1 /* 2 * Copyright (C) 1995 Linus Torvalds 3 * 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * 6 * Memory region support 7 * David Parsons <orc@pell.chi.il.us>, July-August 1999 8 * 9 * Added E820 sanitization routine (removes overlapping memory regions); 10 * Brian Moyle <bmoyle@mvista.com>, February 2001 11 * 12 * Moved CPU detection code to cpu/${cpu}.c 13 * Patrick Mochel <mochel@osdl.org>, March 2002 14 * 15 * Provisions for empty E820 memory regions (reported by certain BIOSes). 16 * Alex Achenbach <xela@slit.de>, December 2002. 17 * 18 */ 19 20 /* 21 * This file handles the architecture-dependent parts of initialization 22 */ 23 24 #include <linux/sched.h> 25 #include <linux/mm.h> 26 #include <linux/mmzone.h> 27 #include <linux/screen_info.h> 28 #include <linux/ioport.h> 29 #include <linux/acpi.h> 30 #include <linux/sfi.h> 31 #include <linux/apm_bios.h> 32 #include <linux/initrd.h> 33 #include <linux/bootmem.h> 34 #include <linux/memblock.h> 35 #include <linux/seq_file.h> 36 #include <linux/console.h> 37 #include <linux/root_dev.h> 38 #include <linux/highmem.h> 39 #include <linux/export.h> 40 #include <linux/efi.h> 41 #include <linux/init.h> 42 #include <linux/edd.h> 43 #include <linux/iscsi_ibft.h> 44 #include <linux/nodemask.h> 45 #include <linux/kexec.h> 46 #include <linux/dmi.h> 47 #include <linux/pfn.h> 48 #include <linux/pci.h> 49 #include <asm/pci-direct.h> 50 #include <linux/init_ohci1394_dma.h> 51 #include <linux/kvm_para.h> 52 #include <linux/dma-contiguous.h> 53 54 #include <linux/errno.h> 55 #include <linux/kernel.h> 56 #include <linux/stddef.h> 57 #include <linux/unistd.h> 58 #include <linux/ptrace.h> 59 #include <linux/user.h> 60 #include <linux/delay.h> 61 62 #include <linux/kallsyms.h> 63 #include <linux/cpufreq.h> 64 #include <linux/dma-mapping.h> 65 #include <linux/ctype.h> 66 #include <linux/uaccess.h> 67 68 #include <linux/percpu.h> 69 #include <linux/crash_dump.h> 70 #include <linux/tboot.h> 71 #include <linux/jiffies.h> 72 73 #include <video/edid.h> 74 75 #include <asm/mtrr.h> 76 #include <asm/apic.h> 77 #include <asm/realmode.h> 78 #include <asm/e820.h> 79 #include <asm/mpspec.h> 80 #include <asm/setup.h> 81 #include <asm/efi.h> 82 #include <asm/timer.h> 83 #include <asm/i8259.h> 84 #include <asm/sections.h> 85 #include <asm/io_apic.h> 86 #include <asm/ist.h> 87 #include <asm/setup_arch.h> 88 #include <asm/bios_ebda.h> 89 #include <asm/cacheflush.h> 90 #include <asm/processor.h> 91 #include <asm/bugs.h> 92 #include <asm/kasan.h> 93 94 #include <asm/vsyscall.h> 95 #include <asm/cpu.h> 96 #include <asm/desc.h> 97 #include <asm/dma.h> 98 #include <asm/iommu.h> 99 #include <asm/gart.h> 100 #include <asm/mmu_context.h> 101 #include <asm/proto.h> 102 103 #include <asm/paravirt.h> 104 #include <asm/hypervisor.h> 105 #include <asm/olpc_ofw.h> 106 107 #include <asm/percpu.h> 108 #include <asm/topology.h> 109 #include <asm/apicdef.h> 110 #include <asm/amd_nb.h> 111 #include <asm/mce.h> 112 #include <asm/alternative.h> 113 #include <asm/prom.h> 114 #include <asm/microcode.h> 115 #include <asm/mmu_context.h> 116 #include <asm/kaslr.h> 117 118 /* 119 * max_low_pfn_mapped: highest direct mapped pfn under 4GB 120 * max_pfn_mapped: highest direct mapped pfn over 4GB 121 * 122 * The direct mapping only covers E820_RAM regions, so the ranges and gaps are 123 * represented by pfn_mapped 124 */ 125 unsigned long max_low_pfn_mapped; 126 unsigned long max_pfn_mapped; 127 128 #ifdef CONFIG_DMI 129 RESERVE_BRK(dmi_alloc, 65536); 130 #endif 131 132 133 static __initdata unsigned long _brk_start = (unsigned long)__brk_base; 134 unsigned long _brk_end = (unsigned long)__brk_base; 135 136 #ifdef CONFIG_X86_64 137 int default_cpu_present_to_apicid(int mps_cpu) 138 { 139 return __default_cpu_present_to_apicid(mps_cpu); 140 } 141 142 int default_check_phys_apicid_present(int phys_apicid) 143 { 144 return __default_check_phys_apicid_present(phys_apicid); 145 } 146 #endif 147 148 struct boot_params boot_params; 149 150 /* 151 * Machine setup.. 