xref: /openbmc/linux/arch/x86/kernel/setup.c (revision a36954f5)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *
6  *  Memory region support
7  *	David Parsons <orc@pell.chi.il.us>, July-August 1999
8  *
9  *  Added E820 sanitization routine (removes overlapping memory regions);
10  *  Brian Moyle <bmoyle@mvista.com>, February 2001
11  *
12  * Moved CPU detection code to cpu/${cpu}.c
13  *    Patrick Mochel <mochel@osdl.org>, March 2002
14  *
15  *  Provisions for empty E820 memory regions (reported by certain BIOSes).
16  *  Alex Achenbach <xela@slit.de>, December 2002.
17  *
18  */
19 
20 /*
21  * This file handles the architecture-dependent parts of initialization
22  */
23 
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/seq_file.h>
36 #include <linux/console.h>
37 #include <linux/root_dev.h>
38 #include <linux/highmem.h>
39 #include <linux/export.h>
40 #include <linux/efi.h>
41 #include <linux/init.h>
42 #include <linux/edd.h>
43 #include <linux/iscsi_ibft.h>
44 #include <linux/nodemask.h>
45 #include <linux/kexec.h>
46 #include <linux/dmi.h>
47 #include <linux/pfn.h>
48 #include <linux/pci.h>
49 #include <asm/pci-direct.h>
50 #include <linux/init_ohci1394_dma.h>
51 #include <linux/kvm_para.h>
52 #include <linux/dma-contiguous.h>
53 
54 #include <linux/errno.h>
55 #include <linux/kernel.h>
56 #include <linux/stddef.h>
57 #include <linux/unistd.h>
58 #include <linux/ptrace.h>
59 #include <linux/user.h>
60 #include <linux/delay.h>
61 
62 #include <linux/kallsyms.h>
63 #include <linux/cpufreq.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/ctype.h>
66 #include <linux/uaccess.h>
67 
68 #include <linux/percpu.h>
69 #include <linux/crash_dump.h>
70 #include <linux/tboot.h>
71 #include <linux/jiffies.h>
72 
73 #include <linux/usb/xhci-dbgp.h>
74 #include <video/edid.h>
75 
76 #include <asm/mtrr.h>
77 #include <asm/apic.h>
78 #include <asm/realmode.h>
79 #include <asm/e820/api.h>
80 #include <asm/mpspec.h>
81 #include <asm/setup.h>
82 #include <asm/efi.h>
83 #include <asm/timer.h>
84 #include <asm/i8259.h>
85 #include <asm/sections.h>
86 #include <asm/io_apic.h>
87 #include <asm/ist.h>
88 #include <asm/setup_arch.h>
89 #include <asm/bios_ebda.h>
90 #include <asm/cacheflush.h>
91 #include <asm/processor.h>
92 #include <asm/bugs.h>
93 #include <asm/kasan.h>
94 
95 #include <asm/vsyscall.h>
96 #include <asm/cpu.h>
97 #include <asm/desc.h>
98 #include <asm/dma.h>
99 #include <asm/iommu.h>
100 #include <asm/gart.h>
101 #include <asm/mmu_context.h>
102 #include <asm/proto.h>
103 
104 #include <asm/paravirt.h>
105 #include <asm/hypervisor.h>
106 #include <asm/olpc_ofw.h>
107 
108 #include <asm/percpu.h>
109 #include <asm/topology.h>
110 #include <asm/apicdef.h>
111 #include <asm/amd_nb.h>
112 #include <asm/mce.h>
113 #include <asm/alternative.h>
114 #include <asm/prom.h>
115 #include <asm/microcode.h>
116 #include <asm/mmu_context.h>
117 #include <asm/kaslr.h>
118 
119 /*
120  * max_low_pfn_mapped: highest direct mapped pfn under 4GB
121  * max_pfn_mapped:     highest direct mapped pfn over 4GB
122  *
123  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
124  * represented by pfn_mapped
125  */
126 unsigned long max_low_pfn_mapped;
127 unsigned long max_pfn_mapped;
128 
129 #ifdef CONFIG_DMI
130 RESERVE_BRK(dmi_alloc, 65536);
131 #endif
132 
133 
134 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
135 unsigned long _brk_end = (unsigned long)__brk_base;
136 
137 #ifdef CONFIG_X86_64
138 int default_cpu_present_to_apicid(int mps_cpu)
139 {
140 	return __default_cpu_present_to_apicid(mps_cpu);
141 }
142 
143 int default_check_phys_apicid_present(int phys_apicid)
144 {
145 	return __default_check_phys_apicid_present(phys_apicid);
146 }
147 #endif
148 
149 struct boot_params boot_params;
150 
151 /*
152  * Machine setup..
