xref: /openbmc/linux/arch/x86/kernel/setup.c (revision 7ec6b431)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *
7  *  Memory region support
8  *	David Parsons <orc@pell.chi.il.us>, July-August 1999
9  *
10  *  Added E820 sanitization routine (removes overlapping memory regions);
11  *  Brian Moyle <bmoyle@mvista.com>, February 2001
12  *
13  * Moved CPU detection code to cpu/${cpu}.c
14  *    Patrick Mochel <mochel@osdl.org>, March 2002
15  *
16  *  Provisions for empty E820 memory regions (reported by certain BIOSes).
17  *  Alex Achenbach <xela@slit.de>, December 2002.
18  *
19  */
20 
21 /*
22  * This file handles the architecture-dependent parts of initialization
23  */
24 
25 #include <linux/sched.h>
26 #include <linux/mm.h>
27 #include <linux/mmzone.h>
28 #include <linux/screen_info.h>
29 #include <linux/ioport.h>
30 #include <linux/acpi.h>
31 #include <linux/sfi.h>
32 #include <linux/apm_bios.h>
33 #include <linux/initrd.h>
34 #include <linux/memblock.h>
35 #include <linux/seq_file.h>
36 #include <linux/console.h>
37 #include <linux/root_dev.h>
38 #include <linux/highmem.h>
39 #include <linux/export.h>
40 #include <linux/efi.h>
41 #include <linux/init.h>
42 #include <linux/edd.h>
43 #include <linux/iscsi_ibft.h>
44 #include <linux/nodemask.h>
45 #include <linux/kexec.h>
46 #include <linux/dmi.h>
47 #include <linux/pfn.h>
48 #include <linux/pci.h>
49 #include <asm/pci-direct.h>
50 #include <linux/init_ohci1394_dma.h>
51 #include <linux/kvm_para.h>
52 #include <linux/dma-contiguous.h>
53 #include <xen/xen.h>
54 #include <uapi/linux/mount.h>
55 
56 #include <linux/errno.h>
57 #include <linux/kernel.h>
58 #include <linux/stddef.h>
59 #include <linux/unistd.h>
60 #include <linux/ptrace.h>
61 #include <linux/user.h>
62 #include <linux/delay.h>
63 
64 #include <linux/kallsyms.h>
65 #include <linux/cpufreq.h>
66 #include <linux/dma-mapping.h>
67 #include <linux/ctype.h>
68 #include <linux/uaccess.h>
69 
70 #include <linux/percpu.h>
71 #include <linux/crash_dump.h>
72 #include <linux/tboot.h>
73 #include <linux/jiffies.h>
74 #include <linux/mem_encrypt.h>
75 #include <linux/sizes.h>
76 
77 #include <linux/usb/xhci-dbgp.h>
78 #include <video/edid.h>
79 
80 #include <asm/mtrr.h>
81 #include <asm/apic.h>
82 #include <asm/realmode.h>
83 #include <asm/e820/api.h>
84 #include <asm/mpspec.h>
85 #include <asm/setup.h>
86 #include <asm/efi.h>
87 #include <asm/timer.h>
88 #include <asm/i8259.h>
89 #include <asm/sections.h>
90 #include <asm/io_apic.h>
91 #include <asm/ist.h>
92 #include <asm/setup_arch.h>
93 #include <asm/bios_ebda.h>
94 #include <asm/cacheflush.h>
95 #include <asm/processor.h>
96 #include <asm/bugs.h>
97 #include <asm/kasan.h>
98 
99 #include <asm/vsyscall.h>
100 #include <asm/cpu.h>
101 #include <asm/desc.h>
102 #include <asm/dma.h>
103 #include <asm/iommu.h>
104 #include <asm/gart.h>
105 #include <asm/mmu_context.h>
106 #include <asm/proto.h>
107 
108 #include <asm/paravirt.h>
109 #include <asm/hypervisor.h>
110 #include <asm/olpc_ofw.h>
111 
112 #include <asm/percpu.h>
113 #include <asm/topology.h>
114 #include <asm/apicdef.h>
115 #include <asm/amd_nb.h>
116 #include <asm/mce.h>
117 #include <asm/alternative.h>
118 #include <asm/prom.h>
119 #include <asm/microcode.h>
120 #include <asm/kaslr.h>
121 #include <asm/unwind.h>
122 
123 /*
124  * max_low_pfn_mapped: highest direct mapped pfn under 4GB
125  * max_pfn_mapped:     highest direct mapped pfn over 4GB
126  *
127  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
128  * represented by pfn_mapped
129  */
130 unsigned long max_low_pfn_mapped;
131 unsigned long max_pfn_mapped;
132 
133 #ifdef CONFIG_DMI
134 RESERVE_BRK(dmi_alloc, 65536);
135 #endif
136 
137 
138 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
139 unsigned long _brk_end = (unsigned long)__brk_base;
140 
141 struct boot_params boot_params;
142 
143 /*
144  * Machine setup..