152 */ 153 static struct resource data_resource = { 154 .name = "Kernel data", 155 .start = 0, 156 .end = 0, 157 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 158 }; 159 160 static struct resource code_resource = { 161 .name = "Kernel code", 162 .start = 0, 163 .end = 0, 164 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 165 }; 166 167 static struct resource bss_resource = { 168 .name = "Kernel bss", 169 .start = 0, 170 .end = 0, 171 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 172 }; 173 174 175 #ifdef CONFIG_X86_32 176 /* cpu data as detected by the assembly code in head.S */ 177 struct cpuinfo_x86 new_cpu_data = { 178 .wp_works_ok = -1, 179 }; 180 /* common cpu data for all cpus */ 181 struct cpuinfo_x86 boot_cpu_data __read_mostly = { 182 .wp_works_ok = -1, 183 }; 184 EXPORT_SYMBOL(boot_cpu_data); 185 186 unsigned int def_to_bigsmp; 187 188 /* for MCA, but anyone else can use it if they want */ 189 unsigned int machine_id; 190 unsigned int machine_submodel_id; 191 unsigned int BIOS_revision; 192 193 struct apm_info apm_info; 194 EXPORT_SYMBOL(apm_info); 195 196 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ 197 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) 198 struct ist_info ist_info; 199 EXPORT_SYMBOL(ist_info); 200 #else 201 struct ist_info ist_info; 202 #endif 203 204 #else 205 struct cpuinfo_x86 boot_cpu_data __read_mostly = { 206 .x86_phys_bits = MAX_PHYSMEM_BITS, 207 }; 208 EXPORT_SYMBOL(boot_cpu_data); 209 #endif 210 211 212 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) 213 __visible unsigned long mmu_cr4_features __ro_after_init; 214 #else 215 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; 216 #endif 217 218 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ 219 int bootloader_type, bootloader_version; 220 221 /* 222 * Setup options 223 */ 224 struct screen_info screen_info; 225 EXPORT_SYMBOL(screen_info); 226 struct edid_info edid_info; 227 EXPORT_SYMBOL_GPL(edid_info); 228 229 extern int root_mountflags; 230 231 unsigned long saved_video_mode; 232 233 #define RAMDISK_IMAGE_START_MASK 0x07FF 234 #define RAMDISK_PROMPT_FLAG 0x8000 235 #define RAMDISK_LOAD_FLAG 0x4000 236 237 static char __initdata command_line[COMMAND_LINE_SIZE]; 238 #ifdef CONFIG_CMDLINE_BOOL 239 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 240 #endif 241 242 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) 243 struct edd edd; 244 #ifdef CONFIG_EDD_MODULE 245 EXPORT_SYMBOL(edd); 246 #endif 247 /** 248 * copy_edd() - Copy the BIOS EDD information 249 * from boot_params into a safe place. 250 * 251 */ 252 static inline void __init copy_edd(void) 253 { 254 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, 255 sizeof(edd.mbr_signature)); 256 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); 257 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; 258 edd.edd_info_nr = boot_params.eddbuf_entries; 259 } 260 #else 261 static inline void __init copy_edd(void) 262 { 263 } 264 #endif 265 266 void * __init extend_brk(size_t size, size_t align) 267 { 268 size_t mask = align - 1; 269 void *ret; 270 271 BUG_ON(_brk_start == 0); 272 BUG_ON(align & mask); 273 274 _brk_end = (_brk_end + mask) & ~mask; 275 BUG_ON((char *)(_brk_end + size) > __brk_limit); 276 277 ret = (void *)_brk_end; 278 _brk_end += size; 279 280 memset(ret, 0, size); 281 282 return ret; 283 } 284 285 #ifdef CONFIG_X86_32 286 static void __init cleanup_highmap(void) 287 { 288 } 289 #endif 290 291 static void __init reserve_brk(void) 292 { 293 if (_brk_end > _brk_start) 294 memblock_reserve(__pa_symbol(_brk_start), 295 _brk_end - _brk_start); 296 297 /* Mark brk area as locked down and no longer taking any 298 new allocations */ 299 _brk_start = 0; 300 } 301 302 u64 relocated_ramdisk; 303 304 #ifdef CONFIG_BLK_DEV_INITRD 305 306 static u64 __init get_ramdisk_image(void) 307 { 308 u64 ramdisk_image = boot_params.hdr.ramdisk_image; 309 310 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; 311 312 return ramdisk_image; 313 } 314 static u64 __init get_ramdisk_size(void) 315 { 316 u64 ramdisk_size = boot_params.hdr.ramdisk_size; 317 318 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; 319 320 return ramdisk_size; 321 } 322 323 static void __init relocate_initrd(void) 324 { 325 /* Assume only end is not page aligned */ 326 u64 ramdisk_image = get_ramdisk_image(); 327 u64 ramdisk_size = get_ramdisk_size(); 328 u64 area_size = PAGE_ALIGN(ramdisk_size); 329 330 /* We need to move the initrd down into directly mapped mem */ 331 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), 332 area_size, PAGE_SIZE); 333 334 if (!relocated_ramdisk) 335 panic("Cannot find place for new RAMDISK of size %lld\n", 336 ramdisk_size); 337 338 /* Note: this includes all the mem currently occupied by 339 the initrd, we rely on that fact to keep the data intact. */ 340 memblock_reserve(relocated_ramdisk, area_size); 341 initrd_start = relocated_ramdisk + PAGE_OFFSET; 342 initrd_end = initrd_start + ramdisk_size; 343 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", 344 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 345 346 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size); 347 348 