1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * This file contains the setup_arch() code, which handles the architecture-dependent 6 * parts of early kernel initialization. 7 */ 8 #include <linux/acpi.h> 9 #include <linux/console.h> 10 #include <linux/crash_dump.h> 11 #include <linux/dma-map-ops.h> 12 #include <linux/efi.h> 13 #include <linux/ima.h> 14 #include <linux/init_ohci1394_dma.h> 15 #include <linux/initrd.h> 16 #include <linux/iscsi_ibft.h> 17 #include <linux/memblock.h> 18 #include <linux/panic_notifier.h> 19 #include <linux/pci.h> 20 #include <linux/root_dev.h> 21 #include <linux/hugetlb.h> 22 #include <linux/tboot.h> 23 #include <linux/usb/xhci-dbgp.h> 24 #include <linux/static_call.h> 25 #include <linux/swiotlb.h> 26 #include <linux/random.h> 27 28 #include <uapi/linux/mount.h> 29 30 #include <xen/xen.h> 31 32 #include <asm/apic.h> 33 #include <asm/efi.h> 34 #include <asm/numa.h> 35 #include <asm/bios_ebda.h> 36 #include <asm/bugs.h> 37 #include <asm/cacheinfo.h> 38 #include <asm/coco.h> 39 #include <asm/cpu.h> 40 #include <asm/efi.h> 41 #include <asm/gart.h> 42 #include <asm/hypervisor.h> 43 #include <asm/io_apic.h> 44 #include <asm/kasan.h> 45 #include <asm/kaslr.h> 46 #include <asm/mce.h> 47 #include <asm/memtype.h> 48 #include <asm/mtrr.h> 49 #include <asm/realmode.h> 50 #include <asm/olpc_ofw.h> 51 #include <asm/pci-direct.h> 52 #include <asm/prom.h> 53 #include <asm/proto.h> 54 #include <asm/thermal.h> 55 #include <asm/unwind.h> 56 #include <asm/vsyscall.h> 57 #include <linux/vmalloc.h> 58 59 /* 60 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB 61 * max_pfn_mapped: highest directly mapped pfn > 4 GB 62 * 63 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are 64 * represented by pfn_mapped[]. 65 */ 66 unsigned long max_low_pfn_mapped; 67 unsigned long max_pfn_mapped; 68 69 #ifdef CONFIG_DMI 70 RESERVE_BRK(dmi_alloc, 65536); 71 #endif 72 73 74 unsigned long _brk_start = (unsigned long)__brk_base; 75 unsigned long _brk_end = (unsigned long)__brk_base; 76 77 struct boot_params boot_params; 78 79 /* 80 * These are the four main kernel memory regions, we put them into 81 * the resource tree so that kdump tools and other debugging tools 82 * recover it: 83 */ 84 85 static struct resource rodata_resource = { 86 .name = "Kernel rodata", 87 .start = 0, 88 .end = 0, 89 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 90 }; 91 92 static struct resource data_resource = { 93 .name = "Kernel data", 94 .start = 0, 95 .end = 0, 96 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 97 }; 98 99 static struct resource code_resource = { 100 .name = "Kernel code", 101 .start = 0, 102 .end = 0, 103 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 104 }; 105 106 static struct resource bss_resource = { 107 .name = "Kernel bss", 108 .start = 0, 109 .end = 0, 110 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 111 }; 112 113 114 #ifdef CONFIG_X86_32 115 /* CPU data as detected by the assembly code in head_32.S */ 116 struct cpuinfo_x86 new_cpu_data; 117 118 struct apm_info apm_info; 119 EXPORT_SYMBOL(apm_info); 120 121 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ 122 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) 123 struct ist_info ist_info; 124 EXPORT_SYMBOL(ist_info); 125 #else 126 struct ist_info ist_info; 127 #endif 128 129 #endif 130 131 struct cpuinfo_x86 boot_cpu_data __read_mostly; 132 EXPORT_SYMBOL(boot_cpu_data); 133 134 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) 135 __visible unsigned long mmu_cr4_features __ro_after_init; 136 #else 137 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; 138 #endif 139 140 #ifdef CONFIG_IMA 141 static phys_addr_t ima_kexec_buffer_phys; 142 static size_t ima_kexec_buffer_size; 143 #endif 144 145 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ 146 int bootloader_type, bootloader_version; 147 148 /* 149 * Setup options 150 */ 151 struct screen_info screen_info; 152 EXPORT_SYMBOL(screen_info); 153 struct edid_info edid_info; 154 EXPORT_SYMBOL_GPL(edid_info); 155 156 extern int root_mountflags; 157 158 unsigned long saved_video_mode; 159 160 #define RAMDISK_IMAGE_START_MASK 0x07FF 161 #define RAMDISK_PROMPT_FLAG 0x8000 162 #define RAMDISK_LOAD_FLAG 0x4000 163 164 static char __initdata command_line[COMMAND_LINE_SIZE]; 165 #ifdef CONFIG_CMDLINE_BOOL 166 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 167 #endif 168 169 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) 170 struct edd edd; 171 #ifdef CONFIG_EDD_MODULE 172 EXPORT_SYMBOL(edd); 173 #endif 174 /** 175 * copy_edd() - Copy the BIOS EDD information 176 * from boot_params into a safe place. 