145  */
146 static struct resource rodata_resource = {
147 	.name	= "Kernel rodata",
148 	.start	= 0,
149 	.end	= 0,
150 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
151 };
152 
153 static struct resource data_resource = {
154 	.name	= "Kernel data",
155 	.start	= 0,
156 	.end	= 0,
157 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
158 };
159 
160 static struct resource code_resource = {
161 	.name	= "Kernel code",
162 	.start	= 0,
163 	.end	= 0,
164 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
165 };
166 
167 static struct resource bss_resource = {
168 	.name	= "Kernel bss",
169 	.start	= 0,
170 	.end	= 0,
171 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
172 };
173 
174 
175 #ifdef CONFIG_X86_32
176 /* cpu data as detected by the assembly code in head_32.S */
177 struct cpuinfo_x86 new_cpu_data;
178 
179 /* common cpu data for all cpus */
180 struct cpuinfo_x86 boot_cpu_data __read_mostly;
181 EXPORT_SYMBOL(boot_cpu_data);
182 
183 unsigned int def_to_bigsmp;
184 
185 /* for MCA, but anyone else can use it if they want */
186 unsigned int machine_id;
187 unsigned int machine_submodel_id;
188 unsigned int BIOS_revision;
189 
190 struct apm_info apm_info;
191 EXPORT_SYMBOL(apm_info);
192 
193 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
194 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
195 struct ist_info ist_info;
196 EXPORT_SYMBOL(ist_info);
197 #else
198 struct ist_info ist_info;
199 #endif
200 
201 #else
202 struct cpuinfo_x86 boot_cpu_data __read_mostly;
203 EXPORT_SYMBOL(boot_cpu_data);
204 #endif
205 
206 
207 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
208 __visible unsigned long mmu_cr4_features __ro_after_init;
209 #else
210 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
211 #endif
212 
213 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
214 int bootloader_type, bootloader_version;
215 
216 /*
217  * Setup options
218  */
219 struct screen_info screen_info;
220 EXPORT_SYMBOL(screen_info);
221 struct edid_info edid_info;
222 EXPORT_SYMBOL_GPL(edid_info);
223 
224 extern int root_mountflags;
225 
226 unsigned long saved_video_mode;
227 
228 #define RAMDISK_IMAGE_START_MASK	0x07FF
229 #define RAMDISK_PROMPT_FLAG		0x8000
230 #define RAMDISK_LOAD_FLAG		0x4000
231 
232 static char __initdata command_line[COMMAND_LINE_SIZE];
233 #ifdef CONFIG_CMDLINE_BOOL
234 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
235 #endif
236 
237 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
238 struct edd edd;
239 #ifdef CONFIG_EDD_MODULE
240 EXPORT_SYMBOL(edd);
241 #endif
242 /**
243  * copy_edd() - Copy the BIOS EDD information
244  *              from boot_params into a safe place.