153  */
154 static struct resource data_resource = {
155 	.name	= "Kernel data",
156 	.start	= 0,
157 	.end	= 0,
158 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
159 };
160 
161 static struct resource code_resource = {
162 	.name	= "Kernel code",
163 	.start	= 0,
164 	.end	= 0,
165 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
166 };
167 
168 static struct resource bss_resource = {
169 	.name	= "Kernel bss",
170 	.start	= 0,
171 	.end	= 0,
172 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
173 };
174 
175 
176 #ifdef CONFIG_X86_32
177 /* cpu data as detected by the assembly code in head_32.S */
178 struct cpuinfo_x86 new_cpu_data;
179 
180 /* common cpu data for all cpus */
181 struct cpuinfo_x86 boot_cpu_data __read_mostly;
182 EXPORT_SYMBOL(boot_cpu_data);
183 
184 unsigned int def_to_bigsmp;
185 
186 /* for MCA, but anyone else can use it if they want */
187 unsigned int machine_id;
188 unsigned int machine_submodel_id;
189 unsigned int BIOS_revision;
190 
191 struct apm_info apm_info;
192 EXPORT_SYMBOL(apm_info);
193 
194 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
195 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
196 struct ist_info ist_info;
197 EXPORT_SYMBOL(ist_info);
198 #else
199 struct ist_info ist_info;
200 #endif
201 
202 #else
203 struct cpuinfo_x86 boot_cpu_data __read_mostly = {
204 	.x86_phys_bits = MAX_PHYSMEM_BITS,
205 };
206 EXPORT_SYMBOL(boot_cpu_data);
207 #endif
208 
209 
210 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
211 __visible unsigned long mmu_cr4_features __ro_after_init;
212 #else
213 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
214 #endif
215 
216 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
217 int bootloader_type, bootloader_version;
218 
219 /*
220  * Setup options
221  */
222 struct screen_info screen_info;
223 EXPORT_SYMBOL(screen_info);
224 struct edid_info edid_info;
225 EXPORT_SYMBOL_GPL(edid_info);
226 
227 extern int root_mountflags;
228 
229 unsigned long saved_video_mode;
230 
231 #define RAMDISK_IMAGE_START_MASK	0x07FF
232 #define RAMDISK_PROMPT_FLAG		0x8000
233 #define RAMDISK_LOAD_FLAG		0x4000
234 
235 static char __initdata command_line[COMMAND_LINE_SIZE];
236 #ifdef CONFIG_CMDLINE_BOOL
237 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
238 #endif
239 
240 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
241 struct edd edd;
242 #ifdef CONFIG_EDD_MODULE
243 EXPORT_SYMBOL(edd);
244 #endif
245 /**
246  * copy_edd() - Copy the BIOS EDD information
247  *              from boot_params into a safe place.
248  *
249  */
250 static inline void __init copy_edd(void)
251 {
252      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
253 	    sizeof(edd.mbr_signature));
254      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
255      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
256      edd.edd_info_nr = boot_params.eddbuf_entries;
257 }
258 #else
259 static inline void __init copy_edd(void)
260 {
261 }
262 #endif
263 
264 void * __init extend_brk(size_t size, size_t align)
265 {
266 	size_t mask = align - 1;
267 	void *ret;
268 
269 	BUG_ON(_brk_start == 0);
270 	BUG_ON(align & mask);
271 
272 	_brk_end = (_brk_end + mask) & ~mask;
273 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
274 
275 	ret = (void *)_brk_end;
276 	_brk_end += size;
277 
278 	memset(ret, 0, size);
279 
280 	return ret;
281 }
282 
283 #ifdef CONFIG_X86_32
284 static void __init cleanup_highmap(void)
285 {
286 }
287 #endif
288 
289 static void __init reserve_brk(void)
290 {
291 	if (_brk_end > _brk_start)
292 		memblock_reserve(__pa_symbol(_brk_start),
293 				 _brk_end - _brk_start);
294 
295 	/* Mark brk area as locked down and no longer taking any
296 	   new allocations */
297 	_brk_start = 0;
298 }
299 
300 u64 relocated_ramdisk;
301 
302 #ifdef CONFIG_BLK_DEV_INITRD
303 
304 static u64 __init get_ramdisk_image(void)
305 {
306 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
307 
308 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
309 
310 	return ramdisk_image;
311 }
312 static u64 __init get_ramdisk_size(void)
313 {
314 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
315 
316 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
317 
318 	return ramdisk_size;
319 }
320 
321 static void __init relocate_initrd(void)
322 {
323 	/* Assume only end is not page aligned */
324 	u64 ramdisk_image = get_ramdisk_image();
325 	u64 ramdisk_size  = get_ramdisk_size();
326 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
327 
328 	/* We need to move the initrd down into directly mapped mem */
329 	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
330 						   area_size, PAGE_SIZE);
331 
332 	if (!relocated_ramdisk)
333 		panic("Cannot find place for new RAMDISK of size %lld\n",
334 		      ramdisk_size);
335 
336 	/* Note: this includes all the mem currently occupied by
337 	   the initrd, we rely on that fact to keep the data intact. */
