1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * This file contains the setup_arch() code, which handles the architecture-dependent 6 * parts of early kernel initialization. 7 */ 8 #include <linux/acpi.h> 9 #include <linux/console.h> 10 #include <linux/crash_dump.h> 11 #include <linux/dma-map-ops.h> 12 #include <linux/dmi.h> 13 #include <linux/efi.h> 14 #include <linux/init_ohci1394_dma.h> 15 #include <linux/initrd.h> 16 #include <linux/iscsi_ibft.h> 17 #include <linux/memblock.h> 18 #include <linux/panic_notifier.h> 19 #include <linux/pci.h> 20 #include <linux/root_dev.h> 21 #include <linux/hugetlb.h> 22 #include <linux/tboot.h> 23 #include <linux/usb/xhci-dbgp.h> 24 #include <linux/static_call.h> 25 #include <linux/swiotlb.h> 26 27 #include <uapi/linux/mount.h> 28 29 #include <xen/xen.h> 30 31 #include <asm/apic.h> 32 #include <asm/numa.h> 33 #include <asm/bios_ebda.h> 34 #include <asm/bugs.h> 35 #include <asm/cpu.h> 36 #include <asm/efi.h> 37 #include <asm/gart.h> 38 #include <asm/hypervisor.h> 39 #include <asm/io_apic.h> 40 #include <asm/kasan.h> 41 #include <asm/kaslr.h> 42 #include <asm/mce.h> 43 #include <asm/mtrr.h> 44 #include <asm/realmode.h> 45 #include <asm/olpc_ofw.h> 46 #include <asm/pci-direct.h> 47 #include <asm/prom.h> 48 #include <asm/proto.h> 49 #include <asm/thermal.h> 50 #include <asm/unwind.h> 51 #include <asm/vsyscall.h> 52 #include <linux/vmalloc.h> 53 54 /* 55 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB 56 * max_pfn_mapped: highest directly mapped pfn > 4 GB 57 * 58 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are 59 * represented by pfn_mapped[]. 60 */ 61 unsigned long max_low_pfn_mapped; 62 unsigned long max_pfn_mapped; 63 64 #ifdef CONFIG_DMI 65 RESERVE_BRK(dmi_alloc, 65536); 66 #endif 67 68 69 /* 70 * Range of the BSS area. The size of the BSS area is determined 71 * at link time, with RESERVE_BRK() facility reserving additional 72 * chunks. 73 */ 74 unsigned long _brk_start = (unsigned long)__brk_base; 75 unsigned long _brk_end = (unsigned long)__brk_base; 76 77 struct boot_params boot_params; 78 79 /* 80 * These are the four main kernel memory regions, we put them into 81 * the resource tree so that kdump tools and other debugging tools 82 * recover it: 83 */ 84 85 static struct resource rodata_resource = { 86 .name = "Kernel rodata", 87 .start = 0, 88 .end = 0, 89 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 90 }; 91 92 static struct resource data_resource = { 93 .name = "Kernel data", 94 .start = 0, 95 .end = 0, 96 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 97 }; 98 99 static struct resource code_resource = { 100 .name = "Kernel code", 101 .start = 0, 102 .end = 0, 103 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 104 }; 105 106 static struct resource bss_resource = { 107 .name = "Kernel bss", 108 .start = 0, 109 .end = 0, 110 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 111 }; 112 113 114 #ifdef CONFIG_X86_32 115 /* CPU data as detected by the assembly code in head_32.S */ 116 struct cpuinfo_x86 new_cpu_data; 117 118 /* Common CPU data for all CPUs */ 119 struct cpuinfo_x86 boot_cpu_data __read_mostly; 120 EXPORT_SYMBOL(boot_cpu_data); 121 122 unsigned int def_to_bigsmp; 123 124 struct apm_info apm_info; 125 EXPORT_SYMBOL(apm_info); 126 127 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ 128 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) 129 struct ist_info ist_info; 130 EXPORT_SYMBOL(ist_info); 131 #else 132 struct ist_info ist_info; 133 #endif 134 135 #else 136 struct cpuinfo_x86 boot_cpu_data __read_mostly; 137 EXPORT_SYMBOL(boot_cpu_data); 138 #endif 139 140 141 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) 142 __visible unsigned long mmu_cr4_features __ro_after_init; 143 #else 144 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; 145 #endif 146 147 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ 148 int bootloader_type, bootloader_version; 149 150 /* 151 * Setup options 152 */ 153 struct screen_info screen_info; 154 EXPORT_SYMBOL(screen_info); 155 struct edid_info edid_info; 156 EXPORT_SYMBOL_GPL(edid_info); 157 158 extern int root_mountflags; 159 160 unsigned long saved_video_mode; 161 162 #define RAMDISK_IMAGE_START_MASK 0x07FF 163 #define RAMDISK_PROMPT_FLAG 0x8000 164 #define RAMDISK_LOAD_FLAG 0x4000 165 166 static char __initdata command_line[COMMAND_LINE_SIZE]; 167 #ifdef CONFIG_CMDLINE_BOOL 168 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 169 #endif 170 171 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) 172 struct edd edd; 173 #ifdef CONFIG_EDD_MODULE 174 EXPORT_SYMBOL(edd); 175 #endif 176 /** 177 * copy_edd() - Copy the BIOS EDD information 178 * from boot_params into a safe place. 