177 * 178 */ 179 static inline void __init copy_edd(void) 180 { 181 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, 182 sizeof(edd.mbr_signature)); 183 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); 184 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; 185 edd.edd_info_nr = boot_params.eddbuf_entries; 186 } 187 #else 188 static inline void __init copy_edd(void) 189 { 190 } 191 #endif 192 193 void * __init extend_brk(size_t size, size_t align) 194 { 195 size_t mask = align - 1; 196 void *ret; 197 198 BUG_ON(_brk_start == 0); 199 BUG_ON(align & mask); 200 201 _brk_end = (_brk_end + mask) & ~mask; 202 BUG_ON((char *)(_brk_end + size) > __brk_limit); 203 204 ret = (void *)_brk_end; 205 _brk_end += size; 206 207 memset(ret, 0, size); 208 209 return ret; 210 } 211 212 #ifdef CONFIG_X86_32 213 static void __init cleanup_highmap(void) 214 { 215 } 216 #endif 217 218 static void __init reserve_brk(void) 219 { 220 if (_brk_end > _brk_start) 221 memblock_reserve(__pa_symbol(_brk_start), 222 _brk_end - _brk_start); 223 224 /* Mark brk area as locked down and no longer taking any 225 new allocations */ 226 _brk_start = 0; 227 } 228 229 u64 relocated_ramdisk; 230 231 #ifdef CONFIG_BLK_DEV_INITRD 232 233 static u64 __init get_ramdisk_image(void) 234 { 235 u64 ramdisk_image = boot_params.hdr.ramdisk_image; 236 237 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; 238 239 if (ramdisk_image == 0) 240 ramdisk_image = phys_initrd_start; 241 242 return ramdisk_image; 243 } 244 static u64 __init get_ramdisk_size(void) 245 { 246 u64 ramdisk_size = boot_params.hdr.ramdisk_size; 247 248 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; 249 250 if (ramdisk_size == 0) 251 ramdisk_size = phys_initrd_size; 252 253 return ramdisk_size; 254 } 255 256 static void __init relocate_initrd(void) 257 { 258 /* Assume only end is not page aligned */ 259 u64 ramdisk_image = get_ramdisk_image(); 260 u64 ramdisk_size = get_ramdisk_size(); 261 u64 area_size = PAGE_ALIGN(ramdisk_size); 262 263 /* We need to move the initrd down into directly mapped mem */ 264 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0, 265 PFN_PHYS(max_pfn_mapped)); 266 if (!relocated_ramdisk) 267 panic("Cannot find place for new RAMDISK of size %lld\n", 268 ramdisk_size); 269 270 initrd_start = relocated_ramdisk + PAGE_OFFSET; 271 initrd_end = initrd_start + ramdisk_size; 272 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", 273 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 274 275 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size); 276 277 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" 278 " [mem %#010llx-%#010llx]\n", 279 ramdisk_image, ramdisk_image + ramdisk_size - 1, 280 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 281 } 282 283 static void __init early_reserve_initrd(void) 284 { 285 /* Assume only end is not page aligned */ 286 u64 ramdisk_image = get_ramdisk_image(); 287 u64 ramdisk_size = get_ramdisk_size(); 288 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 289 290 if (!boot_params.hdr.type_of_loader || 291 !ramdisk_image || !ramdisk_size) 292 return; /* No initrd provided by bootloader */ 293 294 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image); 295 } 296 297 static void __init reserve_initrd(void) 298 { 299 /* Assume only end is not page aligned */ 300 u64 ramdisk_image = get_ramdisk_image(); 301 u64 ramdisk_size = get_ramdisk_size(); 302 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 303 304 if (!boot_params.hdr.type_of_loader || 305 !ramdisk_image || !ramdisk_size) 306 return; /* No initrd provided by bootloader */ 307 308 initrd_start = 0; 309 310 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, 311 ramdisk_end - 1); 312 313 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), 314 PFN_DOWN(ramdisk_end))) { 315 /* All are mapped, easy case */ 316 initrd_start = ramdisk_image + PAGE_OFFSET; 317 initrd_end = initrd_start + ramdisk_size; 318 return; 319 } 320 321 relocate_initrd(); 322 323 memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image); 324 } 325 326 #else 327 static void __init early_reserve_initrd(void) 328 { 329 } 330 static void __init reserve_initrd(void) 331 { 332 } 333 #endif /* CONFIG_BLK_DEV_INITRD */ 334 335 static void __init add_early_ima_buffer(u64 phys_addr) 336 { 337 #ifdef CONFIG_IMA 338 struct ima_setup_data *data; 339 340 data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data)); 341 if (!data) { 342 pr_warn("setup: failed to memremap ima_setup_data entry\n"); 343 return; 344 } 345 346 if (data->size) { 347 memblock_reserve(data->addr, data->size); 348 ima_kexec_buffer_phys = data->addr; 349 ima_kexec_buffer_size = data->size; 350 } 351 352 early_memunmap(data, sizeof(*data)); 353 #else 354 pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n"); 355 #endif 356 } 357 358 #if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE) 359 int __init ima_free_kexec_buffer(void) 360 { 361 if (!ima_kexec_buffer_size) 362 return -ENOENT; 363 364 memblock_free_late(ima_kexec_buffer_phys, 365 ima_kexec_buffer_size); 