338 	memblock_reserve(relocated_ramdisk, area_size);
339 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
340 	initrd_end   = initrd_start + ramdisk_size;
341 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
342 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
343 
344 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
345 
346 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
347 		" [mem %#010llx-%#010llx]\n",
348 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
349 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
350 }
351 
352 static void __init early_reserve_initrd(void)
353 {
354 	/* Assume only end is not page aligned */
355 	u64 ramdisk_image = get_ramdisk_image();
356 	u64 ramdisk_size  = get_ramdisk_size();
357 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
358 
359 	if (!boot_params.hdr.type_of_loader ||
360 	    !ramdisk_image || !ramdisk_size)
361 		return;		/* No initrd provided by bootloader */
362 
363 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
364 }
365 static void __init reserve_initrd(void)
366 {
367 	/* Assume only end is not page aligned */
368 	u64 ramdisk_image = get_ramdisk_image();
369 	u64 ramdisk_size  = get_ramdisk_size();
370 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
371 	u64 mapped_size;
372 
373 	if (!boot_params.hdr.type_of_loader ||
374 	    !ramdisk_image || !ramdisk_size)
375 		return;		/* No initrd provided by bootloader */
376 
377 	initrd_start = 0;
378 
379 	mapped_size = memblock_mem_size(max_pfn_mapped);
380 	if (ramdisk_size >= (mapped_size>>1))
381 		panic("initrd too large to handle, "
382 		       "disabling initrd (%lld needed, %lld available)\n",
383 		       ramdisk_size, mapped_size>>1);
384 
385 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
386 			ramdisk_end - 1);
387 
388 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
389 				PFN_DOWN(ramdisk_end))) {
390 		/* All are mapped, easy case */
391 		initrd_start = ramdisk_image + PAGE_OFFSET;
392 		initrd_end = initrd_start + ramdisk_size;
393 		return;
394 	}
395 
396 	relocate_initrd();
397 
398 	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
399 }
400 
401 #else
402 static void __init early_reserve_initrd(void)
403 {
404 }
405 static void __init reserve_initrd(void)
406 {
407 }
408 #endif /* CONFIG_BLK_DEV_INITRD */
409 
410 static void __init parse_setup_data(void)
411 {
412 	struct setup_data *data;
413 	u64 pa_data, pa_next;
414 
415 	pa_data = boot_params.hdr.setup_data;
416 	while (pa_data) {
417 		u32 data_len, data_type;
418 
419 		data = early_memremap(pa_data, sizeof(*data));
420 		data_len = data->len + sizeof(struct setup_data);
421 		data_type = data->type;
422 		pa_next = data->next;
423 		early_memunmap(data, sizeof(*data));
424 
425 		switch (data_type) {
426 		case SETUP_E820_EXT:
427 			e820__memory_setup_extended(pa_data, data_len);
428 			break;
429 		case SETUP_DTB:
430 			add_dtb(pa_data);
431 			break;
432 		case SETUP_EFI:
433 			parse_efi_setup(pa_data, data_len);
434 			break;
435 		default:
436 			break;
437 		}
438 		pa_data = pa_next;
439 	}
440 }
441 
442 static void __init memblock_x86_reserve_range_setup_data(void)
443 {
444 	struct setup_data *data;
445 	u64 pa_data;
446 
447 	pa_data = boot_params.hdr.setup_data;
448 	while (pa_data) {
449 		data = early_memremap(pa_data, sizeof(*data));
450 		memblock_reserve(pa_data, sizeof(*data) + data->len);
451 		pa_data = data->next;
452 		early_memunmap(data, sizeof(*data));
453 	}
454 }
455 
456 /*
457  * --------- Crashkernel reservation ------------------------------
458  */
459 
460 #ifdef CONFIG_KEXEC_CORE
461 
462 /* 16M alignment for crash kernel regions */
463 #define CRASH_ALIGN		(16 << 20)
464 
465 /*
466  * Keep the crash kernel below this limit.  On 32 bits earlier kernels
467  * would limit the kernel to the low 512 MiB due to mapping restrictions.
468  * On 64bit, old kexec-tools need to under 896MiB.
469  */
470 #ifdef CONFIG_X86_32
471 # define CRASH_ADDR_LOW_MAX	(512 << 20)
472 # define CRASH_ADDR_HIGH_MAX	(512 << 20)
473 #else
474 # define CRASH_ADDR_LOW_MAX	(896UL << 20)
475 # define CRASH_ADDR_HIGH_MAX	MAXMEM
476 #endif
477 
478 static int __init reserve_crashkernel_low(void)
479 {
480 #ifdef CONFIG_X86_64
481 	unsigned long long base, low_base = 0, low_size = 0;
482 	unsigned long total_low_mem;
483 	int ret;
484 
485 	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
486 
487 	/* crashkernel=Y,low */
488 	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
489 	if (ret) {
490 		/*
491 		 * two parts from lib/swiotlb.c:
492 		 * -swiotlb size: user-specified with swiotlb= or default.
493 		 *
494 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
495 		 * to 8M for other buffers that may need to stay low too. Also
496 		 * make sure we allocate enough extra low memory so that we
497 		 * don't run out of DMA buffers for 32-bit devices.
