1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * This file contains the setup_arch() code, which handles the architecture-dependent 6 * parts of early kernel initialization. 7 */ 8 #include <linux/console.h> 9 #include <linux/crash_dump.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/dmi.h> 12 #include <linux/efi.h> 13 #include <linux/init_ohci1394_dma.h> 14 #include <linux/initrd.h> 15 #include <linux/iscsi_ibft.h> 16 #include <linux/memblock.h> 17 #include <linux/pci.h> 18 #include <linux/root_dev.h> 19 #include <linux/sfi.h> 20 #include <linux/hugetlb.h> 21 #include <linux/tboot.h> 22 #include <linux/usb/xhci-dbgp.h> 23 #include <linux/static_call.h> 24 #include <linux/swiotlb.h> 25 26 #include <uapi/linux/mount.h> 27 28 #include <xen/xen.h> 29 30 #include <asm/apic.h> 31 #include <asm/numa.h> 32 #include <asm/bios_ebda.h> 33 #include <asm/bugs.h> 34 #include <asm/cpu.h> 35 #include <asm/efi.h> 36 #include <asm/gart.h> 37 #include <asm/hypervisor.h> 38 #include <asm/io_apic.h> 39 #include <asm/kasan.h> 40 #include <asm/kaslr.h> 41 #include <asm/mce.h> 42 #include <asm/mtrr.h> 43 #include <asm/realmode.h> 44 #include <asm/olpc_ofw.h> 45 #include <asm/pci-direct.h> 46 #include <asm/prom.h> 47 #include <asm/proto.h> 48 #include <asm/unwind.h> 49 #include <asm/vsyscall.h> 50 #include <linux/vmalloc.h> 51 52 /* 53 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB 54 * max_pfn_mapped: highest directly mapped pfn > 4 GB 55 * 56 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are 57 * represented by pfn_mapped[]. 58 */ 59 unsigned long max_low_pfn_mapped; 60 unsigned long max_pfn_mapped; 61 62 #ifdef CONFIG_DMI 63 RESERVE_BRK(dmi_alloc, 65536); 64 #endif 65 66 67 /* 68 * Range of the BSS area. The size of the BSS area is determined 69 * at link time, with RESERVE_BRK*() facility reserving additional 70 * chunks. 71 */ 72 unsigned long _brk_start = (unsigned long)__brk_base; 73 unsigned long _brk_end = (unsigned long)__brk_base; 74 75 struct boot_params boot_params; 76 77 /* 78 * These are the four main kernel memory regions, we put them into 79 * the resource tree so that kdump tools and other debugging tools 80 * recover it: 81 */ 82 83 static struct resource rodata_resource = { 84 .name = "Kernel rodata", 85 .start = 0, 86 .end = 0, 87 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 88 }; 89 90 static struct resource data_resource = { 91 .name = "Kernel data", 92 .start = 0, 93 .end = 0, 94 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 95 }; 96 97 static struct resource code_resource = { 98 .name = "Kernel code", 99 .start = 0, 100 .end = 0, 101 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 102 }; 103 104 static struct resource bss_resource = { 105 .name = "Kernel bss", 106 .start = 0, 107 .end = 0, 108 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 109 }; 110 111 112 #ifdef CONFIG_X86_32 113 /* CPU data as detected by the assembly code in head_32.S */ 114 struct cpuinfo_x86 new_cpu_data; 115 116 /* Common CPU data for all CPUs */ 117 struct cpuinfo_x86 boot_cpu_data __read_mostly; 118 EXPORT_SYMBOL(boot_cpu_data); 119 120 unsigned int def_to_bigsmp; 121 122 /* For MCA, but anyone else can use it if they want */ 123 unsigned int machine_id; 124 unsigned int machine_submodel_id; 125 unsigned int BIOS_revision; 126 127 struct apm_info apm_info; 128 EXPORT_SYMBOL(apm_info); 129 130 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ 131 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) 132 struct ist_info ist_info; 133 EXPORT_SYMBOL(ist_info); 134 #else 135 struct ist_info ist_info; 136 #endif 137 138 #else 139 struct cpuinfo_x86 boot_cpu_data __read_mostly; 140 EXPORT_SYMBOL(boot_cpu_data); 141 #endif 142 143 144 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) 145 __visible unsigned long mmu_cr4_features __ro_after_init; 146 #else 147 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; 148 #endif 149 150 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ 151 int bootloader_type, bootloader_version; 152 153 /* 154 * Setup options 155 */ 156 struct screen_info screen_info; 157 EXPORT_SYMBOL(screen_info); 158 struct edid_info edid_info; 159 EXPORT_SYMBOL_GPL(edid_info); 160 161 extern int root_mountflags; 162 163 unsigned long saved_video_mode; 164 165 #define RAMDISK_IMAGE_START_MASK 0x07FF 166 #define RAMDISK_PROMPT_FLAG 0x8000 167 #define RAMDISK_LOAD_FLAG 0x4000 168 169 static char __initdata command_line[COMMAND_LINE_SIZE]; 170 #ifdef CONFIG_CMDLINE_BOOL 171 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 172 #endif 173 174 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) 175 struct edd edd; 176 #ifdef CONFIG_EDD_MODULE 177 EXPORT_SYMBOL(edd); 178 #endif 179 /** 180 * copy_edd() - Copy the BIOS EDD information 181 * from boot_params into a safe place. 