366 367 ima_kexec_buffer_phys = 0; 368 ima_kexec_buffer_size = 0; 369 370 return 0; 371 } 372 373 int __init ima_get_kexec_buffer(void **addr, size_t *size) 374 { 375 if (!ima_kexec_buffer_size) 376 return -ENOENT; 377 378 *addr = __va(ima_kexec_buffer_phys); 379 *size = ima_kexec_buffer_size; 380 381 return 0; 382 } 383 #endif 384 385 static void __init parse_setup_data(void) 386 { 387 struct setup_data *data; 388 u64 pa_data, pa_next; 389 390 pa_data = boot_params.hdr.setup_data; 391 while (pa_data) { 392 u32 data_len, data_type; 393 394 data = early_memremap(pa_data, sizeof(*data)); 395 data_len = data->len + sizeof(struct setup_data); 396 data_type = data->type; 397 pa_next = data->next; 398 early_memunmap(data, sizeof(*data)); 399 400 switch (data_type) { 401 case SETUP_E820_EXT: 402 e820__memory_setup_extended(pa_data, data_len); 403 break; 404 case SETUP_DTB: 405 add_dtb(pa_data); 406 break; 407 case SETUP_EFI: 408 parse_efi_setup(pa_data, data_len); 409 break; 410 case SETUP_IMA: 411 add_early_ima_buffer(pa_data); 412 break; 413 case SETUP_RNG_SEED: 414 data = early_memremap(pa_data, data_len); 415 add_bootloader_randomness(data->data, data->len); 416 /* Zero seed for forward secrecy. */ 417 memzero_explicit(data->data, data->len); 418 /* Zero length in case we find ourselves back here by accident. */ 419 memzero_explicit(&data->len, sizeof(data->len)); 420 early_memunmap(data, data_len); 421 break; 422 default: 423 break; 424 } 425 pa_data = pa_next; 426 } 427 } 428 429 static void __init memblock_x86_reserve_range_setup_data(void) 430 { 431 struct setup_indirect *indirect; 432 struct setup_data *data; 433 u64 pa_data, pa_next; 434 u32 len; 435 436 pa_data = boot_params.hdr.setup_data; 437 while (pa_data) { 438 data = early_memremap(pa_data, sizeof(*data)); 439 if (!data) { 440 pr_warn("setup: failed to memremap setup_data entry\n"); 441 return; 442 } 443 444 len = sizeof(*data); 445 pa_next = data->next; 446 447 memblock_reserve(pa_data, sizeof(*data) + data->len); 448 449 if (data->type == SETUP_INDIRECT) { 450 len += data->len; 451 early_memunmap(data, sizeof(*data)); 452 data = early_memremap(pa_data, len); 453 if (!data) { 454 pr_warn("setup: failed to memremap indirect setup_data\n"); 455 return; 456 } 457 458 indirect = (struct setup_indirect *)data->data; 459 460 if (indirect->type != SETUP_INDIRECT) 461 memblock_reserve(indirect->addr, indirect->len); 462 } 463 464 pa_data = pa_next; 465 early_memunmap(data, len); 466 } 467 } 468 469 /* 470 * --------- Crashkernel reservation ------------------------------ 471 */ 472 473 /* 16M alignment for crash kernel regions */ 474 #define CRASH_ALIGN SZ_16M 475 476 /* 477 * Keep the crash kernel below this limit. 478 * 479 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range 480 * due to mapping restrictions. 481 * 482 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is 483 * the upper limit of system RAM in 4-level paging mode. Since the kdump 484 * jump could be from 5-level paging to 4-level paging, the jump will fail if 485 * the kernel is put above 64 TB, and during the 1st kernel bootup there's 486 * no good way to detect the paging mode of the target kernel which will be 487 * loaded for dumping. 488 */ 489 #ifdef CONFIG_X86_32 490 # define CRASH_ADDR_LOW_MAX SZ_512M 491 # define CRASH_ADDR_HIGH_MAX SZ_512M 492 #else 493 # define CRASH_ADDR_LOW_MAX SZ_4G 494 # define CRASH_ADDR_HIGH_MAX SZ_64T 495 #endif 496 497 static int __init reserve_crashkernel_low(void) 498 { 499 #ifdef CONFIG_X86_64 500 unsigned long long base, low_base = 0, low_size = 0; 501 unsigned long low_mem_limit; 502 int ret; 503 504 low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX); 505 506 /* crashkernel=Y,low */ 507 ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base); 508 if (ret) { 509 /* 510 * two parts from kernel/dma/swiotlb.c: 511 * -swiotlb size: user-specified with swiotlb= or default. 512 * 513 * -swiotlb overflow buffer: now hardcoded to 32k. We round it 514 * to 8M for other buffers that may need to stay low too. Also 515 * make sure we allocate enough extra low memory so that we 516 * don't run out of DMA buffers for 32-bit devices. 