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" 349 " [mem %#010llx-%#010llx]\n", 350 ramdisk_image, ramdisk_image + ramdisk_size - 1, 351 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 352 } 353 354 static void __init early_reserve_initrd(void) 355 { 356 /* Assume only end is not page aligned */ 357 u64 ramdisk_image = get_ramdisk_image(); 358 u64 ramdisk_size = get_ramdisk_size(); 359 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 360 361 if (!boot_params.hdr.type_of_loader || 362 !ramdisk_image || !ramdisk_size) 363 return; /* No initrd provided by bootloader */ 364 365 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image); 366 } 367 static void __init reserve_initrd(void) 368 { 369 /* Assume only end is not page aligned */ 370 u64 ramdisk_image = get_ramdisk_image(); 371 u64 ramdisk_size = get_ramdisk_size(); 372 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 373 u64 mapped_size; 374 375 if (!boot_params.hdr.type_of_loader || 376 !ramdisk_image || !ramdisk_size) 377 return; /* No initrd provided by bootloader */ 378 379 initrd_start = 0; 380 381 mapped_size = memblock_mem_size(max_pfn_mapped); 382 if (ramdisk_size >= (mapped_size>>1)) 383 panic("initrd too large to handle, " 384 "disabling initrd (%lld needed, %lld available)\n", 385 ramdisk_size, mapped_size>>1); 386 387 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, 388 ramdisk_end - 1); 389 390 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), 391 PFN_DOWN(ramdisk_end))) { 392 /* All are mapped, easy case */ 393 initrd_start = ramdisk_image + PAGE_OFFSET; 394 initrd_end = initrd_start + ramdisk_size; 395 return; 396 } 397 398 relocate_initrd(); 399 400 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image); 401 } 402 403 #else 404 static void __init early_reserve_initrd(void) 405 { 406 } 407 static void __init reserve_initrd(void) 408 { 409 } 410 #endif /* CONFIG_BLK_DEV_INITRD */ 411 412 static void __init parse_setup_data(void) 413 { 414 struct setup_data *data; 415 u64 pa_data, pa_next; 416 417 pa_data = boot_params.hdr.setup_data; 418 while (pa_data) { 419 u32 data_len, data_type; 420 421 data = early_memremap(pa_data, sizeof(*data)); 422 data_len = data->len + sizeof(struct setup_data); 423 data_type = data->type; 424 pa_next = data->next; 425 early_memunmap(data, sizeof(*data)); 426 427 switch (data_type) { 428 case SETUP_E820_EXT: 429 parse_e820_ext(pa_data, data_len); 430 break; 431 case SETUP_DTB: 432 add_dtb(pa_data); 433 break; 434 case SETUP_EFI: 435 parse_efi_setup(pa_data, data_len); 436 break; 437 default: 438 break; 439 } 440 pa_data = pa_next; 441 } 442 } 443 444 static void __init e820_reserve_setup_data(void) 445 { 446 struct setup_data *data; 447 u64 pa_data; 448 449 pa_data = boot_params.hdr.setup_data; 450 if (!pa_data) 451 return; 452 453 while (pa_data) { 454 data = early_memremap(pa_data, sizeof(*data)); 455 e820_update_range(pa_data, sizeof(*data)+data->len, 456 E820_RAM, E820_RESERVED_KERN); 457 pa_data = data->next; 458 early_memunmap(data, sizeof(*data)); 459 } 460 461 sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map); 462 memcpy(e820_saved, e820, sizeof(struct e820map)); 463 printk(KERN_INFO "extended physical RAM map:\n"); 464 e820_print_map("reserve setup_data"); 465 } 466 467 static void __init memblock_x86_reserve_range_setup_data(void) 468 { 469 struct setup_data *data; 470 u64 pa_data; 471 472 pa_data = boot_params.hdr.setup_data; 473 while (pa_data) { 474 data = early_memremap(pa_data, sizeof(*data)); 475 memblock_reserve(pa_data, sizeof(*data) + data->len); 476 pa_data = data->next; 477 early_memunmap(data, sizeof(*data)); 478 } 479 } 480 481 /* 482 * --------- Crashkernel reservation ------------------------------ 483 */ 484 485 #ifdef CONFIG_KEXEC_CORE 486 487 /* 16M alignment for crash kernel regions */ 488 #define CRASH_ALIGN (16 << 20) 489 490 /* 491 * Keep the crash kernel below this limit. On 32 bits earlier kernels 492 * would limit the kernel to the low 512 MiB due to mapping restrictions. 493 * On 64bit, old kexec-tools need to under 896MiB. 494 */ 495 #ifdef CONFIG_X86_32 496 # define CRASH_ADDR_LOW_MAX (512 << 20) 497 # define CRASH_ADDR_HIGH_MAX (512 << 20) 498 #else 499 # define CRASH_ADDR_LOW_MAX (896UL << 20) 500 # define CRASH_ADDR_HIGH_MAX MAXMEM 501 #endif 502 503 static int __init reserve_crashkernel_low(void) 504 { 505 #ifdef CONFIG_X86_64 506 unsigned long long base, low_base = 0, low_size = 0; 507 unsigned long total_low_mem; 508 int ret; 509 510 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT)); 511 512 /* crashkernel=Y,low */ 513 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base); 514 if (ret) { 515 /* 516 * two parts from lib/swiotlb.c: 517 * -swiotlb size: user-specified with swiotlb= or default. 