179 * 180 */ 181 static inline void __init copy_edd(void) 182 { 183 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, 184 sizeof(edd.mbr_signature)); 185 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); 186 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; 187 edd.edd_info_nr = boot_params.eddbuf_entries; 188 } 189 #else 190 static inline void __init copy_edd(void) 191 { 192 } 193 #endif 194 195 void * __init extend_brk(size_t size, size_t align) 196 { 197 size_t mask = align - 1; 198 void *ret; 199 200 BUG_ON(_brk_start == 0); 201 BUG_ON(align & mask); 202 203 _brk_end = (_brk_end + mask) & ~mask; 204 BUG_ON((char *)(_brk_end + size) > __brk_limit); 205 206 ret = (void *)_brk_end; 207 _brk_end += size; 208 209 memset(ret, 0, size); 210 211 return ret; 212 } 213 214 #ifdef CONFIG_X86_32 215 static void __init cleanup_highmap(void) 216 { 217 } 218 #endif 219 220 static void __init reserve_brk(void) 221 { 222 if (_brk_end > _brk_start) 223 memblock_reserve(__pa_symbol(_brk_start), 224 _brk_end - _brk_start); 225 226 /* Mark brk area as locked down and no longer taking any 227 new allocations */ 228 _brk_start = 0; 229 } 230 231 u64 relocated_ramdisk; 232 233 #ifdef CONFIG_BLK_DEV_INITRD 234 235 static u64 __init get_ramdisk_image(void) 236 { 237 u64 ramdisk_image = boot_params.hdr.ramdisk_image; 238 239 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; 240 241 if (ramdisk_image == 0) 242 ramdisk_image = phys_initrd_start; 243 244 return ramdisk_image; 245 } 246 static u64 __init get_ramdisk_size(void) 247 { 248 u64 ramdisk_size = boot_params.hdr.ramdisk_size; 249 250 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; 251 252 if (ramdisk_size == 0) 253 ramdisk_size = phys_initrd_size; 254 255 return ramdisk_size; 256 } 257 258 static void __init relocate_initrd(void) 259 { 260 /* Assume only end is not page aligned */ 261 u64 ramdisk_image = get_ramdisk_image(); 262 u64 ramdisk_size = get_ramdisk_size(); 263 u64 area_size = PAGE_ALIGN(ramdisk_size); 264 265 /* We need to move the initrd down into directly mapped mem */ 266 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0, 267 PFN_PHYS(max_pfn_mapped)); 268 if (!relocated_ramdisk) 269 panic("Cannot find place for new RAMDISK of size %lld\n", 270 ramdisk_size); 271 272 initrd_start = relocated_ramdisk + PAGE_OFFSET; 273 initrd_end = initrd_start + ramdisk_size; 274 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", 275 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 276 277 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size); 278 279 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" 280 " [mem %#010llx-%#010llx]\n", 281 ramdisk_image, ramdisk_image + ramdisk_size - 1, 282 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 283 } 284 285 static void __init early_reserve_initrd(void) 286 { 287 /* Assume only end is not page aligned */ 288 u64 ramdisk_image = get_ramdisk_image(); 289 u64 ramdisk_size = get_ramdisk_size(); 290 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 291 292 if (!boot_params.hdr.type_of_loader || 293 !ramdisk_image || !ramdisk_size) 294 return; /* No initrd provided by bootloader */ 295 296 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image); 297 } 298 299 static void __init reserve_initrd(void) 300 { 301 /* Assume only end is not page aligned */ 302 u64 ramdisk_image = get_ramdisk_image(); 303 u64 ramdisk_size = get_ramdisk_size(); 304 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 305 306 if (!boot_params.hdr.type_of_loader || 307 !ramdisk_image || !ramdisk_size) 308 return; /* No initrd provided by bootloader */ 309 310 initrd_start = 0; 311 312 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, 313 ramdisk_end - 1); 314 315 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), 316 PFN_DOWN(ramdisk_end))) { 317 /* All are mapped, easy case */ 318 initrd_start = ramdisk_image + PAGE_OFFSET; 319 initrd_end = initrd_start + ramdisk_size; 320 return; 321 } 322 323 relocate_initrd(); 324 325 memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image); 326 } 327 328 #else 329 static void __init early_reserve_initrd(void) 330 { 331 } 332 static void __init reserve_initrd(void) 333 { 334 } 335 #endif /* CONFIG_BLK_DEV_INITRD */ 336 337 static void __init parse_setup_data(void) 338 { 339 struct setup_data *data; 340 u64 pa_data, pa_next; 341 342 pa_data = boot_params.hdr.setup_data; 343 while (pa_data) { 344 u32 data_len, data_type; 