498 		 */
499 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
500 	} else {
501 		/* passed with crashkernel=0,low ? */
502 		if (!low_size)
503 			return 0;
504 	}
505 
506 	low_base = memblock_find_in_range(low_size, 1ULL << 32, low_size, CRASH_ALIGN);
507 	if (!low_base) {
508 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
509 		       (unsigned long)(low_size >> 20));
510 		return -ENOMEM;
511 	}
512 
513 	ret = memblock_reserve(low_base, low_size);
514 	if (ret) {
515 		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
516 		return ret;
517 	}
518 
519 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
520 		(unsigned long)(low_size >> 20),
521 		(unsigned long)(low_base >> 20),
522 		(unsigned long)(total_low_mem >> 20));
523 
524 	crashk_low_res.start = low_base;
525 	crashk_low_res.end   = low_base + low_size - 1;
526 	insert_resource(&iomem_resource, &crashk_low_res);
527 #endif
528 	return 0;
529 }
530 
531 static void __init reserve_crashkernel(void)
532 {
533 	unsigned long long crash_size, crash_base, total_mem;
534 	bool high = false;
535 	int ret;
536 
537 	total_mem = memblock_phys_mem_size();
538 
539 	/* crashkernel=XM */
540 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
541 	if (ret != 0 || crash_size <= 0) {
542 		/* crashkernel=X,high */
543 		ret = parse_crashkernel_high(boot_command_line, total_mem,
544 					     &crash_size, &crash_base);
545 		if (ret != 0 || crash_size <= 0)
546 			return;
547 		high = true;
548 	}
549 
550 	/* 0 means: find the address automatically */
551 	if (crash_base <= 0) {
552 		/*
553 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
554 		 * as old kexec-tools loads bzImage below that, unless
555 		 * "crashkernel=size[KMG],high" is specified.
556 		 */
557 		crash_base = memblock_find_in_range(CRASH_ALIGN,
558 						    high ? CRASH_ADDR_HIGH_MAX
559 							 : CRASH_ADDR_LOW_MAX,
560 						    crash_size, CRASH_ALIGN);
561 		if (!crash_base) {
562 			pr_info("crashkernel reservation failed - No suitable area found.\n");
563 			return;
564 		}
565 
566 	} else {
567 		unsigned long long start;
568 
569 		start = memblock_find_in_range(crash_base,
570 					       crash_base + crash_size,
571 					       crash_size, 1 << 20);
572 		if (start != crash_base) {
573 			pr_info("crashkernel reservation failed - memory is in use.\n");
574 			return;
575 		}
576 	}
577 	ret = memblock_reserve(crash_base, crash_size);
578 	if (ret) {
579 		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
580 		return;
581 	}
582 
583 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
584 		memblock_free(crash_base, crash_size);
585 		return;
586 	}
587 
588 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
589 		(unsigned long)(crash_size >> 20),
590 		(unsigned long)(crash_base >> 20),
591 		(unsigned long)(total_mem >> 20));
592 
593 	crashk_res.start = crash_base;
594 	crashk_res.end   = crash_base + crash_size - 1;
595 	insert_resource(&iomem_resource, &crashk_res);
596 }
597 #else
598 static void __init reserve_crashkernel(void)
599 {
600 }
601 #endif
602 
603 static struct resource standard_io_resources[] = {
604 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
605 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
606 	{ .name = "pic1", .start = 0x20, .end = 0x21,
607 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
608 	{ .name = "timer0", .start = 0x40, .end = 0x43,
609 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
610 	{ .name = "timer1", .start = 0x50, .end = 0x53,
611 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
612 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
613 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
614 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
615 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
616 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
617 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
618 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
619 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
620 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
621 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
622 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
623 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
624 };
625 
626 void __init reserve_standard_io_resources(void)
627 {
628 	int i;
629 
630 	/* request I/O space for devices used on all i[345]86 PCs */
631 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
632 		request_resource(&ioport_resource, &standard_io_resources[i]);
633 
634 }
635 
636 static __init void reserve_ibft_region(void)
637 {
638 	unsigned long addr, size = 0;
639 
640 	addr = find_ibft_region(&size);
641 
642 	if (size)
643 		memblock_reserve(addr, size);
644 }
645 
646 static bool __init snb_gfx_workaround_needed(void)
647 {
648 #ifdef CONFIG_PCI
649 	int i;
650 	u16 vendor, devid;
651 	static const __initconst u16 snb_ids[] = {
652 		0x0102,
653 		0x0112,
654 		0x0122,
655 		0x0106,
656 		0x0116,
657 		0x0126,
658 		0x010a,
659 	};
660 
661 	/* Assume no if something weird is going on with PCI */
662 	if (!early_pci_allowed())
663 		return false;
664 
665 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
666 	if (vendor != 0x8086)
667 		return false;
668 
669 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
670 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
671 		if (devid == snb_ids[i])
672 			return true;
673 #endif
674 
675 	return false;
676 }
677 
678 /*
679  * Sandy Bridge graphics has trouble with certain ranges, exclude
680  * them from allocation.