517 */ 518 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20); 519 } else { 520 /* passed with crashkernel=0,low ? */ 521 if (!low_size) 522 return 0; 523 } 524 525 low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX); 526 if (!low_base) { 527 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n", 528 (unsigned long)(low_size >> 20)); 529 return -ENOMEM; 530 } 531 532 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n", 533 (unsigned long)(low_size >> 20), 534 (unsigned long)(low_base >> 20), 535 (unsigned long)(low_mem_limit >> 20)); 536 537 crashk_low_res.start = low_base; 538 crashk_low_res.end = low_base + low_size - 1; 539 insert_resource(&iomem_resource, &crashk_low_res); 540 #endif 541 return 0; 542 } 543 544 static void __init reserve_crashkernel(void) 545 { 546 unsigned long long crash_size, crash_base, total_mem; 547 bool high = false; 548 int ret; 549 550 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 551 return; 552 553 total_mem = memblock_phys_mem_size(); 554 555 /* crashkernel=XM */ 556 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); 557 if (ret != 0 || crash_size <= 0) { 558 /* crashkernel=X,high */ 559 ret = parse_crashkernel_high(boot_command_line, total_mem, 560 &crash_size, &crash_base); 561 if (ret != 0 || crash_size <= 0) 562 return; 563 high = true; 564 } 565 566 if (xen_pv_domain()) { 567 pr_info("Ignoring crashkernel for a Xen PV domain\n"); 568 return; 569 } 570 571 /* 0 means: find the address automatically */ 572 if (!crash_base) { 573 /* 574 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory, 575 * crashkernel=x,high reserves memory over 4G, also allocates 576 * 256M extra low memory for DMA buffers and swiotlb. 577 * But the extra memory is not required for all machines. 578 * So try low memory first and fall back to high memory 579 * unless "crashkernel=size[KMG],high" is specified. 580 */ 581 if (!high) 582 crash_base = memblock_phys_alloc_range(crash_size, 583 CRASH_ALIGN, CRASH_ALIGN, 584 CRASH_ADDR_LOW_MAX); 585 if (!crash_base) 586 crash_base = memblock_phys_alloc_range(crash_size, 587 CRASH_ALIGN, CRASH_ALIGN, 588 CRASH_ADDR_HIGH_MAX); 589 if (!crash_base) { 590 pr_info("crashkernel reservation failed - No suitable area found.\n"); 591 return; 592 } 593 } else { 594 unsigned long long start; 595 596 start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base, 597 crash_base + crash_size); 598 if (start != crash_base) { 599 pr_info("crashkernel reservation failed - memory is in use.\n"); 600 return; 601 } 602 } 603 604 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) { 605 memblock_phys_free(crash_base, crash_size); 606 return; 607 } 608 609 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", 610 (unsigned long)(crash_size >> 20), 611 (unsigned long)(crash_base >> 20), 612 (unsigned long)(total_mem >> 20)); 613 614 crashk_res.start = crash_base; 615 crashk_res.end = crash_base + crash_size - 1; 616 insert_resource(&iomem_resource, &crashk_res); 617 } 618 619 static struct resource standard_io_resources[] = { 620 { .name = "dma1", .start = 0x00, .end = 0x1f, 621 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 622 { .name = "pic1", .start = 0x20, .end = 0x21, 623 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 624 { .name = "timer0", .start = 0x40, .end = 0x43, 625 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 626 { .name = "timer1", .start = 0x50, .end = 0x53, 627 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 628 { .name = "keyboard", .start = 0x60, .end = 0x60, 629 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 630 { .name = "keyboard", .start = 0x64, .end = 0x64, 631 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 632 { .name = "dma page reg", .start = 0x80, .end = 0x8f, 633 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 634 { .name = "pic2", .start = 0xa0, .end = 0xa1, 635 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 636 { .name = "dma2", .start = 0xc0, .end = 0xdf, 637 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 638 { .name = "fpu", .start = 0xf0, .end = 0xff, 639 .flags = IORESOURCE_BUSY | IORESOURCE_IO } 640 }; 641 642 void __init reserve_standard_io_resources(void) 643 { 644 int i; 645 646 /* request I/O space for devices used on all i[345]86 PCs */ 647 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) 648 request_resource(&ioport_resource, &standard_io_resources[i]); 649 650 } 651 652 static bool __init snb_gfx_workaround_needed(void) 653 { 654 #ifdef CONFIG_PCI 655 int i; 656 u16 vendor, devid; 657 static const __initconst u16 snb_ids[] = { 658 0x0102, 659 0x0112, 660 0x0122, 661 0x0106, 662 0x0116, 663 0x0126, 664 0x010a, 665 }; 666 667 /* Assume no if something weird is going on with PCI */ 668 if (!early_pci_allowed()) 669 return false; 670 671 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); 672 if (vendor != 0x8086) 673 return false; 674 675 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); 676 for (i = 0; i < ARRAY_SIZE(snb_ids); i++) 677 if (devid == snb_ids[i]) 678 return true; 679 #endif 680 681 return false; 682 } 683 684 /* 685 * Sandy Bridge graphics has trouble with certain ranges, exclude 686 * them from allocation. 687 */ 688 static void __init trim_snb_memory(void) 689 { 690 static const __initconst unsigned long bad_pages[] = { 691 0x20050000, 692 0x20110000, 693 0x20130000, 694 0x20138000, 695 0x40004000, 696 }; 697 int i; 698 699 if (!snb_gfx_workaround_needed()) 700 return; 701 702 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); 703 704 /* 705 * SandyBridge integrated graphics devices have a bug that prevents 706 * them from accessing certain memory ranges, namely anything below 707 * 1M and in the pages listed in bad_pages[] above. 