518 * 519 * -swiotlb overflow buffer: now hardcoded to 32k. We round it 520 * to 8M for other buffers that may need to stay low too. Also 521 * make sure we allocate enough extra low memory so that we 522 * don't run out of DMA buffers for 32-bit devices. 523 */ 524 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20); 525 } else { 526 /* passed with crashkernel=0,low ? */ 527 if (!low_size) 528 return 0; 529 } 530 531 low_base = memblock_find_in_range(low_size, 1ULL << 32, low_size, CRASH_ALIGN); 532 if (!low_base) { 533 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n", 534 (unsigned long)(low_size >> 20)); 535 return -ENOMEM; 536 } 537 538 ret = memblock_reserve(low_base, low_size); 539 if (ret) { 540 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__); 541 return ret; 542 } 543 544 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n", 545 (unsigned long)(low_size >> 20), 546 (unsigned long)(low_base >> 20), 547 (unsigned long)(total_low_mem >> 20)); 548 549 crashk_low_res.start = low_base; 550 crashk_low_res.end = low_base + low_size - 1; 551 insert_resource(&iomem_resource, &crashk_low_res); 552 #endif 553 return 0; 554 } 555 556 static void __init reserve_crashkernel(void) 557 { 558 unsigned long long crash_size, crash_base, total_mem; 559 bool high = false; 560 int ret; 561 562 total_mem = memblock_phys_mem_size(); 563 564 /* crashkernel=XM */ 565 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); 566 if (ret != 0 || crash_size <= 0) { 567 /* crashkernel=X,high */ 568 ret = parse_crashkernel_high(boot_command_line, total_mem, 569 &crash_size, &crash_base); 570 if (ret != 0 || crash_size <= 0) 571 return; 572 high = true; 573 } 574 575 /* 0 means: find the address automatically */ 576 if (crash_base <= 0) { 577 /* 578 * kexec want bzImage is below CRASH_KERNEL_ADDR_MAX 579 */ 580 crash_base = memblock_find_in_range(CRASH_ALIGN, 581 high ? CRASH_ADDR_HIGH_MAX 582 : CRASH_ADDR_LOW_MAX, 583 crash_size, CRASH_ALIGN); 584 if (!crash_base) { 585 pr_info("crashkernel reservation failed - No suitable area found.\n"); 586 return; 587 } 588 589 } else { 590 unsigned long long start; 591 592 start = memblock_find_in_range(crash_base, 593 crash_base + crash_size, 594 crash_size, 1 << 20); 595 if (start != crash_base) { 596 pr_info("crashkernel reservation failed - memory is in use.\n"); 597 return; 598 } 599 } 600 ret = memblock_reserve(crash_base, crash_size); 601 if (ret) { 602 pr_err("%s: Error reserving crashkernel memblock.\n", __func__); 603 return; 604 } 605 606 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) { 607 memblock_free(crash_base, crash_size); 608 return; 609 } 610 611 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", 612 (unsigned long)(crash_size >> 20), 613 (unsigned long)(crash_base >> 20), 614 (unsigned long)(total_mem >> 20)); 615 616 crashk_res.start = crash_base; 617 crashk_res.end = crash_base + crash_size - 1; 618 insert_resource(&iomem_resource, &crashk_res); 619 } 620 #else 621 static void __init reserve_crashkernel(void) 622 { 623 } 624 #endif 625 626 static struct resource standard_io_resources[] = { 627 { .name = "dma1", .start = 0x00, .end = 0x1f, 628 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 629 { .name = "pic1", .start = 0x20, .end = 0x21, 630 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 631 { .name = "timer0", .start = 0x40, .end = 0x43, 632 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 633 { .name = "timer1", .start = 0x50, .end = 0x53, 634 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 635 { .name = "keyboard", .start = 0x60, .end = 0x60, 636 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 637 { .name = "keyboard", .start = 0x64, .end = 0x64, 638 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 639 { .name = "dma page reg", .start = 0x80, .end = 0x8f, 640 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 641 { .name = "pic2", .start = 0xa0, .end = 0xa1, 642 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 643 { .name = "dma2", .start = 0xc0, .end = 0xdf, 644 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 645 { .name = "fpu", .start = 0xf0, .end = 0xff, 646 .flags = IORESOURCE_BUSY | IORESOURCE_IO } 647 }; 648 649 void __init reserve_standard_io_resources(void) 650 { 651 int i; 652 653 /* request I/O space for devices used on all i[345]86 PCs */ 654 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) 655 request_resource(&ioport_resource, &standard_io_resources[i]); 656 657 } 658 