681  */
682 static void __init trim_snb_memory(void)
683 {
684 	static const __initconst unsigned long bad_pages[] = {
685 		0x20050000,
686 		0x20110000,
687 		0x20130000,
688 		0x20138000,
689 		0x40004000,
690 	};
691 	int i;
692 
693 	if (!snb_gfx_workaround_needed())
694 		return;
695 
696 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
697 
698 	/*
699 	 * Reserve all memory below the 1 MB mark that has not
700 	 * already been reserved.
701 	 */
702 	memblock_reserve(0, 1<<20);
703 
704 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
705 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
706 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
707 			       bad_pages[i]);
708 	}
709 }
710 
711 /*
712  * Here we put platform-specific memory range workarounds, i.e.
713  * memory known to be corrupt or otherwise in need to be reserved on
714  * specific platforms.
715  *
716  * If this gets used more widely it could use a real dispatch mechanism.
717  */
718 static void __init trim_platform_memory_ranges(void)
719 {
720 	trim_snb_memory();
721 }
722 
723 static void __init trim_bios_range(void)
724 {
725 	/*
726 	 * A special case is the first 4Kb of memory;
727 	 * This is a BIOS owned area, not kernel ram, but generally
728 	 * not listed as such in the E820 table.
729 	 *
730 	 * This typically reserves additional memory (64KiB by default)
731 	 * since some BIOSes are known to corrupt low memory.  See the
732 	 * Kconfig help text for X86_RESERVE_LOW.
733 	 */
734 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
735 
736 	/*
737 	 * special case: Some BIOSen report the PC BIOS
738 	 * area (640->1Mb) as ram even though it is not.
739 	 * take them out.
740 	 */
741 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
742 
743 	e820__update_table(e820_table);
744 }
745 
746 /* called before trim_bios_range() to spare extra sanitize */
747 static void __init e820_add_kernel_range(void)
748 {
749 	u64 start = __pa_symbol(_text);
750 	u64 size = __pa_symbol(_end) - start;
751 
752 	/*
753 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
754 	 * attempt to fix it by adding the range. We may have a confused BIOS,
755 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
756 	 * exclude kernel range. If we really are running on top non-RAM,
757 	 * we will crash later anyways.
758 	 */
759 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
760 		return;
761 
762 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
763 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
764 	e820__range_add(start, size, E820_TYPE_RAM);
765 }
766 
767 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
768 
769 static int __init parse_reservelow(char *p)
770 {
771 	unsigned long long size;
772 
773 	if (!p)
774 		return -EINVAL;
775 
776 	size = memparse(p, &p);
777 
778 	if (size < 4096)
779 		size = 4096;
780 
781 	if (size > 640*1024)
782 		size = 640*1024;
783 
784 	reserve_low = size;
785 
786 	return 0;
787 }
788 
789 early_param("reservelow", parse_reservelow);
790 
791 static void __init trim_low_memory_range(void)
792 {
793 	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
794 }
795 
796 /*
797  * Dump out kernel offset information on panic.
798  */
799 static int
800 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
801 {
802 	if (kaslr_enabled()) {
803 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
804 			 kaslr_offset(),
805 			 __START_KERNEL,
806 			 __START_KERNEL_map,
807 			 MODULES_VADDR-1);
808 	} else {
809 		pr_emerg("Kernel Offset: disabled\n");
810 	}
811 
812 	return 0;
813 }
814 
815 static void __init simple_udelay_calibration(void)
816 {
817 	unsigned int tsc_khz, cpu_khz;
818 	unsigned long lpj;
819 
820 	if (!boot_cpu_has(X86_FEATURE_TSC))
821 		return;
822 
823 	cpu_khz = x86_platform.calibrate_cpu();
824 	tsc_khz = x86_platform.calibrate_tsc();
825 
826 	tsc_khz = tsc_khz ? : cpu_khz;
827 	if (!tsc_khz)
828 		return;
829 
830 	lpj = tsc_khz * 1000;
831 	do_div(lpj, HZ);
832 	loops_per_jiffy = lpj;
833 }
834 
835 /*
836  * Determine if we were loaded by an EFI loader.  If so, then we have also been
837  * passed the efi memmap, systab, etc., so we should use these data structures
838  * for initialization.  Note, the efi init code path is determined by the
839  * global efi_enabled. This allows the same kernel image to be used on existing
840  * systems (with a traditional BIOS) as well as on EFI systems.
841  */
842 /*
843  * setup_arch - architecture-specific boot-time initializations
844  *
845  * Note: On x86_64, fixmaps are ready for use even before this is called.
846  */
847 
848 void __init setup_arch(char **cmdline_p)
849 {
850 	memblock_reserve(__pa_symbol(_text),
851 			 (unsigned long)__bss_stop - (unsigned long)_text);
852 
853 	early_reserve_initrd();
854 
855 	/*
856 	 * At this point everything still needed from the boot loader
857 	 * or BIOS or kernel text should be early reserved or marked not
858 	 * RAM in e820. All other memory is free game.