182 * 183 */ 184 static inline void __init copy_edd(void) 185 { 186 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, 187 sizeof(edd.mbr_signature)); 188 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); 189 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; 190 edd.edd_info_nr = boot_params.eddbuf_entries; 191 } 192 #else 193 static inline void __init copy_edd(void) 194 { 195 } 196 #endif 197 198 void * __init extend_brk(size_t size, size_t align) 199 { 200 size_t mask = align - 1; 201 void *ret; 202 203 BUG_ON(_brk_start == 0); 204 BUG_ON(align & mask); 205 206 _brk_end = (_brk_end + mask) & ~mask; 207 BUG_ON((char *)(_brk_end + size) > __brk_limit); 208 209 ret = (void *)_brk_end; 210 _brk_end += size; 211 212 memset(ret, 0, size); 213 214 return ret; 215 } 216 217 #ifdef CONFIG_X86_32 218 static void __init cleanup_highmap(void) 219 { 220 } 221 #endif 222 223 static void __init reserve_brk(void) 224 { 225 if (_brk_end > _brk_start) 226 memblock_reserve(__pa_symbol(_brk_start), 227 _brk_end - _brk_start); 228 229 /* Mark brk area as locked down and no longer taking any 230 new allocations */ 231 _brk_start = 0; 232 } 233 234 u64 relocated_ramdisk; 235 236 #ifdef CONFIG_BLK_DEV_INITRD 237 238 static u64 __init get_ramdisk_image(void) 239 { 240 u64 ramdisk_image = boot_params.hdr.ramdisk_image; 241 242 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; 243 244 if (ramdisk_image == 0) 245 ramdisk_image = phys_initrd_start; 246 247 return ramdisk_image; 248 } 249 static u64 __init get_ramdisk_size(void) 250 { 251 u64 ramdisk_size = boot_params.hdr.ramdisk_size; 252 253 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; 254 255 if (ramdisk_size == 0) 256 ramdisk_size = phys_initrd_size; 257 258 return ramdisk_size; 259 } 260 261 static void __init relocate_initrd(void) 262 { 263 /* Assume only end is not page aligned */ 264 u64 ramdisk_image = get_ramdisk_image(); 265 u64 ramdisk_size = get_ramdisk_size(); 266 u64 area_size = PAGE_ALIGN(ramdisk_size); 267 268 /* We need to move the initrd down into directly mapped mem */ 269 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0, 270 PFN_PHYS(max_pfn_mapped)); 271 if (!relocated_ramdisk) 272 panic("Cannot find place for new RAMDISK of size %lld\n", 273 ramdisk_size); 274 275 initrd_start = relocated_ramdisk + PAGE_OFFSET; 276 initrd_end = initrd_start + ramdisk_size; 277 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", 278 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 279 280 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size); 281 282 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" 283 " [mem %#010llx-%#010llx]\n", 284 ramdisk_image, ramdisk_image + ramdisk_size - 1, 285 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 286 } 287 288 static void __init early_reserve_initrd(void) 289 { 290 /* Assume only end is not page aligned */ 291 u64 ramdisk_image = get_ramdisk_image(); 292 u64 ramdisk_size = get_ramdisk_size(); 293 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 294 295 if (!boot_params.hdr.type_of_loader || 296 !ramdisk_image || !ramdisk_size) 297 return; /* No initrd provided by bootloader */ 298 299 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image); 300 } 301 302 static void __init reserve_initrd(void) 303 { 304 /* Assume only end is not page aligned */ 305 u64 ramdisk_image = get_ramdisk_image(); 306 u64 ramdisk_size = get_ramdisk_size(); 307 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 308 309 if (!boot_params.hdr.type_of_loader || 310 !ramdisk_image || !ramdisk_size) 311 return; /* No initrd provided by bootloader */ 312 313 initrd_start = 0; 314 315 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, 316 ramdisk_end - 1); 317 318 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), 319 PFN_DOWN(ramdisk_end))) { 320 /* All are mapped, easy case */ 321 initrd_start = ramdisk_image + PAGE_OFFSET; 322 initrd_end = initrd_start + ramdisk_size; 323 return; 324 } 325 326 relocate_initrd(); 327 328 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image); 329 } 330 331 #else 332 