345 346 data = early_memremap(pa_data, sizeof(*data)); 347 data_len = data->len + sizeof(struct setup_data); 348 data_type = data->type; 349 pa_next = data->next; 350 early_memunmap(data, sizeof(*data)); 351 352 switch (data_type) { 353 case SETUP_E820_EXT: 354 e820__memory_setup_extended(pa_data, data_len); 355 break; 356 case SETUP_DTB: 357 add_dtb(pa_data); 358 break; 359 case SETUP_EFI: 360 parse_efi_setup(pa_data, data_len); 361 break; 362 default: 363 break; 364 } 365 pa_data = pa_next; 366 } 367 } 368 369 static void __init memblock_x86_reserve_range_setup_data(void) 370 { 371 struct setup_data *data; 372 u64 pa_data; 373 374 pa_data = boot_params.hdr.setup_data; 375 while (pa_data) { 376 data = early_memremap(pa_data, sizeof(*data)); 377 memblock_reserve(pa_data, sizeof(*data) + data->len); 378 379 if (data->type == SETUP_INDIRECT && 380 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) 381 memblock_reserve(((struct setup_indirect *)data->data)->addr, 382 ((struct setup_indirect *)data->data)->len); 383 384 pa_data = data->next; 385 early_memunmap(data, sizeof(*data)); 386 } 387 } 388 389 /* 390 * --------- Crashkernel reservation ------------------------------ 391 */ 392 393 #ifdef CONFIG_KEXEC_CORE 394 395 /* 16M alignment for crash kernel regions */ 396 #define CRASH_ALIGN SZ_16M 397 398 /* 399 * Keep the crash kernel below this limit. 400 * 401 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range 402 * due to mapping restrictions. 403 * 404 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is 405 * the upper limit of system RAM in 4-level paging mode. Since the kdump 406 * jump could be from 5-level paging to 4-level paging, the jump will fail if 407 * the kernel is put above 64 TB, and during the 1st kernel bootup there's 408 * no good way to detect the paging mode of the target kernel which will be 409 * loaded for dumping. 410 */ 411 #ifdef CONFIG_X86_32 412 # define CRASH_ADDR_LOW_MAX SZ_512M 413 # define CRASH_ADDR_HIGH_MAX SZ_512M 414 #else 415 # define CRASH_ADDR_LOW_MAX SZ_4G 416 # define CRASH_ADDR_HIGH_MAX SZ_64T 417 #endif 418 419 static int __init reserve_crashkernel_low(void) 420 { 421 #ifdef CONFIG_X86_64 422 unsigned long long base, low_base = 0, low_size = 0; 423 unsigned long low_mem_limit; 424 int ret; 425 426 low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX); 427 428 /* crashkernel=Y,low */ 429 ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base); 430 if (ret) { 431 /* 432 * two parts from kernel/dma/swiotlb.c: 433 * -swiotlb size: user-specified with swiotlb= or default. 434 * 435 * -swiotlb overflow buffer: now hardcoded to 32k. We round it 436 * to 8M for other buffers that may need to stay low too. Also 437 * make sure we allocate enough extra low memory so that we 438 * don't run out of DMA buffers for 32-bit devices. 439 */ 440 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20); 441 } else { 442 /* passed with crashkernel=0,low ? */ 443 if (!low_size) 444 return 0; 445 } 446 447 low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX); 448 if (!low_base) { 449 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n", 450 (unsigned long)(low_size >> 20)); 451 return -ENOMEM; 452 } 453 454 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n", 455 (unsigned long)(low_size >> 20), 456 (unsigned long)(low_base >> 20), 457 (unsigned long)(low_mem_limit >> 20)); 458 459 crashk_low_res.start = low_base; 460 crashk_low_res.end = low_base + low_size - 1; 461 insert_resource(&iomem_resource, &crashk_low_res); 462 #endif 463 return 0; 464 } 465 466 static void __init reserve_crashkernel(void) 467 { 468 unsigned long long crash_size, crash_base, total_mem; 469 bool high = false; 470 int ret; 471 472 total_mem = memblock_phys_mem_size(); 473 474 /* crashkernel=XM */ 475 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); 476 if (ret != 0 || crash_size <= 0) { 477 /* crashkernel=X,high */ 478 ret = parse_crashkernel_high(boot_command_line, total_mem, 479 &crash_size, &crash_base); 480 if (ret != 0 || crash_size <= 0) 481 return; 482 high = true; 483 } 484 485 if (xen_pv_domain()) { 486 pr_info("Ignoring crashkernel for a Xen PV domain\n"); 487 return; 488 } 489 490 /* 0 means: find the address automatically */ 491 if (!crash_base) { 492 /* 493 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory, 494 * crashkernel=x,high reserves memory over 4G, also allocates 495 * 256M extra low memory for DMA buffers and swiotlb. 496 * But the extra memory is not required for all machines. 497 * So try low memory first and fall back to high memory 498 * unless "crashkernel=size[KMG],high" is specified. 