859 	 */
860 
861 #ifdef CONFIG_X86_32
862 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
863 
864 	/*
865 	 * copy kernel address range established so far and switch
866 	 * to the proper swapper page table
867 	 */
868 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
869 			initial_page_table + KERNEL_PGD_BOUNDARY,
870 			KERNEL_PGD_PTRS);
871 
872 	load_cr3(swapper_pg_dir);
873 	/*
874 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
875 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
876 	 * will not flush anything because the cpu quirk which clears
877 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
878 	 * load_cr3() above the TLB has been flushed already. The
879 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
880 	 * so proper operation is guaranteed.
881 	 */
882 	__flush_tlb_all();
883 #else
884 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
885 #endif
886 
887 	/*
888 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
889 	 * reserve_top(), so do this before touching the ioremap area.
890 	 */
891 	olpc_ofw_detect();
892 
893 	early_trap_init();
894 	early_cpu_init();
895 	early_ioremap_init();
896 
897 	setup_olpc_ofw_pgd();
898 
899 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
900 	screen_info = boot_params.screen_info;
901 	edid_info = boot_params.edid_info;
902 #ifdef CONFIG_X86_32
903 	apm_info.bios = boot_params.apm_bios_info;
904 	ist_info = boot_params.ist_info;
905 #endif
906 	saved_video_mode = boot_params.hdr.vid_mode;
907 	bootloader_type = boot_params.hdr.type_of_loader;
908 	if ((bootloader_type >> 4) == 0xe) {
909 		bootloader_type &= 0xf;
910 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
911 	}
912 	bootloader_version  = bootloader_type & 0xf;
913 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
914 
915 #ifdef CONFIG_BLK_DEV_RAM
916 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
917 	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
918 	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
919 #endif
920 #ifdef CONFIG_EFI
921 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
922 		     EFI32_LOADER_SIGNATURE, 4)) {
923 		set_bit(EFI_BOOT, &efi.flags);
924 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
925 		     EFI64_LOADER_SIGNATURE, 4)) {
926 		set_bit(EFI_BOOT, &efi.flags);
927 		set_bit(EFI_64BIT, &efi.flags);
928 	}
929 
930 	if (efi_enabled(EFI_BOOT))
931 		efi_memblock_x86_reserve_range();
932 #endif
933 
934 	x86_init.oem.arch_setup();
935 
936 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
937 	e820__memory_setup();
938 	parse_setup_data();
939 
940 	copy_edd();
941 
942 	if (!boot_params.hdr.root_flags)
943 		root_mountflags &= ~MS_RDONLY;
944 	init_mm.start_code = (unsigned long) _text;
945 	init_mm.end_code = (unsigned long) _etext;
946 	init_mm.end_data = (unsigned long) _edata;
947 	init_mm.brk = _brk_end;
948 
949 	mpx_mm_init(&init_mm);
950 
951 	code_resource.start = __pa_symbol(_text);
952 	code_resource.end = __pa_symbol(_etext)-1;
953 	data_resource.start = __pa_symbol(_etext);
954 	data_resource.end = __pa_symbol(_edata)-1;
955 	bss_resource.start = __pa_symbol(__bss_start);
956 	bss_resource.end = __pa_symbol(__bss_stop)-1;
957 
958 #ifdef CONFIG_CMDLINE_BOOL
959 #ifdef CONFIG_CMDLINE_OVERRIDE
960 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
961 #else
962 	if (builtin_cmdline[0]) {
963 		/* append boot loader cmdline to builtin */
964 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
965 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
966 		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
967 	}
968 #endif
969 #endif
970 
971 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
972 	*cmdline_p = command_line;
973 
974 	/*
975 	 * x86_configure_nx() is called before parse_early_param() to detect
976 	 * whether hardware doesn't support NX (so that the early EHCI debug
977 	 * console setup can safely call set_fixmap()). It may then be called
978 	 * again from within noexec_setup() during parsing early parameters
979 	 * to honor the respective command line option.
980 	 */
981 	x86_configure_nx();
982 
983 	simple_udelay_calibration();
984 
985 	parse_early_param();
986 
987 #ifdef CONFIG_MEMORY_HOTPLUG
988 	/*
989 	 * Memory used by the kernel cannot be hot-removed because Linux
990 	 * cannot migrate the kernel pages. When memory hotplug is
991 	 * enabled, we should prevent memblock from allocating memory
992 	 * for the kernel.
993 	 *
994 	 * ACPI SRAT records all hotpluggable memory ranges. But before
995 	 * SRAT is parsed, we don't know about it.
996 	 *
997 	 * The kernel image is loaded into memory at very early time. We
998 	 * cannot prevent this anyway. So on NUMA system, we set any
999 	 * node the kernel resides in as un-hotpluggable.
1000 	 *
1001 	 * Since on modern servers, one node could have double-digit
1002 	 * gigabytes memory, we can assume the memory around the kernel
1003 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1004 	 * allocate memory near the kernel image to try the best to keep
1005 	 * the kernel away from hotpluggable memory.
