crashkernel(void)
538 {
539 }
540 #endif
541 
542 static struct resource standard_io_resources[] = {
543 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
544 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
545 	{ .name = "pic1", .start = 0x20, .end = 0x21,
546 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
547 	{ .name = "timer0", .start = 0x40, .end = 0x43,
548 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
549 	{ .name = "timer1", .start = 0x50, .end = 0x53,
550 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
551 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
552 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
553 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
554 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
555 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
556 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
557 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
558 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
559 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
560 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
561 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
562 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
563 };
564 
565 void __init reserve_standard_io_resources(void)
566 {
567 	int i;
568 
569 	/* request I/O space for devices used on all i[345]86 PCs */
570 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
571 		request_resource(&ioport_resource, &standard_io_resources[i]);
572 
573 }
574 
575 static __init void reserve_ibft_region(void)
576 {
577 	unsigned long addr, size = 0;
578 
579 	addr = find_ibft_region(&size);
580 
581 	if (size)
582 		memblock_reserve(addr, size);
583 }
584 
585 static bool __init snb_gfx_workaround_needed(void)
586 {
587 #ifdef CONFIG_PCI
588 	int i;
589 	u16 vendor, devid;
590 	static const __initconst u16 snb_ids[] = {
591 		0x0102,
592 		0x0112,
593 		0x0122,
594 		0x0106,
595 		0x0116,
596 		0x0126,
597 		0x010a,
598 	};
599 
600 	/* Assume no if something weird is going on with PCI */
601 	if (!early_pci_allowed())
602 		return false;
603 
604 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
605 	if (vendor != 0x8086)
606 		return false;
607 
608 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
609 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
610 		if (devid == snb_ids[i])
611 			return true;
612 #endif
613 
614 	return false;
615 }
616 
617 /*
618  * Sandy Bridge graphics has trouble with certain ranges, exclude
619  * them from allocation.
620  */
621 static void __init trim_snb_memory(void)
622 {
623 	static const __initconst unsigned long bad_pages[] = {
624 		0x20050000,
625 		0x20110000,
626 		0x20130000,
627 		0x20138000,
628 		0x40004000,
629 	};
630 	int i;
631 
632 	if (!snb_gfx_workaround_needed())
633 		return;
634 
635 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
636 
637 	/*
638 	 * SandyBridge integrated graphics devices have a bug that prevents
639 	 * them from accessing certain memory ranges, namely anything below
640 	 * 1M and in the pages listed in bad_pages[] above.
641 	 *
642 	 * To avoid these pages being ever accessed by SNB gfx devices reserve
643 	 * bad_pages that have not already been reserved at boot time.
644 	 * All memory below the 1 MB mark is anyway reserved later during
645 	 * setup_arch(), so there is no need to reserve it here.
646 	 */
647 
648 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
649 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
650 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
651 			       bad_pages[i]);
652 	}
653 }
654 
655 static void __init trim_bios_range(void)
656 {
657 	/*
658 	 * A special case is the first 4Kb of memory;
659 	 * This is a BIOS owned area, not kernel ram, but generally
660 	 * not listed as such in the E820 table.
661 	 *
662 	 * This typically reserves additional memory (64KiB by default)
663 	 * since some BIOSes are known to corrupt low memory.  See the
664 	 * Kconfig help text for X86_RESERVE_LOW.
665 	 */
666 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
667 
668 	/*
669 	 * special case: Some BIOSes report the PC BIOS
670 	 * area (640Kb -> 1Mb) as RAM even though it is not.
671 	 * take them out.
672 	 */
673 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
674 
675 	e820__update_table(e820_table);
676 }
677 
678 /* called before trim_bios_range() to spare extra sanitize */
679 static void __init e820_add_kernel_range(void)
680 {
681 	u64 start = __pa_symbol(_text);
682 	u64 size = __pa_symbol(_end) - start;
683 
684 	/*
685 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
686 	 * attempt to fix it by adding the range. We may have a confused BIOS,
687 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
688 	 * exclude kernel range. If we really are running on top non-RAM,
689 	 * we will crash later anyways.
690 	 */
691 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
692 		return;
693 
694 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
695 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
696 	e820__range_add(start, size, E820_TYPE_RAM);
697 }
698 
699 static void __init early_reserve_memory(void)
700 {
701 	/*
702 	 * Reserve the memory occupied by the kernel between _text and
703 	 * __end_of_kernel_reserve symbols. Any kernel sections after the
704 	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
705 	 * separate memblock_reserve() or they will be discarded.