static void __init early_reserve_initrd(void) 333 { 334 } 335 static void __init reserve_initrd(void) 336 { 337 } 338 #endif /* CONFIG_BLK_DEV_INITRD */ 339 340 static void __init parse_setup_data(void) 341 { 342 struct setup_data *data; 343 u64 pa_data, pa_next; 344 345 pa_data = boot_params.hdr.setup_data; 346 while (pa_data) { 347 u32 data_len, data_type; 348 349 data = early_memremap(pa_data, sizeof(*data)); 350 data_len = data->len + sizeof(struct setup_data); 351 data_type = data->type; 352 pa_next = data->next; 353 early_memunmap(data, sizeof(*data)); 354 355 switch (data_type) { 356 case SETUP_E820_EXT: 357 e820__memory_setup_extended(pa_data, data_len); 358 break; 359 case SETUP_DTB: 360 add_dtb(pa_data); 361 break; 362 case SETUP_EFI: 363 parse_efi_setup(pa_data, data_len); 364 break; 365 default: 366 break; 367 } 368 pa_data = pa_next; 369 } 370 } 371 372 static void __init memblock_x86_reserve_range_setup_data(void) 373 { 374 struct setup_data *data; 375 u64 pa_data; 376 377 pa_data = boot_params.hdr.setup_data; 378 while (pa_data) { 379 data = early_memremap(pa_data, sizeof(*data)); 380 memblock_reserve(pa_data, sizeof(*data) + data->len); 381 382 if (data->type == SETUP_INDIRECT && 383 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) 384 memblock_reserve(((struct setup_indirect *)data->data)->addr, 385 ((struct setup_indirect *)data->data)->len); 386 387 pa_data = data->next; 388 early_memunmap(data, sizeof(*data)); 389 } 390 } 391 392 /* 393 * --------- Crashkernel reservation ------------------------------ 394 */ 395 396 #ifdef CONFIG_KEXEC_CORE 397 398 /* 16M alignment for crash kernel regions */ 399 #define CRASH_ALIGN SZ_16M 400 401 /* 402 * Keep the crash kernel below this limit. 403 * 404 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range 405 * due to mapping restrictions. 406 * 407 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is 408 * the upper limit of system RAM in 4-level paging mode. Since the kdump 409 * jump could be from 5-level paging to 4-level paging, the jump will fail if 410 * the kernel is put above 64 TB, and during the 1st kernel bootup there's 411 * no good way to detect the paging mode of the target kernel which will be 412 * loaded for dumping. 413 */ 414 #ifdef CONFIG_X86_32 415 # define CRASH_ADDR_LOW_MAX SZ_512M 416 # define CRASH_ADDR_HIGH_MAX SZ_512M 417 #else 418 # define CRASH_ADDR_LOW_MAX SZ_4G 419 # define CRASH_ADDR_HIGH_MAX SZ_64T 420 #endif 421 422 static int __init reserve_crashkernel_low(void) 423 { 424 #ifdef CONFIG_X86_64 425 unsigned long long base, low_base = 0, low_size = 0; 426 unsigned long low_mem_limit; 427 int ret; 428 429 low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX); 430 431 /* crashkernel=Y,low */ 432 ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base); 433 if (ret) { 434 /* 435 * two parts from kernel/dma/swiotlb.c: 436 * -swiotlb size: user-specified with swiotlb= or default. 437 * 438 * -swiotlb overflow buffer: now hardcoded to 32k. We round it 439 * to 8M for other buffers that may need to stay low too. Also 440 * make sure we allocate enough extra low memory so that we 441 * don't run out of DMA buffers for 32-bit devices. 442 */ 443 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20); 444 } else { 445 /* passed with crashkernel=0,low ? */ 446 if (!low_size) 447 return 0; 448 } 449 450 low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX); 451 if (!low_base) { 452 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n", 453 (unsigned long)(low_size >> 20)); 454 return -ENOMEM; 455 } 456 457 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n", 458 (unsigned long)(low_size >> 20), 459 (unsigned long)(low_base >> 20), 460 (unsigned long)(low_mem_limit >> 20)); 461 462 crashk_low_res.start = low_base; 463 crashk_low_res.end = low_base + low_size - 1; 464 insert_resource(&iomem_resource, &crashk_low_res); 465 #endif 466 return 0; 467 } 468 469 static void __init reserve_crashkernel(void) 470 { 471 unsigned long long crash_size, crash_base, total_mem; 472 bool high = false; 473 int ret; 474 475 total_mem = memblock_phys_mem_size(); 476 477 /* crashkernel=XM */ 478 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); 479 if (ret != 0 || crash_size <= 0) { 480 /* crashkernel=X,high */ 481 ret = parse_crashkernel_high(boot_command_line, total_mem, 482 &crash_size, &crash_base); 483 if (ret != 0 || crash_size <= 0) 484 return; 485 high = true; 486 } 487 488 if (xen_pv_domain()) { 489 pr_info("Ignoring crashkernel for a Xen PV domain\n"); 490 return; 491 } 492 493 /* 0 means: find the address automatically */ 494 if (!crash_base) { 495 /* 496 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory, 497 * crashkernel=x,high reserves memory over 4G, also allocates 498 * 256M extra low memory for DMA buffers and swiotlb. 