659 static __init void reserve_ibft_region(void) 660 { 661 unsigned long addr, size = 0; 662 663 addr = find_ibft_region(&size); 664 665 if (size) 666 memblock_reserve(addr, size); 667 } 668 669 static bool __init snb_gfx_workaround_needed(void) 670 { 671 #ifdef CONFIG_PCI 672 int i; 673 u16 vendor, devid; 674 static const __initconst u16 snb_ids[] = { 675 0x0102, 676 0x0112, 677 0x0122, 678 0x0106, 679 0x0116, 680 0x0126, 681 0x010a, 682 }; 683 684 /* Assume no if something weird is going on with PCI */ 685 if (!early_pci_allowed()) 686 return false; 687 688 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); 689 if (vendor != 0x8086) 690 return false; 691 692 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); 693 for (i = 0; i < ARRAY_SIZE(snb_ids); i++) 694 if (devid == snb_ids[i]) 695 return true; 696 #endif 697 698 return false; 699 } 700 701 /* 702 * Sandy Bridge graphics has trouble with certain ranges, exclude 703 * them from allocation. 704 */ 705 static void __init trim_snb_memory(void) 706 { 707 static const __initconst unsigned long bad_pages[] = { 708 0x20050000, 709 0x20110000, 710 0x20130000, 711 0x20138000, 712 0x40004000, 713 }; 714 int i; 715 716 if (!snb_gfx_workaround_needed()) 717 return; 718 719 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); 720 721 /* 722 * Reserve all memory below the 1 MB mark that has not 723 * already been reserved. 724 */ 725 memblock_reserve(0, 1<<20); 726 727 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { 728 if (memblock_reserve(bad_pages[i], PAGE_SIZE)) 729 printk(KERN_WARNING "failed to reserve 0x%08lx\n", 730 bad_pages[i]); 731 } 732 } 733 734 /* 735 * Here we put platform-specific memory range workarounds, i.e. 736 * memory known to be corrupt or otherwise in need to be reserved on 737 * specific platforms. 738 * 739 * If this gets used more widely it could use a real dispatch mechanism. 740 */ 741 static void __init trim_platform_memory_ranges(void) 742 { 743 trim_snb_memory(); 744 } 745 746 static void __init trim_bios_range(void) 747 { 748 /* 749 * A special case is the first 4Kb of memory; 750 * This is a BIOS owned area, not kernel ram, but generally 751 * not listed as such in the E820 table. 752 * 753 * This typically reserves additional memory (64KiB by default) 754 * since some BIOSes are known to corrupt low memory. See the 755 * Kconfig help text for X86_RESERVE_LOW. 756 */ 757 e820_update_range(0, PAGE_SIZE, E820_RAM, E820_RESERVED); 758 759 /* 760 * special case: Some BIOSen report the PC BIOS 761 * area (640->1Mb) as ram even though it is not. 762 * take them out. 763 */ 764 e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1); 765 766 sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map); 767 } 768 769 /* called before trim_bios_range() to spare extra sanitize */ 770 static void __init e820_add_kernel_range(void) 771 { 772 u64 start = __pa_symbol(_text); 773 u64 size = __pa_symbol(_end) - start; 774 775 /* 776 * Complain if .text .data and .bss are not marked as E820_RAM and 777 * attempt to fix it by adding the range. We may have a confused BIOS, 778 * or the user may have used memmap=exactmap or memmap=xxM$yyM to 779 * exclude kernel range. If we really are running on top non-RAM, 780 * we will crash later anyways. 781 */ 782 if (e820_all_mapped(start, start + size, E820_RAM)) 783 return; 784 785 pr_warn(".text .data .bss are not marked as E820_RAM!\n"); 786 e820_remove_range(start, size, E820_RAM, 0); 787 e820_add_region(start, size, E820_RAM); 788 } 789 790 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10; 791 792 static int __init parse_reservelow(char *p) 793 { 794 unsigned long long size; 795 796 if (!p) 797 return -EINVAL; 798 799 size = memparse(p, &p); 800 801 if (size < 4096) 802 size = 4096; 803 804 if (size > 640*1024) 805 size = 640*1024; 806 807 reserve_low = size; 808 809 return 0; 810 } 811 812 early_param("reservelow", parse_reservelow); 813 814 static void __init trim_low_memory_range(void) 815 { 816 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE)); 817 } 818 819 /* 820 * Dump out kernel offset information on panic. 821 */ 822 static int 823 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) 824 { 825 if (kaslr_enabled()) { 826 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n", 827 kaslr_offset(), 828 __START_KERNEL, 829 __START_KERNEL_map, 830 MODULES_VADDR-1); 831 } else { 832 pr_emerg("Kernel Offset: disabled\n"); 833 } 834 835 return 0; 836 } 837 838 /* 839 * Determine if we were loaded by an EFI loader. If so, then we have also been 840 * passed the efi memmap, systab, etc., so we should use these data structures 841 * for initialization. Note, the efi init code path is determined by the 842 * global efi_enabled. This allows the same kernel image to be used on existing 843 * systems (with a traditional BIOS) as well as on EFI systems. 