245  *
246  */
247 static inline void __init copy_edd(void)
248 {
249      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
250 	    sizeof(edd.mbr_signature));
251      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
252      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
253      edd.edd_info_nr = boot_params.eddbuf_entries;
254 }
255 #else
256 static inline void __init copy_edd(void)
257 {
258 }
259 #endif
260 
261 void * __init extend_brk(size_t size, size_t align)
262 {
263 	size_t mask = align - 1;
264 	void *ret;
265 
266 	BUG_ON(_brk_start == 0);
267 	BUG_ON(align & mask);
268 
269 	_brk_end = (_brk_end + mask) & ~mask;
270 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
271 
272 	ret = (void *)_brk_end;
273 	_brk_end += size;
274 
275 	memset(ret, 0, size);
276 
277 	return ret;
278 }
279 
280 #ifdef CONFIG_X86_32
281 static void __init cleanup_highmap(void)
282 {
283 }
284 #endif
285 
286 static void __init reserve_brk(void)
287 {
288 	if (_brk_end > _brk_start)
289 		memblock_reserve(__pa_symbol(_brk_start),
290 				 _brk_end - _brk_start);
291 
292 	/* Mark brk area as locked down and no longer taking any
293 	   new allocations */
294 	_brk_start = 0;
295 }
296 
297 u64 relocated_ramdisk;
298 
299 #ifdef CONFIG_BLK_DEV_INITRD
300 
301 static u64 __init get_ramdisk_image(void)
302 {
303 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
304 
305 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
306 
307 	return ramdisk_image;
308 }
309 static u64 __init get_ramdisk_size(void)
310 {
311 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
312 
313 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
314 
315 	return ramdisk_size;
316 }
317 
318 static void __init relocate_initrd(void)
319 {
320 	/* Assume only end is not page aligned */
321 	u64 ramdisk_image = get_ramdisk_image();
322 	u64 ramdisk_size  = get_ramdisk_size();
323 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
324 
325 	/* We need to move the initrd down into directly mapped mem */
326 	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
327 						   area_size, PAGE_SIZE);
328 
329 	if (!relocated_ramdisk)
330 		panic("Cannot find place for new RAMDISK of size %lld\n",
331 		      ramdisk_size);
332 
333 	/* Note: this includes all the mem currently occupied by
334 	   the initrd, we rely on that fact to keep the data intact. */
335 	memblock_reserve(relocated_ramdisk, area_size);
336 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
337 	initrd_end   = initrd_start + ramdisk_size;
338 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
339 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
340 
341 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
342 
343 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
344 		" [mem %#010llx-%#010llx]\n",
345 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
346 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
347 }
348 
349 static void __init early_reserve_initrd(void)
350 {
351 	/* Assume only end is not page aligned */
352 	u64 ramdisk_image = get_ramdisk_image();
353 	u64 ramdisk_size  = get_ramdisk_size();
354 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
355 
356 	if (!boot_params.hdr.type_of_loader ||
357 	    !ramdisk_image || !ramdisk_size)
358 		return;		/* No initrd provided by bootloader */
359 
360 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
361 }
362 static void __init reserve_initrd(void)
363 {
364 	/* Assume only end is not page aligned */
365 	u64 ramdisk_image = get_ramdisk_image();
366 	u64 ramdisk_size  = get_ramdisk_size();
367 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
368 	u64 mapped_size;
369 
370 	if (!boot_params.hdr.type_of_loader ||
371 	    !ramdisk_image || !ramdisk_size)
372 		return;		/* No initrd provided by bootloader */
373 
374 	initrd_start = 0;
375 
376 	mapped_size = memblock_mem_size(max_pfn_mapped);
377 	if (ramdisk_size >= (mapped_size>>1))