708 * 709 * To avoid these pages being ever accessed by SNB gfx devices reserve 710 * bad_pages that have not already been reserved at boot time. 711 * All memory below the 1 MB mark is anyway reserved later during 712 * setup_arch(), so there is no need to reserve it here. 713 */ 714 715 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { 716 if (memblock_reserve(bad_pages[i], PAGE_SIZE)) 717 printk(KERN_WARNING "failed to reserve 0x%08lx\n", 718 bad_pages[i]); 719 } 720 } 721 722 static void __init trim_bios_range(void) 723 { 724 /* 725 * A special case is the first 4Kb of memory; 726 * This is a BIOS owned area, not kernel ram, but generally 727 * not listed as such in the E820 table. 728 * 729 * This typically reserves additional memory (64KiB by default) 730 * since some BIOSes are known to corrupt low memory. See the 731 * Kconfig help text for X86_RESERVE_LOW. 732 */ 733 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); 734 735 /* 736 * special case: Some BIOSes report the PC BIOS 737 * area (640Kb -> 1Mb) as RAM even though it is not. 738 * take them out. 739 */ 740 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1); 741 742 e820__update_table(e820_table); 743 } 744 745 /* called before trim_bios_range() to spare extra sanitize */ 746 static void __init e820_add_kernel_range(void) 747 { 748 u64 start = __pa_symbol(_text); 749 u64 size = __pa_symbol(_end) - start; 750 751 /* 752 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and 753 * attempt to fix it by adding the range. We may have a confused BIOS, 754 * or the user may have used memmap=exactmap or memmap=xxM$yyM to 755 * exclude kernel range. If we really are running on top non-RAM, 756 * we will crash later anyways. 757 */ 758 if (e820__mapped_all(start, start + size, E820_TYPE_RAM)) 759 return; 760 761 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n"); 762 e820__range_remove(start, size, E820_TYPE_RAM, 0); 763 e820__range_add(start, size, E820_TYPE_RAM); 764 } 765 766 static void __init early_reserve_memory(void) 767 { 768 /* 769 * Reserve the memory occupied by the kernel between _text and 770 * __end_of_kernel_reserve symbols. Any kernel sections after the 771 * __end_of_kernel_reserve symbol must be explicitly reserved with a 772 * separate memblock_reserve() or they will be discarded. 773 */ 774 memblock_reserve(__pa_symbol(_text), 775 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text); 776 777 /* 778 * The first 4Kb of memory is a BIOS owned area, but generally it is 779 * not listed as such in the E820 table. 780 * 781 * Reserve the first 64K of memory since some BIOSes are known to 782 * corrupt low memory. After the real mode trampoline is allocated the 783 * rest of the memory below 640k is reserved. 784 * 785 * In addition, make sure page 0 is always reserved because on 786 * systems with L1TF its contents can be leaked to user processes. 787 */ 788 memblock_reserve(0, SZ_64K); 789 790 early_reserve_initrd(); 791 792 memblock_x86_reserve_range_setup_data(); 793 794 reserve_bios_regions(); 795 trim_snb_memory(); 796 } 797 798 /* 799 * Dump out kernel offset information on panic. 800 */ 801 static int 802 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) 803 { 804 if (kaslr_enabled()) { 805 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n", 806 kaslr_offset(), 807 __START_KERNEL, 808 __START_KERNEL_map, 809 MODULES_VADDR-1); 810 } else { 811 pr_emerg("Kernel Offset: disabled\n"); 812 } 813 814 return 0; 815 } 816 817 void x86_configure_nx(void) 818 { 819 if (boot_cpu_has(X86_FEATURE_NX)) 820 __supported_pte_mask |= _PAGE_NX; 821 else 822 __supported_pte_mask &= ~_PAGE_NX; 823 } 824 825 static void __init x86_report_nx(void) 826 { 827 if (!boot_cpu_has(X86_FEATURE_NX)) { 828 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " 829 "missing in CPU!\n"); 830 } else { 831 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 832 printk(KERN_INFO "NX (Execute Disable) protection: active\n"); 833 #else 834 /* 32bit non-PAE kernel, NX cannot be used */ 835 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " 836 "cannot be enabled: non-PAE kernel!\n"); 837 #endif 838 } 839 } 840 841 /* 842 * Determine if we were loaded by an EFI loader. If so, then we have also been 843 * passed the efi memmap, systab, etc., so we should use these data structures 844 * for initialization. Note, the efi init code path is determined by the 845 * global efi_enabled. This allows the same kernel image to be used on existing 846 * systems (with a traditional BIOS) as well as on EFI systems. 847 */ 848 /* 849 * setup_arch - architecture-specific boot-time initializations 850 * 851 * Note: On x86_64, fixmaps are ready for use even before this is called. 