499 * But the extra memory is not required for all machines. 500 * So try low memory first and fall back to high memory 501 * unless "crashkernel=size[KMG],high" is specified. 502 */ 503 if (!high) 504 crash_base = memblock_phys_alloc_range(crash_size, 505 CRASH_ALIGN, CRASH_ALIGN, 506 CRASH_ADDR_LOW_MAX); 507 if (!crash_base) 508 crash_base = memblock_phys_alloc_range(crash_size, 509 CRASH_ALIGN, CRASH_ALIGN, 510 CRASH_ADDR_HIGH_MAX); 511 if (!crash_base) { 512 pr_info("crashkernel reservation failed - No suitable area found.\n"); 513 return; 514 } 515 } else { 516 unsigned long long start; 517 518 start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base, 519 crash_base + crash_size); 520 if (start != crash_base) { 521 pr_info("crashkernel reservation failed - memory is in use.\n"); 522 return; 523 } 524 } 525 526 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) { 527 memblock_free(crash_base, crash_size); 528 return; 529 } 530 531 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", 532 (unsigned long)(crash_size >> 20), 533 (unsigned long)(crash_base >> 20), 534 (unsigned long)(total_mem >> 20)); 535 536 crashk_res.start = crash_base; 537 crashk_res.end = crash_base + crash_size - 1; 538 insert_resource(&iomem_resource, &crashk_res); 539 } 540 #else 541 static void __init reserve_crashkernel(void) 542 { 543 } 544 #endif 545 546 static struct resource standard_io_resources[] = { 547 { .name = "dma1", .start = 0x00, .end = 0x1f, 548 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 549 { .name = "pic1", .start = 0x20, .end = 0x21, 550 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 551 { .name = "timer0", .start = 0x40, .end = 0x43, 552 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 553 { .name = "timer1", .start = 0x50, .end = 0x53, 554 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 555 { .name = "keyboard", .start = 0x60, .end = 0x60, 556 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 557 { .name = "keyboard", .start = 0x64, .end = 0x64, 558 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 559 { .name = "dma page reg", .start = 0x80, .end = 0x8f, 560 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 561 { .name = "pic2", .start = 0xa0, .end = 0xa1, 562 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 563 { .name = "dma2", .start = 0xc0, .end = 0xdf, 564 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 565 { .name = "fpu", .start = 0xf0, .end = 0xff, 566 .flags = IORESOURCE_BUSY | IORESOURCE_IO } 567 }; 568 569 void __init reserve_standard_io_resources(void) 570 { 571 int i; 572 573 /* request I/O space for devices used on all i[345]86 PCs */ 574 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) 575 request_resource(&ioport_resource, &standard_io_resources[i]); 576 577 } 578 579 static __init void reserve_ibft_region(void) 580 { 581 unsigned long addr, size = 0; 582 583 addr = find_ibft_region(&size); 584 585 if (size) 586 memblock_reserve(addr, size); 587 } 588 589 static bool __init snb_gfx_workaround_needed(void) 590 { 591 #ifdef CONFIG_PCI 592 int i; 593 u16 vendor, devid; 594 static const __initconst u16 snb_ids[] = { 595 0x0102, 596 0x0112, 597 0x0122, 598 0x0106, 599 0x0116, 600 0x0126, 601 0x010a, 602 }; 603 604 /* Assume no if something weird is going on with PCI */ 605 if (!early_pci_allowed()) 606 return false; 607 608 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); 609 if (vendor != 0x8086) 610 return false; 611 612 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); 613 for (i = 0; i < ARRAY_SIZE(snb_ids); i++) 614 if (devid == snb_ids[i]) 615 return true; 616 #endif 617 618 return false; 619 } 620 621 /* 622 * Sandy Bridge graphics has trouble with certain ranges, exclude 623 * them from allocation. 624 */ 625 static void __init trim_snb_memory(void) 626 { 627 static const __initconst unsigned long bad_pages[] = { 628 0x20050000, 629 0x20110000, 630 0x20130000, 631 0x20138000, 632 0x40004000, 633 }; 634 int i; 635 636 if (!snb_gfx_workaround_needed()) 637 return; 638 639 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); 640 641 /* 642 * Reserve all memory below the 1 MB mark that has not 643 * already been reserved. 