378 		panic("initrd too large to handle, "
379 		       "disabling initrd (%lld needed, %lld available)\n",
380 		       ramdisk_size, mapped_size>>1);
381 
382 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
383 			ramdisk_end - 1);
384 
385 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
386 				PFN_DOWN(ramdisk_end))) {
387 		/* All are mapped, easy case */
388 		initrd_start = ramdisk_image + PAGE_OFFSET;
389 		initrd_end = initrd_start + ramdisk_size;
390 		return;
391 	}
392 
393 	relocate_initrd();
394 
395 	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
396 }
397 
398 #else
399 static void __init early_reserve_initrd(void)
400 {
401 }
402 static void __init reserve_initrd(void)
403 {
404 }
405 #endif /* CONFIG_BLK_DEV_INITRD */
406 
407 static void __init parse_setup_data(void)
408 {
409 	struct setup_data *data;
410 	u64 pa_data, pa_next;
411 
412 	pa_data = boot_params.hdr.setup_data;
413 	while (pa_data) {
414 		u32 data_len, data_type;
415 
416 		data = early_memremap(pa_data, sizeof(*data));
417 		data_len = data->len + sizeof(struct setup_data);
418 		data_type = data->type;
419 		pa_next = data->next;
420 		early_memunmap(data, sizeof(*data));
421 
422 		switch (data_type) {
423 		case SETUP_E820_EXT:
424 			e820__memory_setup_extended(pa_data, data_len);
425 			break;
426 		case SETUP_DTB:
427 			add_dtb(pa_data);
428 			break;
429 		case SETUP_EFI:
430 			parse_efi_setup(pa_data, data_len);
431 			break;
432 		default:
433 			break;
434 		}
435 		pa_data = pa_next;
436 	}
437 }
438 
439 static void __init memblock_x86_reserve_range_setup_data(void)
440 {
441 	struct setup_data *data;
442 	u64 pa_data;
443 
444 	pa_data = boot_params.hdr.setup_data;
445 	while (pa_data) {
446 		data = early_memremap(pa_data, sizeof(*data));
447 		memblock_reserve(pa_data, sizeof(*data) + data->len);
448 
449 		if (data->type == SETUP_INDIRECT &&
450 		    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
451 			memblock_reserve(((struct setup_indirect *)data->data)->addr,
452 					 ((struct setup_indirect *)data->data)->len);
453 
454 		pa_data = data->next;
455 		early_memunmap(data, sizeof(*data));
456 	}
457 }
458 
459 /*
460  * --------- Crashkernel reservation ------------------------------
461  */
462 
463 #ifdef CONFIG_KEXEC_CORE
464 
465 /* 16M alignment for crash kernel regions */
466 #define CRASH_ALIGN		SZ_16M
467 
468 /*
469  * Keep the crash kernel below this limit.
470  *
471  * On 32 bits earlier kernels would limit the kernel to the low 512 MiB
472  * due to mapping restrictions.
473  *
474  * On 64bit, kdump kernel need be restricted to be under 64TB, which is
475  * the upper limit of system RAM in 4-level paging mode. Since the kdump
476  * jumping could be from 5-level to 4-level, the jumping will fail if
477  * kernel is put above 64TB, and there's no way to detect the paging mode
478  * of the kernel which will be loaded for dumping during the 1st kernel
479  * bootup.
480  */
481 #ifdef CONFIG_X86_32
482 # define CRASH_ADDR_LOW_MAX	SZ_512M
483 # define CRASH_ADDR_HIGH_MAX	SZ_512M
484 #else
485 # define CRASH_ADDR_LOW_MAX	SZ_4G
486 # define CRASH_ADDR_HIGH_MAX	SZ_64T
487 #endif
488 
489 static int __init reserve_crashkernel_low(void)
490 {
491 #ifdef CONFIG_X86_64
492 	unsigned long long base, low_base = 0, low_size = 0;
493 	unsigned long total_low_mem;
494 	int ret;
495 
496 	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
497 
498 	/* crashkernel=Y,low */
499 	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
500 	if (ret) {
501 		/*
502 		 * two parts from kernel/dma/swiotlb.c:
503 		 * -swiotlb size: user-specified with swiotlb= or default.
504 		 *
505 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
506 		 * to 8M for other buffers that may need to stay low too. Also
507 		 * make sure we allocate enough extra low memory so that we
508 		 * don't run out of DMA buffers for 32-bit devices.