852 */ 853 854 void __init setup_arch(char **cmdline_p) 855 { 856 #ifdef CONFIG_X86_32 857 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); 858 859 /* 860 * copy kernel address range established so far and switch 861 * to the proper swapper page table 862 */ 863 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, 864 initial_page_table + KERNEL_PGD_BOUNDARY, 865 KERNEL_PGD_PTRS); 866 867 load_cr3(swapper_pg_dir); 868 /* 869 * Note: Quark X1000 CPUs advertise PGE incorrectly and require 870 * a cr3 based tlb flush, so the following __flush_tlb_all() 871 * will not flush anything because the CPU quirk which clears 872 * X86_FEATURE_PGE has not been invoked yet. Though due to the 873 * load_cr3() above the TLB has been flushed already. The 874 * quirk is invoked before subsequent calls to __flush_tlb_all() 875 * so proper operation is guaranteed. 876 */ 877 __flush_tlb_all(); 878 #else 879 printk(KERN_INFO "Command line: %s\n", boot_command_line); 880 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS; 881 #endif 882 883 /* 884 * If we have OLPC OFW, we might end up relocating the fixmap due to 885 * reserve_top(), so do this before touching the ioremap area. 886 */ 887 olpc_ofw_detect(); 888 889 idt_setup_early_traps(); 890 early_cpu_init(); 891 jump_label_init(); 892 static_call_init(); 893 early_ioremap_init(); 894 895 setup_olpc_ofw_pgd(); 896 897 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); 898 screen_info = boot_params.screen_info; 899 edid_info = boot_params.edid_info; 900 #ifdef CONFIG_X86_32 901 apm_info.bios = boot_params.apm_bios_info; 902 ist_info = boot_params.ist_info; 903 #endif 904 saved_video_mode = boot_params.hdr.vid_mode; 905 bootloader_type = boot_params.hdr.type_of_loader; 906 if ((bootloader_type >> 4) == 0xe) { 907 bootloader_type &= 0xf; 908 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; 909 } 910 bootloader_version = bootloader_type & 0xf; 911 bootloader_version |= boot_params.hdr.ext_loader_ver << 4; 912 913 #ifdef CONFIG_BLK_DEV_RAM 914 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; 915 #endif 916 #ifdef CONFIG_EFI 917 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 918 EFI32_LOADER_SIGNATURE, 4)) { 919 set_bit(EFI_BOOT, &efi.flags); 920 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 921 EFI64_LOADER_SIGNATURE, 4)) { 922 set_bit(EFI_BOOT, &efi.flags); 923 set_bit(EFI_64BIT, &efi.flags); 924 } 925 #endif 926 927 x86_init.oem.arch_setup(); 928 929 /* 930 * Do some memory reservations *before* memory is added to memblock, so 931 * memblock allocations won't overwrite it. 932 * 933 * After this point, everything still needed from the boot loader or 934 * firmware or kernel text should be early reserved or marked not RAM in 935 * e820. All other memory is free game. 936 * 937 * This call needs to happen before e820__memory_setup() which calls the 938 * xen_memory_setup() on Xen dom0 which relies on the fact that those 939 * early reservations have happened already. 940 */ 941 early_reserve_memory(); 942 943 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; 944 e820__memory_setup(); 945 parse_setup_data(); 946 947 copy_edd(); 948 949 if (!boot_params.hdr.root_flags) 950 root_mountflags &= ~MS_RDONLY; 951 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end); 952 953 code_resource.start = __pa_symbol(_text); 954 code_resource.end = __pa_symbol(_etext)-1; 955 rodata_resource.start = __pa_symbol(__start_rodata); 956 rodata_resource.end = __pa_symbol(__end_rodata)-1; 957 data_resource.start = __pa_symbol(_sdata); 958 data_resource.end = __pa_symbol(_edata)-1; 959 bss_resource.start = __pa_symbol(__bss_start); 960 bss_resource.end = __pa_symbol(__bss_stop)-1; 961 962 #ifdef CONFIG_CMDLINE_BOOL 963 #ifdef CONFIG_CMDLINE_OVERRIDE 964 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 965 #else 966 if (builtin_cmdline[0]) { 967 /* append boot loader cmdline to builtin */ 968 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); 969 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); 970 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 971 } 972 #endif 973 #endif 974 975 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 976 *cmdline_p = command_line; 977 978 /* 979 * x86_configure_nx() is called before parse_early_param() to detect 980 * whether hardware doesn't support NX (so that the early EHCI debug 981 * console setup can safely call set_fixmap()). 982 */ 983 x86_configure_nx(); 984 985 parse_early_param(); 986 987 if (efi_enabled(EFI_BOOT)) 988 efi_memblock_x86_reserve_range(); 989 990 #ifdef CONFIG_MEMORY_HOTPLUG 991 /* 992 * Memory used by the kernel cannot be hot-removed because Linux 993 * cannot migrate the kernel pages. When memory hotplug is 994 * enabled, we should prevent memblock from allocating memory 995 * for the kernel. 