499 */ 500 if (!high) 501 crash_base = memblock_phys_alloc_range(crash_size, 502 CRASH_ALIGN, CRASH_ALIGN, 503 CRASH_ADDR_LOW_MAX); 504 if (!crash_base) 505 crash_base = memblock_phys_alloc_range(crash_size, 506 CRASH_ALIGN, CRASH_ALIGN, 507 CRASH_ADDR_HIGH_MAX); 508 if (!crash_base) { 509 pr_info("crashkernel reservation failed - No suitable area found.\n"); 510 return; 511 } 512 } else { 513 unsigned long long start; 514 515 start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base, 516 crash_base + crash_size); 517 if (start != crash_base) { 518 pr_info("crashkernel reservation failed - memory is in use.\n"); 519 return; 520 } 521 } 522 523 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) { 524 memblock_phys_free(crash_base, crash_size); 525 return; 526 } 527 528 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", 529 (unsigned long)(crash_size >> 20), 530 (unsigned long)(crash_base >> 20), 531 (unsigned long)(total_mem >> 20)); 532 533 crashk_res.start = crash_base; 534 crashk_res.end = crash_base + crash_size - 1; 535 insert_resource(&iomem_resource, &crashk_res); 536 } 537 #else 538 static void __init reserve_crashkernel(void) 539 { 540 } 541 #endif 542 543 static struct resource standard_io_resources[] = { 544 { .name = "dma1", .start = 0x00, .end = 0x1f, 545 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 546 { .name = "pic1", .start = 0x20, .end = 0x21, 547 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 548 { .name = "timer0", .start = 0x40, .end = 0x43, 549 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 550 { .name = "timer1", .start = 0x50, .end = 0x53, 551 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 552 { .name = "keyboard", .start = 0x60, .end = 0x60, 553 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 554 { .name = "keyboard", .start = 0x64, .end = 0x64, 555 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 556 { .name = "dma page reg", .start = 0x80, .end = 0x8f, 557 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 558 { .name = "pic2", .start = 0xa0, .end = 0xa1, 559 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 560 { .name = "dma2", .start = 0xc0, .end = 0xdf, 561 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 562 { .name = "fpu", .start = 0xf0, .end = 0xff, 563 .flags = IORESOURCE_BUSY | IORESOURCE_IO } 564 }; 565 566 void __init reserve_standard_io_resources(void) 567 { 568 int i; 569 570 /* request I/O space for devices used on all i[345]86 PCs */ 571 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) 572 request_resource(&ioport_resource, &standard_io_resources[i]); 573 574 } 575 576 static bool __init snb_gfx_workaround_needed(void) 577 { 578 #ifdef CONFIG_PCI 579 int i; 580 u16 vendor, devid; 581 static const __initconst u16 snb_ids[] = { 582 0x0102, 583 0x0112, 584 0x0122, 585 0x0106, 586 0x0116, 587 0x0126, 588 0x010a, 589 }; 590 591 /* Assume no if something weird is going on with PCI */ 592 if (!early_pci_allowed()) 593 return false; 594 595 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); 596 if (vendor != 0x8086) 597 return false; 598 599 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); 600 for (i = 0; i < ARRAY_SIZE(snb_ids); i++) 601 if (devid == snb_ids[i]) 602 return true; 603 #endif 604 605 return false; 606 } 607 608 /* 609 * Sandy Bridge graphics has trouble with certain ranges, exclude 610 * them from allocation. 611 */ 612 static void __init trim_snb_memory(void) 613 { 614 static const __initconst unsigned long bad_pages[] = { 615 0x20050000, 616 0x20110000, 617 0x20130000, 618 0x20138000, 619 0x40004000, 620 }; 621 int i; 622 623 if (!snb_gfx_workaround_needed()) 624 return; 625 626 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); 627 628 /* 629 * SandyBridge integrated graphics devices have a bug that prevents 630 * them from accessing certain memory ranges, namely anything below 631 * 1M and in the pages listed in bad_pages[] above. 632 * 633 * To avoid these pages being ever accessed by SNB gfx devices reserve 634 * bad_pages that have not already been reserved at boot time. 635 * All memory below the 1 MB mark is anyway reserved later during 636 * setup_arch(), so there is no need to reserve it here. 637 */ 638 639 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { 640 if (memblock_reserve(bad_pages[i], PAGE_SIZE)) 641 printk(KERN_WARNING "failed to reserve 0x%08lx\n", 642 bad_pages[i]); 643 } 644 } 645 646 static void __init trim_bios_range(void) 647 { 648 /* 649 * A special case is the first 4Kb of memory; 650 * This is a BIOS owned area, not kernel ram, but generally 651 * not listed as such in the E820 table. 