1006 	 */
1007 	if (movable_node_is_enabled())
1008 		memblock_set_bottom_up(true);
1009 #endif
1010 
1011 	x86_report_nx();
1012 
1013 	/* after early param, so could get panic from serial */
1014 	memblock_x86_reserve_range_setup_data();
1015 
1016 	if (acpi_mps_check()) {
1017 #ifdef CONFIG_X86_LOCAL_APIC
1018 		disable_apic = 1;
1019 #endif
1020 		setup_clear_cpu_cap(X86_FEATURE_APIC);
1021 	}
1022 
1023 #ifdef CONFIG_PCI
1024 	if (pci_early_dump_regs)
1025 		early_dump_pci_devices();
1026 #endif
1027 
1028 	e820__reserve_setup_data();
1029 	e820__finish_early_params();
1030 
1031 	if (efi_enabled(EFI_BOOT))
1032 		efi_init();
1033 
1034 	dmi_scan_machine();
1035 	dmi_memdev_walk();
1036 	dmi_set_dump_stack_arch_desc();
1037 
1038 	/*
1039 	 * VMware detection requires dmi to be available, so this
1040 	 * needs to be done after dmi_scan_machine, for the BP.
1041 	 */
1042 	init_hypervisor_platform();
1043 
1044 	x86_init.resources.probe_roms();
1045 
1046 	/* after parse_early_param, so could debug it */
1047 	insert_resource(&iomem_resource, &code_resource);
1048 	insert_resource(&iomem_resource, &data_resource);
1049 	insert_resource(&iomem_resource, &bss_resource);
1050 
1051 	e820_add_kernel_range();
1052 	trim_bios_range();
1053 #ifdef CONFIG_X86_32
1054 	if (ppro_with_ram_bug()) {
1055 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1056 				  E820_TYPE_RESERVED);
1057 		e820__update_table(e820_table);
1058 		printk(KERN_INFO "fixed physical RAM map:\n");
1059 		e820__print_table("bad_ppro");
1060 	}
1061 #else
1062 	early_gart_iommu_check();
1063 #endif
1064 
1065 	/*
1066 	 * partially used pages are not usable - thus
1067 	 * we are rounding upwards:
1068 	 */
1069 	max_pfn = e820__end_of_ram_pfn();
1070 
1071 	/* update e820 for memory not covered by WB MTRRs */
1072 	mtrr_bp_init();
1073 	if (mtrr_trim_uncached_memory(max_pfn))
1074 		max_pfn = e820__end_of_ram_pfn();
1075 
1076 	max_possible_pfn = max_pfn;
1077 
1078 	/*
1079 	 * Define random base addresses for memory sections after max_pfn is
1080 	 * defined and before each memory section base is used.
1081 	 */
1082 	kernel_randomize_memory();
1083 
1084 #ifdef CONFIG_X86_32
1085 	/* max_low_pfn get updated here */
1086 	find_low_pfn_range();
1087 #else
1088 	check_x2apic();
1089 
1090 	/* How many end-of-memory variables you have, grandma! */
1091 	/* need this before calling reserve_initrd */
1092 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1093 		max_low_pfn = e820__end_of_low_ram_pfn();
1094 	else
1095 		max_low_pfn = max_pfn;
1096 
1097 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1098 #endif
1099 
1100 	/*
1101 	 * Find and reserve possible boot-time SMP configuration:
1102 	 */
1103 	find_smp_config();
1104 
1105 	reserve_ibft_region();
1106 
1107 	early_alloc_pgt_buf();
1108 
1109 	/*
1110 	 * Need to conclude brk, before e820__memblock_setup()
1111 	 *  it could use memblock_find_in_range, could overlap with
1112 	 *  brk area.
1113 	 */
1114 	reserve_brk();
1115 
1116 	cleanup_highmap();
1117 
1118 	memblock_set_current_limit(ISA_END_ADDRESS);
1119 	e820__memblock_setup();
1120 
1121 	if (!early_xdbc_setup_hardware())
1122 		early_xdbc_register_console();
1123 
1124 	reserve_bios_regions();
1125 
1126 	if (efi_enabled(EFI_MEMMAP)) {
1127 		efi_fake_memmap();
1128 		efi_find_mirror();
1129 		efi_esrt_init();
1130 
1131 		/*
1132 		 * The EFI specification says that boot service code won't be
1133 		 * called after ExitBootServices(). This is, in fact, a lie.
1134 		 */
1135 		efi_reserve_boot_services();
1136 	}
1137 
1138 	/* preallocate 4k for mptable mpc */
1139 	e820__memblock_alloc_reserved_mpc_new();
1140 
1141 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1142 	setup_bios_corruption_check();
1143 #endif
1144 
1145 #ifdef CONFIG_X86_32
1146 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1147 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1148 #endif
1149 
1150 	reserve_real_mode();
1151 
1152 	trim_platform_memory_ranges();
1153 	trim_low_memory_range();
1154 
1155 	init_mem_mapping();
1156 
1157 	early_trap_pf_init();
1158 
1159 	/*
1160 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1161 	 * with the current CR4 value.  This may not be necessary, but
1162 	 * auditing all the early-boot CR4 manipulation would be needed to
1163 	 * rule it out.