844 */ 845 /* 846 * setup_arch - architecture-specific boot-time initializations 847 * 848 * Note: On x86_64, fixmaps are ready for use even before this is called. 849 */ 850 851 void __init setup_arch(char **cmdline_p) 852 { 853 memblock_reserve(__pa_symbol(_text), 854 (unsigned long)__bss_stop - (unsigned long)_text); 855 856 early_reserve_initrd(); 857 858 /* 859 * At this point everything still needed from the boot loader 860 * or BIOS or kernel text should be early reserved or marked not 861 * RAM in e820. All other memory is free game. 862 */ 863 864 #ifdef CONFIG_X86_32 865 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); 866 867 /* 868 * copy kernel address range established so far and switch 869 * to the proper swapper page table 870 */ 871 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, 872 initial_page_table + KERNEL_PGD_BOUNDARY, 873 KERNEL_PGD_PTRS); 874 875 load_cr3(swapper_pg_dir); 876 /* 877 * Note: Quark X1000 CPUs advertise PGE incorrectly and require 878 * a cr3 based tlb flush, so the following __flush_tlb_all() 879 * will not flush anything because the cpu quirk which clears 880 * X86_FEATURE_PGE has not been invoked yet. Though due to the 881 * load_cr3() above the TLB has been flushed already. The 882 * quirk is invoked before subsequent calls to __flush_tlb_all() 883 * so proper operation is guaranteed. 884 */ 885 __flush_tlb_all(); 886 #else 887 printk(KERN_INFO "Command line: %s\n", boot_command_line); 888 #endif 889 890 /* 891 * If we have OLPC OFW, we might end up relocating the fixmap due to 892 * reserve_top(), so do this before touching the ioremap area. 893 */ 894 olpc_ofw_detect(); 895 896 early_trap_init(); 897 early_cpu_init(); 898 early_ioremap_init(); 899 900 setup_olpc_ofw_pgd(); 901 902 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); 903 screen_info = boot_params.screen_info; 904 edid_info = boot_params.edid_info; 905 #ifdef CONFIG_X86_32 906 apm_info.bios = boot_params.apm_bios_info; 907 ist_info = boot_params.ist_info; 908 #endif 909 saved_video_mode = boot_params.hdr.vid_mode; 910 bootloader_type = boot_params.hdr.type_of_loader; 911 if ((bootloader_type >> 4) == 0xe) { 912 bootloader_type &= 0xf; 913 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; 914 } 915 bootloader_version = bootloader_type & 0xf; 916 bootloader_version |= boot_params.hdr.ext_loader_ver << 4; 917 918 #ifdef CONFIG_BLK_DEV_RAM 919 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; 920 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0); 921 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0); 922 #endif 923 #ifdef CONFIG_EFI 924 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 925 EFI32_LOADER_SIGNATURE, 4)) { 926 set_bit(EFI_BOOT, &efi.flags); 927 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 928 EFI64_LOADER_SIGNATURE, 4)) { 929 set_bit(EFI_BOOT, &efi.flags); 930 set_bit(EFI_64BIT, &efi.flags); 931 } 932 933 if (efi_enabled(EFI_BOOT)) 934 efi_memblock_x86_reserve_range(); 935 #endif 936 937 x86_init.oem.arch_setup(); 938 939 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; 940 setup_memory_map(); 941 parse_setup_data(); 942 943 copy_edd(); 944 945 if (!boot_params.hdr.root_flags) 946 root_mountflags &= ~MS_RDONLY; 947 init_mm.start_code = (unsigned long) _text; 948 init_mm.end_code = (unsigned long) _etext; 949 init_mm.end_data = (unsigned long) _edata; 950 init_mm.brk = _brk_end; 951 952 mpx_mm_init(&init_mm); 953 954 code_resource.start = __pa_symbol(_text); 955 code_resource.end = __pa_symbol(_etext)-1; 956 data_resource.start = __pa_symbol(_etext); 957 data_resource.end = __pa_symbol(_edata)-1; 958 bss_resource.start = __pa_symbol(__bss_start); 959 bss_resource.end = __pa_symbol(__bss_stop)-1; 960 961 #ifdef CONFIG_CMDLINE_BOOL 962 #ifdef CONFIG_CMDLINE_OVERRIDE 963 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 964 #else 965 if (builtin_cmdline[0]) { 966 /* append boot loader cmdline to builtin */ 967 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); 968 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); 969 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 970 } 971 #endif 972 #endif 973 974 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 975 *cmdline_p = command_line; 976 977 /* 978 * x86_configure_nx() is called before parse_early_param() to detect 979 * whether hardware doesn't support NX (so that the early EHCI debug 980 * console setup can safely call set_fixmap()). It may then be called 981 * again from within noexec_setup() during parsing early parameters 982 * to honor the respective command line option. 