652 * 653 * This typically reserves additional memory (64KiB by default) 654 * since some BIOSes are known to corrupt low memory. See the 655 * Kconfig help text for X86_RESERVE_LOW. 656 */ 657 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); 658 659 /* 660 * special case: Some BIOSes report the PC BIOS 661 * area (640Kb -> 1Mb) as RAM even though it is not. 662 * take them out. 663 */ 664 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1); 665 666 e820__update_table(e820_table); 667 } 668 669 /* called before trim_bios_range() to spare extra sanitize */ 670 static void __init e820_add_kernel_range(void) 671 { 672 u64 start = __pa_symbol(_text); 673 u64 size = __pa_symbol(_end) - start; 674 675 /* 676 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and 677 * attempt to fix it by adding the range. We may have a confused BIOS, 678 * or the user may have used memmap=exactmap or memmap=xxM$yyM to 679 * exclude kernel range. If we really are running on top non-RAM, 680 * we will crash later anyways. 681 */ 682 if (e820__mapped_all(start, start + size, E820_TYPE_RAM)) 683 return; 684 685 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n"); 686 e820__range_remove(start, size, E820_TYPE_RAM, 0); 687 e820__range_add(start, size, E820_TYPE_RAM); 688 } 689 690 static void __init early_reserve_memory(void) 691 { 692 /* 693 * Reserve the memory occupied by the kernel between _text and 694 * __end_of_kernel_reserve symbols. Any kernel sections after the 695 * __end_of_kernel_reserve symbol must be explicitly reserved with a 696 * separate memblock_reserve() or they will be discarded. 697 */ 698 memblock_reserve(__pa_symbol(_text), 699 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text); 700 701 /* 702 * The first 4Kb of memory is a BIOS owned area, but generally it is 703 * not listed as such in the E820 table. 704 * 705 * Reserve the first 64K of memory since some BIOSes are known to 706 * corrupt low memory. After the real mode trampoline is allocated the 707 * rest of the memory below 640k is reserved. 708 * 709 * In addition, make sure page 0 is always reserved because on 710 * systems with L1TF its contents can be leaked to user processes. 711 */ 712 memblock_reserve(0, SZ_64K); 713 714 early_reserve_initrd(); 715 716 if (efi_enabled(EFI_BOOT)) 717 efi_memblock_x86_reserve_range(); 718 719 memblock_x86_reserve_range_setup_data(); 720 721 reserve_ibft_region(); 722 reserve_bios_regions(); 723 trim_snb_memory(); 724 } 725 726 /* 727 * Dump out kernel offset information on panic. 728 */ 729 static int 730 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) 731 { 732 if (kaslr_enabled()) { 733 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n", 734 kaslr_offset(), 735 __START_KERNEL, 736 __START_KERNEL_map, 737 MODULES_VADDR-1); 738 } else { 739 pr_emerg("Kernel Offset: disabled\n"); 740 } 741 742 return 0; 743 } 744 745 static char *prepare_command_line(void) 746 { 747 #ifdef CONFIG_CMDLINE_BOOL 748 #ifdef CONFIG_CMDLINE_OVERRIDE 749 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 750 #else 751 if (builtin_cmdline[0]) { 752 /* append boot loader cmdline to builtin */ 753 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); 754 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); 755 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 756 } 757 #endif 758 #endif 759 760 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 761 762 parse_early_param(); 763 764 return command_line; 765 } 766 767 /* 768 * Determine if we were loaded by an EFI loader. If so, then we have also been 769 * passed the efi memmap, systab, etc., so we should use these data structures 770 * for initialization. Note, the efi init code path is determined by the 771 * global efi_enabled. This allows the same kernel image to be used on existing 772 * systems (with a traditional BIOS) as well as on EFI systems. 773 */ 774 /* 775 * setup_arch - architecture-specific boot-time initializations 776 * 777 * Note: On x86_64, fixmaps are ready for use even before this is called. 778 */ 779 780 void __init setup_arch(char **cmdline_p) 781 { 782 #ifdef CONFIG_X86_32 783 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); 784 785 /* 786 * copy kernel address range established so far and switch 787 * to the proper swapper page table 788 */ 789 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, 790 initial_page_table + KERNEL_PGD_BOUNDARY, 791 KERNEL_PGD_PTRS); 792 793 load_cr3(swapper_pg_dir); 794 /* 795 * Note: Quark X1000 CPUs advertise PGE incorrectly and require 796 * a cr3 based tlb flush, so the following __flush_tlb_all() 797 * will not flush anything because the CPU quirk which clears 798 * X86_FEATURE_PGE has not been invoked yet. Though due to the 799 * load_cr3() above the TLB has been flushed already. The 800 * quirk is invoked before subsequent calls to __flush_tlb_all() 801 * so proper operation is guaranteed. 