509 		 */
510 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
511 	} else {
512 		/* passed with crashkernel=0,low ? */
513 		if (!low_size)
514 			return 0;
515 	}
516 
517 	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
518 	if (!low_base) {
519 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
520 		       (unsigned long)(low_size >> 20));
521 		return -ENOMEM;
522 	}
523 
524 	ret = memblock_reserve(low_base, low_size);
525 	if (ret) {
526 		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
527 		return ret;
528 	}
529 
530 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
531 		(unsigned long)(low_size >> 20),
532 		(unsigned long)(low_base >> 20),
533 		(unsigned long)(total_low_mem >> 20));
534 
535 	crashk_low_res.start = low_base;
536 	crashk_low_res.end   = low_base + low_size - 1;
537 	insert_resource(&iomem_resource, &crashk_low_res);
538 #endif
539 	return 0;
540 }
541 
542 static void __init reserve_crashkernel(void)
543 {
544 	unsigned long long crash_size, crash_base, total_mem;
545 	bool high = false;
546 	int ret;
547 
548 	total_mem = memblock_phys_mem_size();
549 
550 	/* crashkernel=XM */
551 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
552 	if (ret != 0 || crash_size <= 0) {
553 		/* crashkernel=X,high */
554 		ret = parse_crashkernel_high(boot_command_line, total_mem,
555 					     &crash_size, &crash_base);
556 		if (ret != 0 || crash_size <= 0)
557 			return;
558 		high = true;
559 	}
560 
561 	if (xen_pv_domain()) {
562 		pr_info("Ignoring crashkernel for a Xen PV domain\n");
563 		return;
564 	}
565 
566 	/* 0 means: find the address automatically */
567 	if (!crash_base) {
568 		/*
569 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
570 		 * crashkernel=x,high reserves memory over 4G, also allocates
571 		 * 256M extra low memory for DMA buffers and swiotlb.
572 		 * But the extra memory is not required for all machines.
573 		 * So try low memory first and fall back to high memory
574 		 * unless "crashkernel=size[KMG],high" is specified.
575 		 */
576 		if (!high)
577 			crash_base = memblock_find_in_range(CRASH_ALIGN,
578 						CRASH_ADDR_LOW_MAX,
579 						crash_size, CRASH_ALIGN);
580 		if (!crash_base)
581 			crash_base = memblock_find_in_range(CRASH_ALIGN,
582 						CRASH_ADDR_HIGH_MAX,
583 						crash_size, CRASH_ALIGN);
584 		if (!crash_base) {
585 			pr_info("crashkernel reservation failed - No suitable area found.\n");
586 			return;
587 		}
588 	} else {
589 		unsigned long long start;
590 
591 		start = memblock_find_in_range(crash_base,
592 					       crash_base + crash_size,
593 					       crash_size, 1 << 20);
594 		if (start != crash_base) {
595 			pr_info("crashkernel reservation failed - memory is in use.\n");
596 			return;
597 		}
598 	}
599 	ret = memblock_reserve(crash_base, crash_size);
600 	if (ret) {
601 		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
602 		return;
603 	}
604 
605 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
606 		memblock_free(crash_base, crash_size);
607 		return;
608 	}
609 
610 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
611 		(unsigned long)(crash_size >> 20),
612 		(unsigned long)(crash_base >> 20),
613 		(unsigned long)(total_mem >> 20));
614 
615 	crashk_res.start = crash_base;
616 	crashk_res.end   = crash_base + crash_size - 1;
617 	insert_resource(&iomem_resource, &crashk_res);
618 }
619 #else
620 static void __init reserve_crashkernel(void)
621 {
622 }
623 #endif
624 
625 static struct resource standard_io_resources[] = {
626 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
627 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
628 	{ .name = "pic1", .start = 0x20, .end = 0x21,
629 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
630 	{ .name = "timer0", .start = 0x40, .end = 0x43,
631 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
632 	{ .name = "timer1", .start = 0x50, .end = 0x53,
633 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
634 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
635 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
636 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
637 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
638 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
639 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
640 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
641 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
642 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
643 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
644 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
645 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
646 };
647 
648 void __init reserve_standard_io_resources(void)
649 {
650 	int i;
651 
652 	/* request I/O space for devices used on all i[345]86 PCs */
653 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
654 		request_resource(&ioport_resource, &standard_io_resources[i]);
655 
656 }
657 
658 static __init void reserve_ibft_region(void)
659 {
660 	unsigned long addr, size = 0;
661 
662 	addr = find_ibft_region(&size);
663 
664 	if (size)
665 		memblock_reserve(addr, size);
666 }
667 
668 static bool __init snb_gfx_workaround_needed(void)
669 {
670 #ifdef CONFIG_PCI
671 	int i;
672 	u16 vendor, devid;
673 	static const __initconst u16 snb_ids[] = {
674 		0x0102,
675 		0x0112,
676 		0x0122,
677 		0x0106,
678 		0x0116,
679 		0x0126,
680 		0x010a,
681 	};
682 
683 	/* Assume no if something weird is going on with PCI */
684 	if (!early_pci_allowed())
685 		return false;
686 
687 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
688 	if (vendor != 0x8086)
689 		return false;
690 
691 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
692 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
693 		if (devid == snb_ids[i])
694 			return true;
695 #endif
696 
697 	return false;
698 }
699 
700 /*
701  * Sandy Bridge graphics has trouble with certain ranges, exclude
702  * them from allocation.