983 */ 984 x86_configure_nx(); 985 986 parse_early_param(); 987 988 #ifdef CONFIG_MEMORY_HOTPLUG 989 /* 990 * Memory used by the kernel cannot be hot-removed because Linux 991 * cannot migrate the kernel pages. When memory hotplug is 992 * enabled, we should prevent memblock from allocating memory 993 * for the kernel. 994 * 995 * ACPI SRAT records all hotpluggable memory ranges. But before 996 * SRAT is parsed, we don't know about it. 997 * 998 * The kernel image is loaded into memory at very early time. We 999 * cannot prevent this anyway. So on NUMA system, we set any 1000 * node the kernel resides in as un-hotpluggable. 1001 * 1002 * Since on modern servers, one node could have double-digit 1003 * gigabytes memory, we can assume the memory around the kernel 1004 * image is also un-hotpluggable. So before SRAT is parsed, just 1005 * allocate memory near the kernel image to try the best to keep 1006 * the kernel away from hotpluggable memory. 1007 */ 1008 if (movable_node_is_enabled()) 1009 memblock_set_bottom_up(true); 1010 #endif 1011 1012 x86_report_nx(); 1013 1014 /* after early param, so could get panic from serial */ 1015 memblock_x86_reserve_range_setup_data(); 1016 1017 if (acpi_mps_check()) { 1018 #ifdef CONFIG_X86_LOCAL_APIC 1019 disable_apic = 1; 1020 #endif 1021 setup_clear_cpu_cap(X86_FEATURE_APIC); 1022 } 1023 1024 #ifdef CONFIG_PCI 1025 if (pci_early_dump_regs) 1026 early_dump_pci_devices(); 1027 #endif 1028 1029 /* update the e820_saved too */ 1030 e820_reserve_setup_data(); 1031 finish_e820_parsing(); 1032 1033 if (efi_enabled(EFI_BOOT)) 1034 efi_init(); 1035 1036 dmi_scan_machine(); 1037 dmi_memdev_walk(); 1038 dmi_set_dump_stack_arch_desc(); 1039 1040 /* 1041 * VMware detection requires dmi to be available, so this 1042 * needs to be done after dmi_scan_machine, for the BP. 1043 */ 1044 init_hypervisor_platform(); 1045 1046 x86_init.resources.probe_roms(); 1047 1048 /* after parse_early_param, so could debug it */ 1049 insert_resource(&iomem_resource, &code_resource); 1050 insert_resource(&iomem_resource, &data_resource); 1051 insert_resource(&iomem_resource, &bss_resource); 1052 1053 e820_add_kernel_range(); 1054 trim_bios_range(); 1055 #ifdef CONFIG_X86_32 1056 if (ppro_with_ram_bug()) { 1057 e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM, 1058 E820_RESERVED); 1059 sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map); 1060 printk(KERN_INFO "fixed physical RAM map:\n"); 1061 e820_print_map("bad_ppro"); 1062 } 1063 #else 1064 early_gart_iommu_check(); 1065 #endif 1066 1067 /* 1068 * partially used pages are not usable - thus 1069 * we are rounding upwards: 1070 */ 1071 max_pfn = e820_end_of_ram_pfn(); 1072 1073 /* update e820 for memory not covered by WB MTRRs */ 1074 mtrr_bp_init(); 1075 if (mtrr_trim_uncached_memory(max_pfn)) 1076 max_pfn = e820_end_of_ram_pfn(); 1077 1078 max_possible_pfn = max_pfn; 1079 1080 /* 1081 * Define random base addresses for memory sections after max_pfn is 1082 * defined and before each memory section base is used. 1083 */ 1084 kernel_randomize_memory(); 1085 1086 #ifdef CONFIG_X86_32 1087 /* max_low_pfn get updated here */ 1088 find_low_pfn_range(); 1089 #else 1090 check_x2apic(); 1091 1092 /* How many end-of-memory variables you have, grandma! */ 1093 /* need this before calling reserve_initrd */ 1094 if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) 1095 max_low_pfn = e820_end_of_low_ram_pfn(); 1096 else 1097 max_low_pfn = max_pfn; 1098 1099 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 1100 #endif 1101 1102 /* 1103 * Find and reserve possible boot-time SMP configuration: 1104 */ 1105 find_smp_config(); 1106 1107 reserve_ibft_region(); 1108 1109 early_alloc_pgt_buf(); 1110 1111 /* 1112 * Need to conclude brk, before memblock_x86_fill() 1113 * it could use memblock_find_in_range, could overlap with 1114 * brk area. 1115 */ 1116 reserve_brk(); 1117 1118 cleanup_highmap(); 1119 1120 memblock_set_current_limit(ISA_END_ADDRESS); 1121 memblock_x86_fill(); 1122 1123 reserve_bios_regions(); 1124 1125 if (efi_enabled(EFI_MEMMAP)) { 1126 efi_fake_memmap(); 1127 efi_find_mirror(); 1128 efi_esrt_init(); 1129 1130 /* 1131 * The EFI specification says that boot service code won't be 1132 * called after ExitBootServices(). This is, in fact, a lie. 1133 */ 1134 efi_reserve_boot_services(); 1135 } 1136 1137 /* preallocate 4k for mptable mpc */ 1138 