644 */ 645 memblock_reserve(0, 1<<20); 646 647 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { 648 if (memblock_reserve(bad_pages[i], PAGE_SIZE)) 649 printk(KERN_WARNING "failed to reserve 0x%08lx\n", 650 bad_pages[i]); 651 } 652 } 653 654 /* 655 * Here we put platform-specific memory range workarounds, i.e. 656 * memory known to be corrupt or otherwise in need to be reserved on 657 * specific platforms. 658 * 659 * If this gets used more widely it could use a real dispatch mechanism. 660 */ 661 static void __init trim_platform_memory_ranges(void) 662 { 663 trim_snb_memory(); 664 } 665 666 static void __init trim_bios_range(void) 667 { 668 /* 669 * A special case is the first 4Kb of memory; 670 * This is a BIOS owned area, not kernel ram, but generally 671 * not listed as such in the E820 table. 672 * 673 * This typically reserves additional memory (64KiB by default) 674 * since some BIOSes are known to corrupt low memory. See the 675 * Kconfig help text for X86_RESERVE_LOW. 676 */ 677 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); 678 679 /* 680 * special case: Some BIOSes report the PC BIOS 681 * area (640Kb -> 1Mb) as RAM even though it is not. 682 * take them out. 683 */ 684 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1); 685 686 e820__update_table(e820_table); 687 } 688 689 /* called before trim_bios_range() to spare extra sanitize */ 690 static void __init e820_add_kernel_range(void) 691 { 692 u64 start = __pa_symbol(_text); 693 u64 size = __pa_symbol(_end) - start; 694 695 /* 696 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and 697 * attempt to fix it by adding the range. We may have a confused BIOS, 698 * or the user may have used memmap=exactmap or memmap=xxM$yyM to 699 * exclude kernel range. If we really are running on top non-RAM, 700 * we will crash later anyways. 701 */ 702 if (e820__mapped_all(start, start + size, E820_TYPE_RAM)) 703 return; 704 705 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n"); 706 e820__range_remove(start, size, E820_TYPE_RAM, 0); 707 e820__range_add(start, size, E820_TYPE_RAM); 708 } 709 710 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10; 711 712 static int __init parse_reservelow(char *p) 713 { 714 unsigned long long size; 715 716 if (!p) 717 return -EINVAL; 718 719 size = memparse(p, &p); 720 721 if (size < 4096) 722 size = 4096; 723 724 if (size > 640*1024) 725 size = 640*1024; 726 727 reserve_low = size; 728 729 return 0; 730 } 731 732 early_param("reservelow", parse_reservelow); 733 734 static void __init trim_low_memory_range(void) 735 { 736 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE)); 737 } 738 739 /* 740 * Dump out kernel offset information on panic. 741 */ 742 static int 743 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) 744 { 745 if (kaslr_enabled()) { 746 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n", 747 kaslr_offset(), 748 __START_KERNEL, 749 __START_KERNEL_map, 750 MODULES_VADDR-1); 751 } else { 752 pr_emerg("Kernel Offset: disabled\n"); 753 } 754 755 return 0; 756 } 757 758 /* 759 * Determine if we were loaded by an EFI loader. If so, then we have also been 760 * passed the efi memmap, systab, etc., so we should use these data structures 761 * for initialization. Note, the efi init code path is determined by the 762 * global efi_enabled. This allows the same kernel image to be used on existing 763 * systems (with a traditional BIOS) as well as on EFI systems. 764 */ 765 /* 766 * setup_arch - architecture-specific boot-time initializations 767 * 768 * Note: On x86_64, fixmaps are ready for use even before this is called. 769 */ 770 771 void __init setup_arch(char **cmdline_p) 772 { 773 /* 774 * Reserve the memory occupied by the kernel between _text and 775 * __end_of_kernel_reserve symbols. Any kernel sections after the 776 * __end_of_kernel_reserve symbol must be explicitly reserved with a 777 * separate memblock_reserve() or they will be discarded. 778 */ 779 memblock_reserve(__pa_symbol(_text), 780 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text); 781 782 /* 783 * Make sure page 0 is always reserved because on systems with 784 * L1TF its contents can be leaked to user processes. 