706 	 */
707 	memblock_reserve(__pa_symbol(_text),
708 			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
709 
710 	/*
711 	 * The first 4Kb of memory is a BIOS owned area, but generally it is
712 	 * not listed as such in the E820 table.
713 	 *
714 	 * Reserve the first 64K of memory since some BIOSes are known to
715 	 * corrupt low memory. After the real mode trampoline is allocated the
716 	 * rest of the memory below 640k is reserved.
717 	 *
718 	 * In addition, make sure page 0 is always reserved because on
719 	 * systems with L1TF its contents can be leaked to user processes.
720 	 */
721 	memblock_reserve(0, SZ_64K);
722 
723 	early_reserve_initrd();
724 
725 	if (efi_enabled(EFI_BOOT))
726 		efi_memblock_x86_reserve_range();
727 
728 	memblock_x86_reserve_range_setup_data();
729 
730 	reserve_ibft_region();
731 	reserve_bios_regions();
732 	trim_snb_memory();
733 }
734 
735 /*
736  * Dump out kernel offset information on panic.
737  */
738 static int
739 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
740 {
741 	if (kaslr_enabled()) {
742 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
743 			 kaslr_offset(),
744 			 __START_KERNEL,
745 			 __START_KERNEL_map,
746 			 MODULES_VADDR-1);
747 	} else {
748 		pr_emerg("Kernel Offset: disabled\n");
749 	}
750 
751 	return 0;
752 }
753 
754 /*
755  * Determine if we were loaded by an EFI loader.  If so, then we have also been
756  * passed the efi memmap, systab, etc., so we should use these data structures
757  * for initialization.  Note, the efi init code path is determined by the
758  * global efi_enabled. This allows the same kernel image to be used on existing
759  * systems (with a traditional BIOS) as well as on EFI systems.
760  */
761 /*
762  * setup_arch - architecture-specific boot-time initializations
763  *
764  * Note: On x86_64, fixmaps are ready for use even before this is called.
765  */
766 
767 void __init setup_arch(char **cmdline_p)
768 {
769 #ifdef CONFIG_X86_32
770 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
771 
772 	/*
773 	 * copy kernel address range established so far and switch
774 	 * to the proper swapper page table
775 	 */
776 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
777 			initial_page_table + KERNEL_PGD_BOUNDARY,
778 			KERNEL_PGD_PTRS);
779 
780 	load_cr3(swapper_pg_dir);
781 	/*
782 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
783 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
784 	 * will not flush anything because the CPU quirk which clears
785 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
786 	 * load_cr3() above the TLB has been flushed already. The
787 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
788 	 * so proper operation is guaranteed.
789 	 */
790 	__flush_tlb_all();
791 #else
792 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
793 	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
794 #endif
795 
796 	/*
797 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
798 	 * reserve_top(), so do this before touching the ioremap area.
799 	 */
800 	olpc_ofw_detect();
801 
802 	idt_setup_early_traps();
803 	early_cpu_init();
804 	jump_label_init();
805 	static_call_init();
806 	early_ioremap_init();
807 
808 	setup_olpc_ofw_pgd();
809 
810 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
811 	screen_info = boot_params.screen_info;
812 	edid_info = boot_params.edid_info;
813 #ifdef CONFIG_X86_32
814 	apm_info.bios = boot_params.apm_bios_info;
815 	ist_info = boot_params.ist_info;
816 #endif
817 	saved_video_mode = boot_params.hdr.vid_mode;
818 	bootloader_type = boot_params.hdr.type_of_loader;
819 	if ((bootloader_type >> 4) == 0xe) {
820 		bootloader_type &= 0xf;
821 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
822 	}
823 	bootloader_version  = bootloader_type & 0xf;
824 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
825 
826 #ifdef CONFIG_BLK_DEV_RAM
827 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
828 #endif
829 #ifdef CONFIG_EFI
830 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
831 		     EFI32_LOADER_SIGNATURE, 4)) {
832 		set_bit(EFI_BOOT, &efi.flags);
833 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
834 		     EFI64_LOADER_SIGNATURE, 4)) {
835 		set_bit(EFI_BOOT, &efi.flags);
836 		set_bit(EFI_64BIT, &efi.flags);
837 	}
838 #endif
839 
840 	x86_init.oem.arch_setup();
841 
842 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
843 	e820__memory_setup();
844 	parse_setup_data();
845 
846 	copy_edd();
847 
848 	if (!boot_params.hdr.root_flags)
849 		root_mountflags &= ~MS_RDONLY;
850 	setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
851 
852 	code_resource.start = __pa_symbol(_text);
853 	code_resource.end = __pa_symbol(_etext)-1;
854 	rodata_resource.start = __pa_symbol(__start_rodata);
855 	rodata_resource.end = __pa_symbol(__end_rodata)-1;
856 	data_resource.start = __pa_symbol(_sdata);
857 	data_resource.end = __pa_symbol(_edata)-1;
858 	bss_resource.start = __pa_symbol(__bss_start);
859 	bss_resource.end = __pa_symbol(__bss_stop)-1;
860 
861 #ifdef CONFIG_CMDLINE_BOOL
862 #ifdef CONFIG_CMDLINE_OVERRIDE
863 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
864 #else
865 	if (builtin_cmdline[0]) {
866 		/* append boot loader cmdline to builtin */
867 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
868 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
869 		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
870 	}
871 #endif
872 #endif
873 
874 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
875 	*cmdline_p = command_line;
876 
877 	/*
878 	 * x86_configure_nx() is called before parse_early_param() to detect
879 	 * whether hardware doesn't support NX (so that the early EHCI debug
880 	 * console setup can safely call set_fixmap()). It may then be called
881 	 * again from within noexec_setup() during parsing early parameters
882 	 * to honor the respective command line option.