996 * 997 * ACPI SRAT records all hotpluggable memory ranges. But before 998 * SRAT is parsed, we don't know about it. 999 * 1000 * The kernel image is loaded into memory at very early time. We 1001 * cannot prevent this anyway. So on NUMA system, we set any 1002 * node the kernel resides in as un-hotpluggable. 1003 * 1004 * Since on modern servers, one node could have double-digit 1005 * gigabytes memory, we can assume the memory around the kernel 1006 * image is also un-hotpluggable. So before SRAT is parsed, just 1007 * allocate memory near the kernel image to try the best to keep 1008 * the kernel away from hotpluggable memory. 1009 */ 1010 if (movable_node_is_enabled()) 1011 memblock_set_bottom_up(true); 1012 #endif 1013 1014 x86_report_nx(); 1015 1016 apic_setup_apic_calls(); 1017 1018 if (acpi_mps_check()) { 1019 #ifdef CONFIG_X86_LOCAL_APIC 1020 apic_is_disabled = true; 1021 #endif 1022 setup_clear_cpu_cap(X86_FEATURE_APIC); 1023 } 1024 1025 e820__reserve_setup_data(); 1026 e820__finish_early_params(); 1027 1028 if (efi_enabled(EFI_BOOT)) 1029 efi_init(); 1030 1031 reserve_ibft_region(); 1032 x86_init.resources.dmi_setup(); 1033 1034 /* 1035 * VMware detection requires dmi to be available, so this 1036 * needs to be done after dmi_setup(), for the boot CPU. 1037 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be 1038 * called before cache_bp_init() for setting up MTRR state. 1039 */ 1040 init_hypervisor_platform(); 1041 1042 tsc_early_init(); 1043 x86_init.resources.probe_roms(); 1044 1045 /* after parse_early_param, so could debug it */ 1046 insert_resource(&iomem_resource, &code_resource); 1047 insert_resource(&iomem_resource, &rodata_resource); 1048 insert_resource(&iomem_resource, &data_resource); 1049 insert_resource(&iomem_resource, &bss_resource); 1050 1051 e820_add_kernel_range(); 1052 trim_bios_range(); 1053 #ifdef CONFIG_X86_32 1054 if (ppro_with_ram_bug()) { 1055 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM, 1056 E820_TYPE_RESERVED); 1057 e820__update_table(e820_table); 1058 printk(KERN_INFO "fixed physical RAM map:\n"); 1059 e820__print_table("bad_ppro"); 1060 } 1061 #else 1062 early_gart_iommu_check(); 1063 #endif 1064 1065 /* 1066 * partially used pages are not usable - thus 1067 * we are rounding upwards: 1068 */ 1069 max_pfn = e820__end_of_ram_pfn(); 1070 1071 /* update e820 for memory not covered by WB MTRRs */ 1072 cache_bp_init(); 1073 if (mtrr_trim_uncached_memory(max_pfn)) 1074 max_pfn = e820__end_of_ram_pfn(); 1075 1076 max_possible_pfn = max_pfn; 1077 1078 /* 1079 * Define random base addresses for memory sections after max_pfn is 1080 * defined and before each memory section base is used. 1081 */ 1082 kernel_randomize_memory(); 1083 1084 #ifdef CONFIG_X86_32 1085 /* max_low_pfn get updated here */ 1086 find_low_pfn_range(); 1087 #else 1088 check_x2apic(); 1089 1090 /* How many end-of-memory variables you have, grandma! */ 1091 /* need this before calling reserve_initrd */ 1092 if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) 1093 max_low_pfn = e820__end_of_low_ram_pfn(); 1094 else 1095 max_low_pfn = max_pfn; 1096 1097 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 1098 #endif 1099 1100 /* 1101 * Find and reserve possible boot-time SMP configuration: 1102 */ 1103 find_smp_config(); 1104 1105 early_alloc_pgt_buf(); 1106 1107 /* 1108 * Need to conclude brk, before e820__memblock_setup() 1109 * it could use memblock_find_in_range, could overlap with 1110 * brk area. 1111 */ 1112 reserve_brk(); 1113 1114 cleanup_highmap(); 1115 1116 memblock_set_current_limit(ISA_END_ADDRESS); 1117 e820__memblock_setup(); 1118 1119 /* 1120 * Needs to run after memblock setup because it needs the physical 1121 * memory size. 1122 */ 1123 sev_setup_arch(); 1124 cc_random_init(); 1125 1126 efi_fake_memmap(); 1127 efi_find_mirror(); 1128 efi_esrt_init(); 1129 efi_mokvar_table_init(); 1130 1131 /* 1132 * The EFI specification says that boot service code won't be 1133 * called after ExitBootServices(). This is, in fact, a lie. 1134 */ 1135 efi_reserve_boot_services(); 1136 1137 /* preallocate 4k for mptable mpc */ 1138 e820__memblock_alloc_reserved_mpc_new(); 1139 1140 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION 1141 setup_bios_corruption_check(); 1142 #endif 1143 1144 #ifdef CONFIG_X86_32 1145 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", 1146 (max_pfn_mapped<<PAGE_SHIFT) - 1); 1147 #endif 1148 1149 /* 1150 * Find free memory for the real mode trampoline and place it there. If 1151 * there is not enough free memory under 1M, on EFI-enabled systems 1152 * there will be additional attempt to reclaim the memory for the real 1153 * mode trampoline at efi_free_boot_services(). 1154 * 1155 * Unconditionally reserve the entire first 1M of RAM because BIOSes 1156 * are known to corrupt low memory and several hundred kilobytes are not 1157 * worth complex detection what memory gets clobbered. Windows does the 1158 * same thing for very similar reasons. 