785 */ 786 memblock_reserve(0, PAGE_SIZE); 787 788 early_reserve_initrd(); 789 790 /* 791 * At this point everything still needed from the boot loader 792 * or BIOS or kernel text should be early reserved or marked not 793 * RAM in e820. All other memory is free game. 794 */ 795 796 #ifdef CONFIG_X86_32 797 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); 798 799 /* 800 * copy kernel address range established so far and switch 801 * to the proper swapper page table 802 */ 803 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, 804 initial_page_table + KERNEL_PGD_BOUNDARY, 805 KERNEL_PGD_PTRS); 806 807 load_cr3(swapper_pg_dir); 808 /* 809 * Note: Quark X1000 CPUs advertise PGE incorrectly and require 810 * a cr3 based tlb flush, so the following __flush_tlb_all() 811 * will not flush anything because the CPU quirk which clears 812 * X86_FEATURE_PGE has not been invoked yet. Though due to the 813 * load_cr3() above the TLB has been flushed already. The 814 * quirk is invoked before subsequent calls to __flush_tlb_all() 815 * so proper operation is guaranteed. 816 */ 817 __flush_tlb_all(); 818 #else 819 printk(KERN_INFO "Command line: %s\n", boot_command_line); 820 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS; 821 #endif 822 823 /* 824 * If we have OLPC OFW, we might end up relocating the fixmap due to 825 * reserve_top(), so do this before touching the ioremap area. 826 */ 827 olpc_ofw_detect(); 828 829 idt_setup_early_traps(); 830 early_cpu_init(); 831 arch_init_ideal_nops(); 832 jump_label_init(); 833 static_call_init(); 834 early_ioremap_init(); 835 836 setup_olpc_ofw_pgd(); 837 838 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); 839 screen_info = boot_params.screen_info; 840 edid_info = boot_params.edid_info; 841 #ifdef CONFIG_X86_32 842 apm_info.bios = boot_params.apm_bios_info; 843 ist_info = boot_params.ist_info; 844 #endif 845 saved_video_mode = boot_params.hdr.vid_mode; 846 bootloader_type = boot_params.hdr.type_of_loader; 847 if ((bootloader_type >> 4) == 0xe) { 848 bootloader_type &= 0xf; 849 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; 850 } 851 bootloader_version = bootloader_type & 0xf; 852 bootloader_version |= boot_params.hdr.ext_loader_ver << 4; 853 854 #ifdef CONFIG_BLK_DEV_RAM 855 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; 856 #endif 857 #ifdef CONFIG_EFI 858 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 859 EFI32_LOADER_SIGNATURE, 4)) { 860 set_bit(EFI_BOOT, &efi.flags); 861 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 862 EFI64_LOADER_SIGNATURE, 4)) { 863 set_bit(EFI_BOOT, &efi.flags); 864 set_bit(EFI_64BIT, &efi.flags); 865 } 866 #endif 867 868 x86_init.oem.arch_setup(); 869 870 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; 871 e820__memory_setup(); 872 parse_setup_data(); 873 874 copy_edd(); 875 876 if (!boot_params.hdr.root_flags) 877 root_mountflags &= ~MS_RDONLY; 878 init_mm.start_code = (unsigned long) _text; 879 init_mm.end_code = (unsigned long) _etext; 880 init_mm.end_data = (unsigned long) _edata; 881 init_mm.brk = _brk_end; 882 883 code_resource.start = __pa_symbol(_text); 884 code_resource.end = __pa_symbol(_etext)-1; 885 rodata_resource.start = __pa_symbol(__start_rodata); 886 rodata_resource.end = __pa_symbol(__end_rodata)-1; 887 data_resource.start = __pa_symbol(_sdata); 888 data_resource.end = __pa_symbol(_edata)-1; 889 bss_resource.start = __pa_symbol(__bss_start); 890 bss_resource.end = __pa_symbol(__bss_stop)-1; 891 892 #ifdef CONFIG_CMDLINE_BOOL 893 #ifdef CONFIG_CMDLINE_OVERRIDE 894 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 895 #else 896 if (builtin_cmdline[0]) { 897 /* append boot loader cmdline to builtin */ 898 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); 899 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); 900 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 901 } 902 #endif 903 #endif 904 905 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 906 *cmdline_p = command_line; 907 908 /* 909 * x86_configure_nx() is called before parse_early_param() to detect 910 * whether hardware doesn't support NX (so that the early EHCI debug 911 * console setup can safely call set_fixmap()). It may then be called 912 * again from within noexec_setup() during parsing early parameters 913 * to honor the respective command line option. 914 */ 915 x86_configure_nx(); 916 917 parse_early_param(); 918 919 if (efi_enabled(EFI_BOOT)) 920 efi_memblock_x86_reserve_range(); 921 #ifdef CONFIG_MEMORY_HOTPLUG 922 /* 923 * Memory used by the kernel cannot be hot-removed because Linux 924 * cannot migrate the kernel pages. When memory hotplug is 925 * enabled, we should prevent memblock from allocating memory 926 * for the kernel. 