883 	 */
884 	x86_configure_nx();
885 
886 	parse_early_param();
887 
888 	/*
889 	 * Do some memory reservations *before* memory is added to
890 	 * memblock, so memblock allocations won't overwrite it.
891 	 * Do it after early param, so we could get (unlikely) panic from
892 	 * serial.
893 	 *
894 	 * After this point everything still needed from the boot loader or
895 	 * firmware or kernel text should be early reserved or marked not
896 	 * RAM in e820. All other memory is free game.
897 	 */
898 	early_reserve_memory();
899 
900 #ifdef CONFIG_MEMORY_HOTPLUG
901 	/*
902 	 * Memory used by the kernel cannot be hot-removed because Linux
903 	 * cannot migrate the kernel pages. When memory hotplug is
904 	 * enabled, we should prevent memblock from allocating memory
905 	 * for the kernel.
906 	 *
907 	 * ACPI SRAT records all hotpluggable memory ranges. But before
908 	 * SRAT is parsed, we don't know about it.
909 	 *
910 	 * The kernel image is loaded into memory at very early time. We
911 	 * cannot prevent this anyway. So on NUMA system, we set any
912 	 * node the kernel resides in as un-hotpluggable.
913 	 *
914 	 * Since on modern servers, one node could have double-digit
915 	 * gigabytes memory, we can assume the memory around the kernel
916 	 * image is also un-hotpluggable. So before SRAT is parsed, just
917 	 * allocate memory near the kernel image to try the best to keep
918 	 * the kernel away from hotpluggable memory.
919 	 */
920 	if (movable_node_is_enabled())
921 		memblock_set_bottom_up(true);
922 #endif
923 
924 	x86_report_nx();
925 
926 	if (acpi_mps_check()) {
927 #ifdef CONFIG_X86_LOCAL_APIC
928 		disable_apic = 1;
929 #endif
930 		setup_clear_cpu_cap(X86_FEATURE_APIC);
931 	}
932 
933 	e820__reserve_setup_data();
934 	e820__finish_early_params();
935 
936 	if (efi_enabled(EFI_BOOT))
937 		efi_init();
938 
939 	dmi_setup();
940 
941 	/*
942 	 * VMware detection requires dmi to be available, so this
943 	 * needs to be done after dmi_setup(), for the boot CPU.
944 	 */
945 	init_hypervisor_platform();
946 
947 	tsc_early_init();
948 	x86_init.resources.probe_roms();
949 
950 	/* after parse_early_param, so could debug it */
951 	insert_resource(&iomem_resource, &code_resource);
952 	insert_resource(&iomem_resource, &rodata_resource);
953 	insert_resource(&iomem_resource, &data_resource);
954 	insert_resource(&iomem_resource, &bss_resource);
955 
956 	e820_add_kernel_range();
957 	trim_bios_range();
958 #ifdef CONFIG_X86_32
959 	if (ppro_with_ram_bug()) {
960 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
961 				  E820_TYPE_RESERVED);
962 		e820__update_table(e820_table);
963 		printk(KERN_INFO "fixed physical RAM map:\n");
964 		e820__print_table("bad_ppro");
965 	}
966 #else
967 	early_gart_iommu_check();
968 #endif
969 
970 	/*
971 	 * partially used pages are not usable - thus
972 	 * we are rounding upwards:
973 	 */
974 	max_pfn = e820__end_of_ram_pfn();
975 
976 	/* update e820 for memory not covered by WB MTRRs */
977 	mtrr_bp_init();
978 	if (mtrr_trim_uncached_memory(max_pfn))
979 		max_pfn = e820__end_of_ram_pfn();
980 
981 	max_possible_pfn = max_pfn;
982 
983 	/*
984 	 * This call is required when the CPU does not support PAT. If
985 	 * mtrr_bp_init() invoked it already via pat_init() the call has no
986 	 * effect.