703  */
704 static void __init trim_snb_memory(void)
705 {
706 	static const __initconst unsigned long bad_pages[] = {
707 		0x20050000,
708 		0x20110000,
709 		0x20130000,
710 		0x20138000,
711 		0x40004000,
712 	};
713 	int i;
714 
715 	if (!snb_gfx_workaround_needed())
716 		return;
717 
718 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
719 
720 	/*
721 	 * Reserve all memory below the 1 MB mark that has not
722 	 * already been reserved.
723 	 */
724 	memblock_reserve(0, 1<<20);
725 
726 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
727 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
728 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
729 			       bad_pages[i]);
730 	}
731 }
732 
733 /*
734  * Here we put platform-specific memory range workarounds, i.e.
735  * memory known to be corrupt or otherwise in need to be reserved on
736  * specific platforms.
737  *
738  * If this gets used more widely it could use a real dispatch mechanism.
739  */
740 static void __init trim_platform_memory_ranges(void)
741 {
742 	trim_snb_memory();
743 }
744 
745 static void __init trim_bios_range(void)
746 {
747 	/*
748 	 * A special case is the first 4Kb of memory;
749 	 * This is a BIOS owned area, not kernel ram, but generally
750 	 * not listed as such in the E820 table.
751 	 *
752 	 * This typically reserves additional memory (64KiB by default)
753 	 * since some BIOSes are known to corrupt low memory.  See the
754 	 * Kconfig help text for X86_RESERVE_LOW.
755 	 */
756 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
757 
758 	/*
759 	 * special case: Some BIOSes report the PC BIOS
760 	 * area (640Kb -> 1Mb) as RAM even though it is not.
761 	 * take them out.
762 	 */
763 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
764 
765 	e820__update_table(e820_table);
766 }
767 
768 /* called before trim_bios_range() to spare extra sanitize */
769 static void __init e820_add_kernel_range(void)
770 {
771 	u64 start = __pa_symbol(_text);
772 	u64 size = __pa_symbol(_end) - start;
773 
774 	/*
775 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
776 	 * attempt to fix it by adding the range. We may have a confused BIOS,
777 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
778 	 * exclude kernel range. If we really are running on top non-RAM,
779 	 * we will crash later anyways.
780 	 */
781 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
782 		return;
783 
784 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
785 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
786 	e820__range_add(start, size, E820_TYPE_RAM);
787 }
788 
789 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
790 
791 static int __init parse_reservelow(char *p)
792 {
793 	unsigned long long size;
794 
795 	if (!p)
796 		return -EINVAL;
797 
798 	size = memparse(p, &p);
799 
800 	if (size < 4096)
801 		size = 4096;
802 
803 	if (size > 640*1024)
804 		size = 640*1024;
805 
806 	reserve_low = size;
807 
808 	return 0;
809 }
810 
811 early_param("reservelow", parse_reservelow);
812 
813 static void __init trim_low_memory_range(void)
814 {
815 	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
816 }
817 
818 /*
819  * Dump out kernel offset information on panic.