927 * 928 * ACPI SRAT records all hotpluggable memory ranges. But before 929 * SRAT is parsed, we don't know about it. 930 * 931 * The kernel image is loaded into memory at very early time. We 932 * cannot prevent this anyway. So on NUMA system, we set any 933 * node the kernel resides in as un-hotpluggable. 934 * 935 * Since on modern servers, one node could have double-digit 936 * gigabytes memory, we can assume the memory around the kernel 937 * image is also un-hotpluggable. So before SRAT is parsed, just 938 * allocate memory near the kernel image to try the best to keep 939 * the kernel away from hotpluggable memory. 940 */ 941 if (movable_node_is_enabled()) 942 memblock_set_bottom_up(true); 943 #endif 944 945 x86_report_nx(); 946 947 /* after early param, so could get panic from serial */ 948 memblock_x86_reserve_range_setup_data(); 949 950 if (acpi_mps_check()) { 951 #ifdef CONFIG_X86_LOCAL_APIC 952 disable_apic = 1; 953 #endif 954 setup_clear_cpu_cap(X86_FEATURE_APIC); 955 } 956 957 e820__reserve_setup_data(); 958 e820__finish_early_params(); 959 960 if (efi_enabled(EFI_BOOT)) 961 efi_init(); 962 963 dmi_setup(); 964 965 /* 966 * VMware detection requires dmi to be available, so this 967 * needs to be done after dmi_setup(), for the boot CPU. 968 */ 969 init_hypervisor_platform(); 970 971 tsc_early_init(); 972 x86_init.resources.probe_roms(); 973 974 /* after parse_early_param, so could debug it */ 975 insert_resource(&iomem_resource, &code_resource); 976 insert_resource(&iomem_resource, &rodata_resource); 977 insert_resource(&iomem_resource, &data_resource); 978 insert_resource(&iomem_resource, &bss_resource); 979 980 e820_add_kernel_range(); 981 trim_bios_range(); 982 #ifdef CONFIG_X86_32 983 if (ppro_with_ram_bug()) { 984 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM, 985 E820_TYPE_RESERVED); 986 e820__update_table(e820_table); 987 printk(KERN_INFO "fixed physical RAM map:\n"); 988 e820__print_table("bad_ppro"); 989 } 990 #else 991 early_gart_iommu_check(); 992 #endif 993 994 /* 995 * partially used pages are not usable - thus 996 * we are rounding upwards: 997 */ 998 max_pfn = e820__end_of_ram_pfn(); 999 1000 /* update e820 for memory not covered by WB MTRRs */ 1001 mtrr_bp_init(); 1002 if (mtrr_trim_uncached_memory(max_pfn)) 1003 max_pfn = e820__end_of_ram_pfn(); 1004 1005 max_possible_pfn = max_pfn; 1006 1007 /* 1008 * This call is required when the CPU does not support PAT. If 1009 * mtrr_bp_init() invoked it already via pat_init() the call has no 1010 * effect. 1011 */ 1012 init_cache_modes(); 1013 1014 /* 1015 * Define random base addresses for memory sections after max_pfn is 1016 * defined and before each memory section base is used. 1017 */ 1018 kernel_randomize_memory(); 1019 1020 #ifdef CONFIG_X86_32 1021 /* max_low_pfn get updated here */ 1022 find_low_pfn_range(); 1023 #else 1024 check_x2apic(); 1025 1026 /* How many end-of-memory variables you have, grandma! */ 1027 /* need this before calling reserve_initrd */ 1028 if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) 1029 max_low_pfn = e820__end_of_low_ram_pfn(); 1030 else 1031 max_low_pfn = max_pfn; 1032 1033 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 1034 #endif 1035 1036 /* 1037 * Find and reserve possible boot-time SMP configuration: 1038 */ 1039 find_smp_config(); 1040 1041 reserve_ibft_region(); 1042 1043 early_alloc_pgt_buf(); 1044 1045 /* 1046 * Need to conclude brk, before e820__memblock_setup() 1047 * it could use memblock_find_in_range, could overlap with 1048 * brk area. 1049 */ 1050 reserve_brk(); 1051 1052 cleanup_highmap(); 1053 1054 memblock_set_current_limit(ISA_END_ADDRESS); 1055 e820__memblock_setup(); 1056 1057 reserve_bios_regions(); 1058 1059 efi_fake_memmap(); 1060 efi_find_mirror(); 1061 efi_esrt_init(); 1062 efi_mokvar_table_init(); 1063 1064 /* 1065 * The EFI specification says that boot service code won't be 1066 * called after ExitBootServices(). This is, in fact, a lie. 1067 */ 1068 efi_reserve_boot_services(); 1069 1070 /* preallocate 4k for mptable mpc */ 1071 e820__memblock_alloc_reserved_mpc_new(); 1072 1073 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION 1074 setup_bios_corruption_check(); 1075 #endif 1076 1077 #ifdef CONFIG_X86_32 1078 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", 1079 (max_pfn_mapped<<PAGE_SHIFT) - 1); 1080 #endif 1081 1082 reserve_real_mode(); 1083 1084 trim_platform_memory_ranges(); 1085 trim_low_memory_range(); 1086 1087 init_mem_mapping(); 1088 1089 idt_setup_early_pf(); 1090 1091 /* 1092 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features) 1093 * with the current CR4 value. This may not be necessary, but 1094 * auditing all the early-boot CR4 manipulation would be needed to 1095 * rule it out. 1096 * 1097 * Mask off features that don't work outside long mode (just 1098 * PCIDE for now). 