802 */ 803 __flush_tlb_all(); 804 #else 805 printk(KERN_INFO "Command line: %s\n", boot_command_line); 806 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS; 807 #endif 808 809 /* 810 * If we have OLPC OFW, we might end up relocating the fixmap due to 811 * reserve_top(), so do this before touching the ioremap area. 812 */ 813 olpc_ofw_detect(); 814 815 idt_setup_early_traps(); 816 early_cpu_init(); 817 jump_label_init(); 818 static_call_init(); 819 early_ioremap_init(); 820 821 setup_olpc_ofw_pgd(); 822 823 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); 824 screen_info = boot_params.screen_info; 825 edid_info = boot_params.edid_info; 826 #ifdef CONFIG_X86_32 827 apm_info.bios = boot_params.apm_bios_info; 828 ist_info = boot_params.ist_info; 829 #endif 830 saved_video_mode = boot_params.hdr.vid_mode; 831 bootloader_type = boot_params.hdr.type_of_loader; 832 if ((bootloader_type >> 4) == 0xe) { 833 bootloader_type &= 0xf; 834 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; 835 } 836 bootloader_version = bootloader_type & 0xf; 837 bootloader_version |= boot_params.hdr.ext_loader_ver << 4; 838 839 #ifdef CONFIG_BLK_DEV_RAM 840 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; 841 #endif 842 #ifdef CONFIG_EFI 843 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 844 EFI32_LOADER_SIGNATURE, 4)) { 845 set_bit(EFI_BOOT, &efi.flags); 846 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 847 EFI64_LOADER_SIGNATURE, 4)) { 848 set_bit(EFI_BOOT, &efi.flags); 849 set_bit(EFI_64BIT, &efi.flags); 850 } 851 #endif 852 853 x86_init.oem.arch_setup(); 854 855 /* 856 * x86_configure_nx() is called before parse_early_param() (called by 857 * prepare_command_line()) to detect whether hardware doesn't support 858 * NX (so that the early EHCI debug console setup can safely call 859 * set_fixmap()). It may then be called again from within noexec_setup() 860 * during parsing early parameters to honor the respective command line 861 * option. 862 */ 863 x86_configure_nx(); 864 865 /* 866 * This parses early params and it needs to run before 867 * early_reserve_memory() because latter relies on such settings 868 * supplied as early params. 869 */ 870 *cmdline_p = prepare_command_line(); 871 872 /* 873 * Do some memory reservations *before* memory is added to memblock, so 874 * memblock allocations won't overwrite it. 875 * 876 * After this point, everything still needed from the boot loader or 877 * firmware or kernel text should be early reserved or marked not RAM in 878 * e820. All other memory is free game. 879 * 880 * This call needs to happen before e820__memory_setup() which calls the 881 * xen_memory_setup() on Xen dom0 which relies on the fact that those 882 * early reservations have happened already. 883 */ 884 early_reserve_memory(); 885 886 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; 887 e820__memory_setup(); 888 parse_setup_data(); 889 890 copy_edd(); 891 892 if (!boot_params.hdr.root_flags) 893 root_mountflags &= ~MS_RDONLY; 894 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end); 895 896 code_resource.start = __pa_symbol(_text); 897 code_resource.end = __pa_symbol(_etext)-1; 898 rodata_resource.start = __pa_symbol(__start_rodata); 899 rodata_resource.end = __pa_symbol(__end_rodata)-1; 900 data_resource.start = __pa_symbol(_sdata); 901 data_resource.end = __pa_symbol(_edata)-1; 902 bss_resource.start = __pa_symbol(__bss_start); 903 bss_resource.end = __pa_symbol(__bss_stop)-1; 904 905 #ifdef CONFIG_MEMORY_HOTPLUG 906 /* 907 * Memory used by the kernel cannot be hot-removed because Linux 908 * cannot migrate the kernel pages. When memory hotplug is 909 * enabled, we should prevent memblock from allocating memory 910 * for the kernel. 911 * 912 * ACPI SRAT records all hotpluggable memory ranges. But before 913 * SRAT is parsed, we don't know about it. 914 * 915 * The kernel image is loaded into memory at very early time. We 916 * cannot prevent this anyway. So on NUMA system, we set any 917 * node the kernel resides in as un-hotpluggable. 