1164 	 */
1165 	mmu_cr4_features = __read_cr4();
1166 
1167 	memblock_set_current_limit(get_max_mapped());
1168 
1169 	/*
1170 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1171 	 */
1172 
1173 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1174 	if (init_ohci1394_dma_early)
1175 		init_ohci1394_dma_on_all_controllers();
1176 #endif
1177 	/* Allocate bigger log buffer */
1178 	setup_log_buf(1);
1179 
1180 	if (efi_enabled(EFI_BOOT)) {
1181 		switch (boot_params.secure_boot) {
1182 		case efi_secureboot_mode_disabled:
1183 			pr_info("Secure boot disabled\n");
1184 			break;
1185 		case efi_secureboot_mode_enabled:
1186 			pr_info("Secure boot enabled\n");
1187 			break;
1188 		default:
1189 			pr_info("Secure boot could not be determined\n");
1190 			break;
1191 		}
1192 	}
1193 
1194 	reserve_initrd();
1195 
1196 	acpi_table_upgrade();
1197 
1198 	vsmp_init();
1199 
1200 	io_delay_init();
1201 
1202 	/*
1203 	 * Parse the ACPI tables for possible boot-time SMP configuration.
1204 	 */
1205 	acpi_boot_table_init();
1206 
1207 	early_acpi_boot_init();
1208 
1209 	initmem_init();
1210 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1211 
1212 	/*
1213 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1214 	 * won't consume hotpluggable memory.
1215 	 */
1216 	reserve_crashkernel();
1217 
1218 	memblock_find_dma_reserve();
1219 
1220 #ifdef CONFIG_KVM_GUEST
1221 	kvmclock_init();
1222 #endif
1223 
1224 	x86_init.paging.pagetable_init();
1225 
1226 	kasan_init();
1227 
1228 #ifdef CONFIG_X86_32
1229 	/* sync back kernel address range */
1230 	clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1231 			swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1232 			KERNEL_PGD_PTRS);
1233 
1234 	/*
1235 	 * sync back low identity map too.  It is used for example
1236 	 * in the 32-bit EFI stub.
1237 	 */
1238 	clone_pgd_range(initial_page_table,
1239 			swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1240 			min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1241 #endif
1242 
1243 	tboot_probe();
1244 
1245 	map_vsyscall();
1246 
1247 	generic_apic_probe();
1248 
1249 	early_quirks();
1250 
1251 	/*
1252 	 * Read APIC and some other early information from ACPI tables.
1253 	 */
1254 	acpi_boot_init();
1255 	sfi_init();
1256 	x86_dtb_init();
1257 
1258 	/*
1259 	 * get boot-time SMP configuration:
1260 	 */
1261 	get_smp_config();
1262 
1263 	/*
1264 	 * Systems w/o ACPI and mptables might not have it mapped the local
1265 	 * APIC yet, but prefill_possible_map() might need to access it.
1266 	 */
1267 	init_apic_mappings();
1268 
1269 	prefill_possible_map();
1270 
1271 	init_cpu_to_node();
1272 
1273 	io_apic_init_mappings();
1274 
1275 	kvm_guest_init();
1276 
1277 	e820__reserve_resources();
1278 	e820__register_nosave_regions(max_low_pfn);
1279 
1280 	x86_init.resources.reserve_resources();
1281 
1282 	e820__setup_pci_gap();
1283 
1284 #ifdef CONFIG_VT
1285 #if defined(CONFIG_VGA_CONSOLE)
1286 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1287 		conswitchp = &vga_con;
1288 #elif defined(CONFIG_DUMMY_CONSOLE)
1289 	conswitchp = &dummy_con;
1290 #endif
1291 #endif
1292 	x86_init.oem.banner();
1293 
1294 	x86_init.timers.wallclock_init();
1295 
1296 	mcheck_init();
1297 
1298 	arch_init_ideal_nops();
1299 
1300 	register_refined_jiffies(CLOCK_TICK_RATE);
1301 
1302 #ifdef CONFIG_EFI
1303 	if (efi_enabled(EFI_BOOT))
1304 		efi_apply_memmap_quirks();
1305 #endif
1306 }
1307 
1308 #ifdef CONFIG_X86_32
1309 
1310 static struct resource video_ram_resource = {
1311 	.name	= "Video RAM area",
1312 	.start	= 0xa0000,
1313 	.end	= 0xbffff,
1314 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1315 };
1316 
1317 void __init i386_reserve_resources(void)
1318 {
1319 	request_resource(&iomem_resource, &video_ram_resource);
1320 	reserve_standard_io_resources();
1321 }
1322 
1323 #endif /* CONFIG_X86_32 */
1324 
1325 static struct notifier_block kernel_offset_notifier = {
1326 	.notifier_call = dump_kernel_offset
1327 };
1328 
1329 static int __init register_kernel_offset_dumper(void)
1330 {
1331 	atomic_notifier_chain_register(&panic_notifier_list,
1332 					&kernel_offset_notifier);
1333 	return 0;
1334 }
1335 __initcall(register_kernel_offset_dumper);
1336 
1337 void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1338 {
1339 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
1340 		return;
1341 
1342 	seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1343 }
1344