987 	 */
988 	init_cache_modes();
989 
990 	/*
991 	 * Define random base addresses for memory sections after max_pfn is
992 	 * defined and before each memory section base is used.
993 	 */
994 	kernel_randomize_memory();
995 
996 #ifdef CONFIG_X86_32
997 	/* max_low_pfn get updated here */
998 	find_low_pfn_range();
999 #else
1000 	check_x2apic();
1001 
1002 	/* How many end-of-memory variables you have, grandma! */
1003 	/* need this before calling reserve_initrd */
1004 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1005 		max_low_pfn = e820__end_of_low_ram_pfn();
1006 	else
1007 		max_low_pfn = max_pfn;
1008 
1009 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1010 #endif
1011 
1012 	/*
1013 	 * Find and reserve possible boot-time SMP configuration:
1014 	 */
1015 	find_smp_config();
1016 
1017 	early_alloc_pgt_buf();
1018 
1019 	/*
1020 	 * Need to conclude brk, before e820__memblock_setup()
1021 	 * it could use memblock_find_in_range, could overlap with
1022 	 * brk area.
1023 	 */
1024 	reserve_brk();
1025 
1026 	cleanup_highmap();
1027 
1028 	memblock_set_current_limit(ISA_END_ADDRESS);
1029 	e820__memblock_setup();
1030 
1031 	/*
1032 	 * Needs to run after memblock setup because it needs the physical
1033 	 * memory size.
1034 	 */
1035 	sev_setup_arch();
1036 
1037 	efi_fake_memmap();
1038 	efi_find_mirror();
1039 	efi_esrt_init();
1040 	efi_mokvar_table_init();
1041 
1042 	/*
1043 	 * The EFI specification says that boot service code won't be
1044 	 * called after ExitBootServices(). This is, in fact, a lie.
1045 	 */
1046 	efi_reserve_boot_services();
1047 
1048 	/* preallocate 4k for mptable mpc */
1049 	e820__memblock_alloc_reserved_mpc_new();
1050 
1051 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1052 	setup_bios_corruption_check();
1053 #endif
1054 
1055 #ifdef CONFIG_X86_32
1056 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1057 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1058 #endif
1059 
1060 	/*
1061 	 * Find free memory for the real mode trampoline and place it there. If
1062 	 * there is not enough free memory under 1M, on EFI-enabled systems
1063 	 * there will be additional attempt to reclaim the memory for the real
1064 	 * mode trampoline at efi_free_boot_services().
1065 	 *
1066 	 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1067 	 * are known to corrupt low memory and several hundred kilobytes are not
1068 	 * worth complex detection what memory gets clobbered. Windows does the
1069 	 * same thing for very similar reasons.
1070 	 *
1071 	 * Moreover, on machines with SandyBridge graphics or in setups that use
1072 	 * crashkernel the entire 1M is reserved anyway.
1073 	 */
1074 	reserve_real_mode();
1075 
1076 	init_mem_mapping();
1077 
1078 	idt_setup_early_pf();
1079 
1080 	/*
1081 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1082 	 * with the current CR4 value.  This may not be necessary, but
1083 	 * auditing all the early-boot CR4 manipulation would be needed to
1084 	 * rule it out.
1085 	 *
1086 	 * Mask off features that don't work outside long mode (just
1087 	 * PCIDE for now).