918 * 919 * Since on modern servers, one node could have double-digit 920 * gigabytes memory, we can assume the memory around the kernel 921 * image is also un-hotpluggable. So before SRAT is parsed, just 922 * allocate memory near the kernel image to try the best to keep 923 * the kernel away from hotpluggable memory. 924 */ 925 if (movable_node_is_enabled()) 926 memblock_set_bottom_up(true); 927 #endif 928 929 x86_report_nx(); 930 931 if (acpi_mps_check()) { 932 #ifdef CONFIG_X86_LOCAL_APIC 933 disable_apic = 1; 934 #endif 935 setup_clear_cpu_cap(X86_FEATURE_APIC); 936 } 937 938 e820__reserve_setup_data(); 939 e820__finish_early_params(); 940 941 if (efi_enabled(EFI_BOOT)) 942 efi_init(); 943 944 dmi_setup(); 945 946 /* 947 * VMware detection requires dmi to be available, so this 948 * needs to be done after dmi_setup(), for the boot CPU. 949 */ 950 init_hypervisor_platform(); 951 952 tsc_early_init(); 953 x86_init.resources.probe_roms(); 954 955 /* after parse_early_param, so could debug it */ 956 insert_resource(&iomem_resource, &code_resource); 957 insert_resource(&iomem_resource, &rodata_resource); 958 insert_resource(&iomem_resource, &data_resource); 959 insert_resource(&iomem_resource, &bss_resource); 960 961 e820_add_kernel_range(); 962 trim_bios_range(); 963 #ifdef CONFIG_X86_32 964 if (ppro_with_ram_bug()) { 965 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM, 966 E820_TYPE_RESERVED); 967 e820__update_table(e820_table); 968 printk(KERN_INFO "fixed physical RAM map:\n"); 969 e820__print_table("bad_ppro"); 970 } 971 #else 972 early_gart_iommu_check(); 973 #endif 974 975 /* 976 * partially used pages are not usable - thus 977 * we are rounding upwards: 978 */ 979 max_pfn = e820__end_of_ram_pfn(); 980 981 /* update e820 for memory not covered by WB MTRRs */ 982 mtrr_bp_init(); 983 if (mtrr_trim_uncached_memory(max_pfn)) 984 max_pfn = e820__end_of_ram_pfn(); 985 986 max_possible_pfn = max_pfn; 987 988 /* 989 * This call is required when the CPU does not support PAT. If 990 * mtrr_bp_init() invoked it already via pat_init() the call has no 991 * effect. 992 */ 993 init_cache_modes(); 994 995 /* 996 * Define random base addresses for memory sections after max_pfn is 997 * defined and before each memory section base is used. 998 */ 999 kernel_randomize_memory(); 1000 1001 #ifdef CONFIG_X86_32 1002 /* max_low_pfn get updated here */ 1003 find_low_pfn_range(); 1004 #else 1005 check_x2apic(); 1006 1007 /* How many end-of-memory variables you have, grandma! */ 1008 /* need this before calling reserve_initrd */ 1009 if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) 1010 max_low_pfn = e820__end_of_low_ram_pfn(); 1011 else 1012 max_low_pfn = max_pfn; 1013 1014 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 1015 #endif 1016 1017 /* 1018 * Find and reserve possible boot-time SMP configuration: 1019 */ 1020 find_smp_config(); 1021 1022 early_alloc_pgt_buf(); 1023 1024 /* 1025 * Need to conclude brk, before e820__memblock_setup() 1026 * it could use memblock_find_in_range, could overlap with 1027 * brk area. 1028 */ 1029 reserve_brk(); 1030 1031 cleanup_highmap(); 1032 1033 memblock_set_current_limit(ISA_END_ADDRESS); 1034 e820__memblock_setup(); 1035 1036 /* 1037 * Needs to run after memblock setup because it needs the physical 1038 * memory size. 1039 */ 1040 sev_setup_arch(); 1041 1042 efi_fake_memmap(); 1043 efi_find_mirror(); 1044 efi_esrt_init(); 1045 efi_mokvar_table_init(); 1046 1047 /* 1048 * The EFI specification says that boot service code won't be 1049 * called after ExitBootServices(). This is, in fact, a lie. 1050 */ 1051 efi_reserve_boot_services(); 1052 1053 /* preallocate 4k for mptable mpc */ 1054 e820__memblock_alloc_reserved_mpc_new(); 1055 1056 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION 1057 setup_bios_corruption_check(); 1058 #endif 1059 1060 #ifdef CONFIG_X86_32 1061 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", 1062 (max_pfn_mapped<<PAGE_SHIFT) - 1); 1063 #endif 1064 1065 /* 1066 * Find free memory for the real mode trampoline and place it there. If 1067 * there is not enough free memory under 1M, on EFI-enabled systems 1068 * there will be additional attempt to reclaim the memory for the real 1069 * mode trampoline at efi_free_boot_services(). 1070 * 1071 * Unconditionally reserve the entire first 1M of RAM because BIOSes 1072 * are known to corrupt low memory and several hundred kilobytes are not 1073 * worth complex detection what memory gets clobbered. Windows does the 1074 * same thing for very similar reasons. 1075 * 1076 * Moreover, on machines with SandyBridge graphics or in setups that use 1077 * crashkernel the entire 1M is reserved anyway. 