1099 */ 1100 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE; 1101 1102 memblock_set_current_limit(get_max_mapped()); 1103 1104 /* 1105 * NOTE: On x86-32, only from this point on, fixmaps are ready for use. 1106 */ 1107 1108 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT 1109 if (init_ohci1394_dma_early) 1110 init_ohci1394_dma_on_all_controllers(); 1111 #endif 1112 /* Allocate bigger log buffer */ 1113 setup_log_buf(1); 1114 1115 if (efi_enabled(EFI_BOOT)) { 1116 switch (boot_params.secure_boot) { 1117 case efi_secureboot_mode_disabled: 1118 pr_info("Secure boot disabled\n"); 1119 break; 1120 case efi_secureboot_mode_enabled: 1121 pr_info("Secure boot enabled\n"); 1122 break; 1123 default: 1124 pr_info("Secure boot could not be determined\n"); 1125 break; 1126 } 1127 } 1128 1129 reserve_initrd(); 1130 1131 acpi_table_upgrade(); 1132 1133 vsmp_init(); 1134 1135 io_delay_init(); 1136 1137 early_platform_quirks(); 1138 1139 /* 1140 * Parse the ACPI tables for possible boot-time SMP configuration. 1141 */ 1142 acpi_boot_table_init(); 1143 1144 early_acpi_boot_init(); 1145 1146 initmem_init(); 1147 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT); 1148 1149 if (boot_cpu_has(X86_FEATURE_GBPAGES)) 1150 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 1151 1152 /* 1153 * Reserve memory for crash kernel after SRAT is parsed so that it 1154 * won't consume hotpluggable memory. 1155 */ 1156 reserve_crashkernel(); 1157 1158 memblock_find_dma_reserve(); 1159 1160 if (!early_xdbc_setup_hardware()) 1161 early_xdbc_register_console(); 1162 1163 x86_init.paging.pagetable_init(); 1164 1165 kasan_init(); 1166 1167 /* 1168 * Sync back kernel address range. 1169 * 1170 * FIXME: Can the later sync in setup_cpu_entry_areas() replace 1171 * this call? 1172 */ 1173 sync_initial_page_table(); 1174 1175 tboot_probe(); 1176 1177 map_vsyscall(); 1178 1179 generic_apic_probe(); 1180 1181 early_quirks(); 1182 1183 /* 1184 * Read APIC and some other early information from ACPI tables. 1185 */ 1186 acpi_boot_init(); 1187 sfi_init(); 1188 x86_dtb_init(); 1189 1190 /* 1191 * get boot-time SMP configuration: 1192 */ 1193 get_smp_config(); 1194 1195 /* 1196 * Systems w/o ACPI and mptables might not have it mapped the local 1197 * APIC yet, but prefill_possible_map() might need to access it. 1198 */ 1199 init_apic_mappings(); 1200 1201 prefill_possible_map(); 1202 1203 init_cpu_to_node(); 1204 init_gi_nodes(); 1205 1206 io_apic_init_mappings(); 1207 1208 x86_init.hyper.guest_late_init(); 1209 1210 e820__reserve_resources(); 1211 e820__register_nosave_regions(max_pfn); 1212 1213 x86_init.resources.reserve_resources(); 1214 1215 e820__setup_pci_gap(); 1216 1217 #ifdef CONFIG_VT 1218 #if defined(CONFIG_VGA_CONSOLE) 1219 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) 1220 conswitchp = &vga_con; 1221 #endif 1222 #endif 1223 x86_init.oem.banner(); 1224 1225 x86_init.timers.wallclock_init(); 1226 1227 mcheck_init(); 1228 1229 register_refined_jiffies(CLOCK_TICK_RATE); 1230 1231 #ifdef CONFIG_EFI 1232 if (efi_enabled(EFI_BOOT)) 1233 efi_apply_memmap_quirks(); 1234 #endif 1235 1236 unwind_init(); 1237 } 1238 1239 #ifdef CONFIG_X86_32 1240 1241 static struct resource video_ram_resource = { 1242 .name = "Video RAM area", 1243 .start = 0xa0000, 1244 .end = 0xbffff, 1245 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 1246 }; 1247 1248 void __init i386_reserve_resources(void) 1249 { 1250 request_resource(&iomem_resource, &video_ram_resource); 1251 reserve_standard_io_resources(); 1252 } 1253 1254 #endif /* CONFIG_X86_32 */ 1255 1256 static struct notifier_block kernel_offset_notifier = { 1257 .notifier_call = dump_kernel_offset 1258 }; 1259 1260 static int __init register_kernel_offset_dumper(void) 1261 { 1262 atomic_notifier_chain_register(&panic_notifier_list, 1263 &kernel_offset_notifier); 1264 return 0; 1265 } 1266 __initcall(register_kernel_offset_dumper); 1267