1088 	 */
1089 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1090 
1091 	memblock_set_current_limit(get_max_mapped());
1092 
1093 	/*
1094 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1095 	 */
1096 
1097 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1098 	if (init_ohci1394_dma_early)
1099 		init_ohci1394_dma_on_all_controllers();
1100 #endif
1101 	/* Allocate bigger log buffer */
1102 	setup_log_buf(1);
1103 
1104 	if (efi_enabled(EFI_BOOT)) {
1105 		switch (boot_params.secure_boot) {
1106 		case efi_secureboot_mode_disabled:
1107 			pr_info("Secure boot disabled\n");
1108 			break;
1109 		case efi_secureboot_mode_enabled:
1110 			pr_info("Secure boot enabled\n");
1111 			break;
1112 		default:
1113 			pr_info("Secure boot could not be determined\n");
1114 			break;
1115 		}
1116 	}
1117 
1118 	reserve_initrd();
1119 
1120 	acpi_table_upgrade();
1121 	/* Look for ACPI tables and reserve memory occupied by them. */
1122 	acpi_boot_table_init();
1123 
1124 	vsmp_init();
1125 
1126 	io_delay_init();
1127 
1128 	early_platform_quirks();
1129 
1130 	early_acpi_boot_init();
1131 
1132 	initmem_init();
1133 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1134 
1135 	if (boot_cpu_has(X86_FEATURE_GBPAGES))
1136 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1137 
1138 	/*
1139 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1140 	 * won't consume hotpluggable memory.
1141 	 */
1142 	reserve_crashkernel();
1143 
1144 	memblock_find_dma_reserve();
1145 
1146 	if (!early_xdbc_setup_hardware())
1147 		early_xdbc_register_console();
1148 
1149 	x86_init.paging.pagetable_init();
1150 
1151 	kasan_init();
1152 
1153 	/*
1154 	 * Sync back kernel address range.
1155 	 *
1156 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1157 	 * this call?
1158 	 */
1159 	sync_initial_page_table();
1160 
1161 	tboot_probe();
1162 
1163 	map_vsyscall();
1164 
1165 	generic_apic_probe();
1166 
1167 	early_quirks();
1168 
1169 	/*
1170 	 * Read APIC and some other early information from ACPI tables.
1171 	 */
1172 	acpi_boot_init();
1173 	x86_dtb_init();
1174 
1175 	/*
1176 	 * get boot-time SMP configuration:
1177 	 */
1178 	get_smp_config();
1179 
1180 	/*
1181 	 * Systems w/o ACPI and mptables might not have it mapped the local
1182 	 * APIC yet, but prefill_possible_map() might need to access it.
1183 	 */
1184 	init_apic_mappings();
1185 
1186 	prefill_possible_map();
1187 
1188 	init_cpu_to_node();
1189 	init_gi_nodes();
1190 
1191 	io_apic_init_mappings();
1192 
1193 	x86_init.hyper.guest_late_init();
1194 
1195 	e820__reserve_resources();
1196 	e820__register_nosave_regions(max_pfn);
1197 
1198 	x86_init.resources.reserve_resources();
1199 
1200 	e820__setup_pci_gap();
1201 
1202 #ifdef CONFIG_VT
1203 #if defined(CONFIG_VGA_CONSOLE)
1204 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1205 		conswitchp = &vga_con;
1206 #endif
1207 #endif
1208 	x86_init.oem.banner();
1209 
1210 	x86_init.timers.wallclock_init();
1211 
1212 	/*
1213 	 * This needs to run before setup_local_APIC() which soft-disables the
1214 	 * local APIC temporarily and that masks the thermal LVT interrupt,
1215 	 * leading to softlockups on machines which have configured SMI
1216 	 * interrupt delivery.
1217 	 */
1218 	therm_lvt_init();
1219 
1220 	mcheck_init();
1221 
1222 	register_refined_jiffies(CLOCK_TICK_RATE);
1223 
1224 #ifdef CONFIG_EFI
1225 	if (efi_enabled(EFI_BOOT))
1226 		efi_apply_memmap_quirks();
1227 #endif
1228 
1229 	unwind_init();
1230 }
1231 
1232 #ifdef CONFIG_X86_32
1233 
1234 static struct resource video_ram_resource = {
1235 	.name	= "Video RAM area",
1236 	.start	= 0xa0000,
1237 	.end	= 0xbffff,
1238 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1239 };
1240 
1241 void __init i386_reserve_resources(void)
1242 {
1243 	request_resource(&iomem_resource, &video_ram_resource);
1244 	reserve_standard_io_resources();
1245 }
1246 
1247 #endif /* CONFIG_X86_32 */
1248 
1249 static struct notifier_block kernel_offset_notifier = {
1250 	.notifier_call = dump_kernel_offset
1251 };
1252 
1253 static int __init register_kernel_offset_dumper(void)
1254 {
1255 	atomic_notifier_chain_register(&panic_notifier_list,
1256 					&kernel_offset_notifier);
1257 	return 0;
1258 }
1259 __initcall(register_kernel_offset_dumper);
1260