1078 */ 1079 reserve_real_mode(); 1080 1081 init_mem_mapping(); 1082 1083 idt_setup_early_pf(); 1084 1085 /* 1086 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features) 1087 * with the current CR4 value. This may not be necessary, but 1088 * auditing all the early-boot CR4 manipulation would be needed to 1089 * rule it out. 1090 * 1091 * Mask off features that don't work outside long mode (just 1092 * PCIDE for now). 1093 */ 1094 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE; 1095 1096 memblock_set_current_limit(get_max_mapped()); 1097 1098 /* 1099 * NOTE: On x86-32, only from this point on, fixmaps are ready for use. 1100 */ 1101 1102 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT 1103 if (init_ohci1394_dma_early) 1104 init_ohci1394_dma_on_all_controllers(); 1105 #endif 1106 /* Allocate bigger log buffer */ 1107 setup_log_buf(1); 1108 1109 if (efi_enabled(EFI_BOOT)) { 1110 switch (boot_params.secure_boot) { 1111 case efi_secureboot_mode_disabled: 1112 pr_info("Secure boot disabled\n"); 1113 break; 1114 case efi_secureboot_mode_enabled: 1115 pr_info("Secure boot enabled\n"); 1116 break; 1117 default: 1118 pr_info("Secure boot could not be determined\n"); 1119 break; 1120 } 1121 } 1122 1123 reserve_initrd(); 1124 1125 acpi_table_upgrade(); 1126 /* Look for ACPI tables and reserve memory occupied by them. */ 1127 acpi_boot_table_init(); 1128 1129 vsmp_init(); 1130 1131 io_delay_init(); 1132 1133 early_platform_quirks(); 1134 1135 early_acpi_boot_init(); 1136 1137 initmem_init(); 1138 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT); 1139 1140 if (boot_cpu_has(X86_FEATURE_GBPAGES)) 1141 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 1142 1143 /* 1144 * Reserve memory for crash kernel after SRAT is parsed so that it 1145 * won't consume hotpluggable memory. 1146 */ 1147 reserve_crashkernel(); 1148 1149 memblock_find_dma_reserve(); 1150 1151 if (!early_xdbc_setup_hardware()) 1152 early_xdbc_register_console(); 1153 1154 x86_init.paging.pagetable_init(); 1155 1156 kasan_init(); 1157 1158 /* 1159 * Sync back kernel address range. 1160 * 1161 * FIXME: Can the later sync in setup_cpu_entry_areas() replace 1162 * this call? 1163 */ 1164 sync_initial_page_table(); 1165 1166 tboot_probe(); 1167 1168 map_vsyscall(); 1169 1170 generic_apic_probe(); 1171 1172 early_quirks(); 1173 1174 /* 1175 * Read APIC and some other early information from ACPI tables. 1176 */ 1177 acpi_boot_init(); 1178 x86_dtb_init(); 1179 1180 /* 1181 * get boot-time SMP configuration: 1182 */ 1183 get_smp_config(); 1184 1185 /* 1186 * Systems w/o ACPI and mptables might not have it mapped the local 1187 * APIC yet, but prefill_possible_map() might need to access it. 1188 */ 1189 init_apic_mappings(); 1190 1191 prefill_possible_map(); 1192 1193 init_cpu_to_node(); 1194 init_gi_nodes(); 1195 1196 io_apic_init_mappings(); 1197 1198 x86_init.hyper.guest_late_init(); 1199 1200 e820__reserve_resources(); 1201 e820__register_nosave_regions(max_pfn); 1202 1203 x86_init.resources.reserve_resources(); 1204 1205 e820__setup_pci_gap(); 1206 1207 #ifdef CONFIG_VT 1208 #if defined(CONFIG_VGA_CONSOLE) 1209 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) 1210 conswitchp = &vga_con; 1211 #endif 1212 #endif 1213 x86_init.oem.banner(); 1214 1215 x86_init.timers.wallclock_init(); 1216 1217 /* 1218 * This needs to run before setup_local_APIC() which soft-disables the 1219 * local APIC temporarily and that masks the thermal LVT interrupt, 1220 * leading to softlockups on machines which have configured SMI 1221 * interrupt delivery. 1222 */ 1223 therm_lvt_init(); 1224 1225 mcheck_init(); 1226 1227 register_refined_jiffies(CLOCK_TICK_RATE); 1228 1229 #ifdef CONFIG_EFI 1230 if (efi_enabled(EFI_BOOT)) 1231 efi_apply_memmap_quirks(); 1232 #endif 1233 1234 unwind_init(); 1235 } 1236 1237 #ifdef CONFIG_X86_32 1238 1239 static struct resource video_ram_resource = { 1240 .name = "Video RAM area", 1241 .start = 0xa0000, 1242 .end = 0xbffff, 1243 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 1244 }; 1245 1246 void __init i386_reserve_resources(void) 1247 { 1248 request_resource(&iomem_resource, &video_ram_resource); 1249 reserve_standard_io_resources(); 1250 } 1251 1252 #endif /* CONFIG_X86_32 */ 1253 1254 static struct notifier_block kernel_offset_notifier = { 1255 .notifier_call = dump_kernel_offset 1256 }; 1257 1258 static int __init register_kernel_offset_dumper(void) 1259 { 1260 atomic_notifier_chain_register(&panic_notifier_list, 1261 &kernel_offset_notifier); 1262 return 0; 1263 } 1264 __initcall(register_kernel_offset_dumper); 1265