early_reserve_e820_mpc_new(); 1139 1140 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION 1141 setup_bios_corruption_check(); 1142 #endif 1143 1144 #ifdef CONFIG_X86_32 1145 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", 1146 (max_pfn_mapped<<PAGE_SHIFT) - 1); 1147 #endif 1148 1149 reserve_real_mode(); 1150 1151 trim_platform_memory_ranges(); 1152 trim_low_memory_range(); 1153 1154 init_mem_mapping(); 1155 1156 early_trap_pf_init(); 1157 1158 /* 1159 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features) 1160 * with the current CR4 value. This may not be necessary, but 1161 * auditing all the early-boot CR4 manipulation would be needed to 1162 * rule it out. 1163 */ 1164 mmu_cr4_features = __read_cr4(); 1165 1166 memblock_set_current_limit(get_max_mapped()); 1167 1168 /* 1169 * NOTE: On x86-32, only from this point on, fixmaps are ready for use. 1170 */ 1171 1172 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT 1173 if (init_ohci1394_dma_early) 1174 init_ohci1394_dma_on_all_controllers(); 1175 #endif 1176 /* Allocate bigger log buffer */ 1177 setup_log_buf(1); 1178 1179 reserve_initrd(); 1180 1181 acpi_table_upgrade(); 1182 1183 vsmp_init(); 1184 1185 io_delay_init(); 1186 1187 /* 1188 * Parse the ACPI tables for possible boot-time SMP configuration. 1189 */ 1190 acpi_boot_table_init(); 1191 1192 early_acpi_boot_init(); 1193 1194 initmem_init(); 1195 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT); 1196 1197 /* 1198 * Reserve memory for crash kernel after SRAT is parsed so that it 1199 * won't consume hotpluggable memory. 1200 */ 1201 reserve_crashkernel(); 1202 1203 memblock_find_dma_reserve(); 1204 1205 #ifdef CONFIG_KVM_GUEST 1206 kvmclock_init(); 1207 #endif 1208 1209 x86_init.paging.pagetable_init(); 1210 1211 kasan_init(); 1212 1213 #ifdef CONFIG_X86_32 1214 /* sync back kernel address range */ 1215 clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY, 1216 swapper_pg_dir + KERNEL_PGD_BOUNDARY, 1217 KERNEL_PGD_PTRS); 1218 1219 /* 1220 * sync back low identity map too. It is used for example 1221 * in the 32-bit EFI stub. 1222 */ 1223 clone_pgd_range(initial_page_table, 1224 swapper_pg_dir + KERNEL_PGD_BOUNDARY, 1225 min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY)); 1226 #endif 1227 1228 tboot_probe(); 1229 1230 map_vsyscall(); 1231 1232 generic_apic_probe(); 1233 1234 early_quirks(); 1235 1236 /* 1237 * Read APIC and some other early information from ACPI tables. 1238 */ 1239 acpi_boot_init(); 1240 sfi_init(); 1241 x86_dtb_init(); 1242 1243 /* 1244 * get boot-time SMP configuration: 1245 */ 1246 get_smp_config(); 1247 1248 /* 1249 * Systems w/o ACPI and mptables might not have it mapped the local 1250 * APIC yet, but prefill_possible_map() might need to access it. 1251 */ 1252 init_apic_mappings(); 1253 1254 prefill_possible_map(); 1255 1256 init_cpu_to_node(); 1257 1258 io_apic_init_mappings(); 1259 1260 kvm_guest_init(); 1261 1262 e820_reserve_resources(); 1263 e820_mark_nosave_regions(max_low_pfn); 1264 1265 x86_init.resources.reserve_resources(); 1266 1267 e820_setup_gap(); 1268 1269 #ifdef CONFIG_VT 1270 #if defined(CONFIG_VGA_CONSOLE) 1271 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) 1272 conswitchp = &vga_con; 1273 #elif defined(CONFIG_DUMMY_CONSOLE) 1274 conswitchp = &dummy_con; 1275 #endif 1276 #endif 1277 x86_init.oem.banner(); 1278 1279 x86_init.timers.wallclock_init(); 1280 1281 mcheck_init(); 1282 1283 arch_init_ideal_nops(); 1284 1285 register_refined_jiffies(CLOCK_TICK_RATE); 1286 1287 #ifdef CONFIG_EFI 1288 if (efi_enabled(EFI_BOOT)) 1289 efi_apply_memmap_quirks(); 1290 #endif 1291 } 1292 1293 #ifdef CONFIG_X86_32 1294 1295 static struct resource video_ram_resource = { 1296 .name = "Video RAM area", 1297 .start = 0xa0000, 1298 .end = 0xbffff, 1299 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 1300 }; 1301 1302 void __init i386_reserve_resources(void) 1303 { 1304 request_resource(&iomem_resource, &video_ram_resource); 1305 reserve_standard_io_resources(); 1306 } 1307 1308 #endif /* CONFIG_X86_32 */ 1309 1310 static struct notifier_block kernel_offset_notifier = { 1311 .notifier_call = dump_kernel_offset 1312 }; 1313 1314 static int __init register_kernel_offset_dumper(void) 1315 { 1316 atomic_notifier_chain_register(&panic_notifier_list, 1317 &kernel_offset_notifier); 1318 return 0; 1319 } 1320 __initcall(register_kernel_offset_dumper); 1321 1322 void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma) 1323 { 1324 if (!boot_cpu_has(X86_FEATURE_OSPKE)) 1325 return; 1326 1327 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma)); 1328 } 1329