1159 * 1160 * Moreover, on machines with SandyBridge graphics or in setups that use 1161 * crashkernel the entire 1M is reserved anyway. 1162 */ 1163 x86_platform.realmode_reserve(); 1164 1165 init_mem_mapping(); 1166 1167 idt_setup_early_pf(); 1168 1169 /* 1170 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features) 1171 * with the current CR4 value. This may not be necessary, but 1172 * auditing all the early-boot CR4 manipulation would be needed to 1173 * rule it out. 1174 * 1175 * Mask off features that don't work outside long mode (just 1176 * PCIDE for now). 1177 */ 1178 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE; 1179 1180 memblock_set_current_limit(get_max_mapped()); 1181 1182 /* 1183 * NOTE: On x86-32, only from this point on, fixmaps are ready for use. 1184 */ 1185 1186 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT 1187 if (init_ohci1394_dma_early) 1188 init_ohci1394_dma_on_all_controllers(); 1189 #endif 1190 /* Allocate bigger log buffer */ 1191 setup_log_buf(1); 1192 1193 if (efi_enabled(EFI_BOOT)) { 1194 switch (boot_params.secure_boot) { 1195 case efi_secureboot_mode_disabled: 1196 pr_info("Secure boot disabled\n"); 1197 break; 1198 case efi_secureboot_mode_enabled: 1199 pr_info("Secure boot enabled\n"); 1200 break; 1201 default: 1202 pr_info("Secure boot could not be determined\n"); 1203 break; 1204 } 1205 } 1206 1207 reserve_initrd(); 1208 1209 acpi_table_upgrade(); 1210 /* Look for ACPI tables and reserve memory occupied by them. */ 1211 acpi_boot_table_init(); 1212 1213 vsmp_init(); 1214 1215 io_delay_init(); 1216 1217 early_platform_quirks(); 1218 1219 early_acpi_boot_init(); 1220 1221 initmem_init(); 1222 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT); 1223 1224 if (boot_cpu_has(X86_FEATURE_GBPAGES)) 1225 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 1226 1227 /* 1228 * Reserve memory for crash kernel after SRAT is parsed so that it 1229 * won't consume hotpluggable memory. 1230 */ 1231 reserve_crashkernel(); 1232 1233 memblock_find_dma_reserve(); 1234 1235 if (!early_xdbc_setup_hardware()) 1236 early_xdbc_register_console(); 1237 1238 x86_init.paging.pagetable_init(); 1239 1240 kasan_init(); 1241 1242 /* 1243 * Sync back kernel address range. 1244 * 1245 * FIXME: Can the later sync in setup_cpu_entry_areas() replace 1246 * this call? 1247 */ 1248 sync_initial_page_table(); 1249 1250 tboot_probe(); 1251 1252 map_vsyscall(); 1253 1254 x86_32_probe_apic(); 1255 1256 early_quirks(); 1257 1258 /* 1259 * Read APIC and some other early information from ACPI tables. 1260 */ 1261 acpi_boot_init(); 1262 x86_dtb_init(); 1263 1264 /* 1265 * get boot-time SMP configuration: 1266 */ 1267 get_smp_config(); 1268 1269 /* 1270 * Systems w/o ACPI and mptables might not have it mapped the local 1271 * APIC yet, but prefill_possible_map() might need to access it. 1272 */ 1273 init_apic_mappings(); 1274 1275 prefill_possible_map(); 1276 1277 init_cpu_to_node(); 1278 init_gi_nodes(); 1279 1280 io_apic_init_mappings(); 1281 1282 x86_init.hyper.guest_late_init(); 1283 1284 e820__reserve_resources(); 1285 e820__register_nosave_regions(max_pfn); 1286 1287 x86_init.resources.reserve_resources(); 1288 1289 e820__setup_pci_gap(); 1290 1291 #ifdef CONFIG_VT 1292 #if defined(CONFIG_VGA_CONSOLE) 1293 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) 1294 conswitchp = &vga_con; 1295 #endif 1296 #endif 1297 x86_init.oem.banner(); 1298 1299 x86_init.timers.wallclock_init(); 1300 1301 /* 1302 * This needs to run before setup_local_APIC() which soft-disables the 1303 * local APIC temporarily and that masks the thermal LVT interrupt, 1304 * leading to softlockups on machines which have configured SMI 1305 * interrupt delivery. 1306 */ 1307 therm_lvt_init(); 1308 1309 mcheck_init(); 1310 1311 register_refined_jiffies(CLOCK_TICK_RATE); 1312 1313 #ifdef CONFIG_EFI 1314 if (efi_enabled(EFI_BOOT)) 1315 efi_apply_memmap_quirks(); 1316 #endif 1317 1318 unwind_init(); 1319 } 1320 1321 #ifdef CONFIG_X86_32 1322 1323 static struct resource video_ram_resource = { 1324 .name = "Video RAM area", 1325 .start = 0xa0000, 1326 .end = 0xbffff, 1327 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 1328 }; 1329 1330 void __init i386_reserve_resources(void) 1331 { 1332 request_resource(&iomem_resource, &video_ram_resource); 1333 reserve_standard_io_resources(); 1334 } 1335 1336 #endif /* CONFIG_X86_32 */ 1337 1338 static struct notifier_block kernel_offset_notifier = { 1339 .notifier_call = dump_kernel_offset 1340 }; 1341 1342 static int __init register_kernel_offset_dumper(void) 1343 { 1344 atomic_notifier_chain_register(&panic_notifier_list, 1345 &kernel_offset_notifier); 1346 return 0; 1347 } 1348 __initcall(register_kernel_offset_dumper); 1349