820  */
821 static int
822 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
823 {
824 	if (kaslr_enabled()) {
825 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
826 			 kaslr_offset(),
827 			 __START_KERNEL,
828 			 __START_KERNEL_map,
829 			 MODULES_VADDR-1);
830 	} else {
831 		pr_emerg("Kernel Offset: disabled\n");
832 	}
833 
834 	return 0;
835 }
836 
837 /*
838  * Determine if we were loaded by an EFI loader.  If so, then we have also been
839  * passed the efi memmap, systab, etc., so we should use these data structures
840  * for initialization.  Note, the efi init code path is determined by the
841  * global efi_enabled. This allows the same kernel image to be used on existing
842  * systems (with a traditional BIOS) as well as on EFI systems.
843  */
844 /*
845  * setup_arch - architecture-specific boot-time initializations
846  *
847  * Note: On x86_64, fixmaps are ready for use even before this is called.
848  */
849 
850 void __init setup_arch(char **cmdline_p)
851 {
852 	/*
853 	 * Reserve the memory occupied by the kernel between _text and
854 	 * __end_of_kernel_reserve symbols. Any kernel sections after the
855 	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
856 	 * separate memblock_reserve() or they will be discarded.
857 	 */
858 	memblock_reserve(__pa_symbol(_text),
859 			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
860 
861 	/*
862 	 * Make sure page 0 is always reserved because on systems with
863 	 * L1TF its contents can be leaked to user processes.
864 	 */
865 	memblock_reserve(0, PAGE_SIZE);
866 
867 	early_reserve_initrd();
868 
869 	/*
870 	 * At this point everything still needed from the boot loader
871 	 * or BIOS or kernel text should be early reserved or marked not
872 	 * RAM in e820. All other memory is free game.
873 	 */
874 
875 #ifdef CONFIG_X86_32
876 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
877 
878 	/*
879 	 * copy kernel address range established so far and switch
880 	 * to the proper swapper page table
881 	 */
882 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
883 			initial_page_table + KERNEL_PGD_BOUNDARY,
884 			KERNEL_PGD_PTRS);
885 
886 	load_cr3(swapper_pg_dir);
887 	/*
888 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
889 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
890 	 * will not flush anything because the cpu quirk which clears
891 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
892 	 * load_cr3() above the TLB has been flushed already. The
893 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
894 	 * so proper operation is guaranteed.
895 	 */
896 	__flush_tlb_all();
897 #else
898 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
899 	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
900 #endif
901 
902 	/*
903 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
904 	 * reserve_top(), so do this before touching the ioremap area.
905 	 */
906 	olpc_ofw_detect();
907 
908 	idt_setup_early_traps();
909 	early_cpu_init();
910 	arch_init_ideal_nops();
911 	jump_label_init();
912 	early_ioremap_init();
913 
914 	setup_olpc_ofw_pgd();
915 
916 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
917 	screen_info = boot_params.screen_info;
918 	edid_info = boot_params.edid_info;
919 #ifdef CONFIG_X86_32
920 	apm_info.bios = boot_params.apm_bios_info;
921 	ist_info = boot_params.ist_info;
922 #endif
923 	saved_video_mode = boot_params.hdr.vid_mode;
924 	bootloader_type = boot_params.hdr.type_of_loader;
925 	if ((bootloader_type >> 4) == 0xe) {
926 		bootloader_type &= 0xf;
927 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
928 	}
929 	bootloader_version  = bootloader_type & 0xf;
930 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
931 
932 #ifdef CONFIG_BLK_DEV_RAM
933 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
934 	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
935 	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
936 #endif
937 #ifdef CONFIG_EFI
938 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
939 		     EFI32_LOADER_SIGNATURE, 4)) {
940 		set_bit(EFI_BOOT, &efi.flags);
941 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
942 		     EFI64_LOADER_SIGNATURE, 4)) {
943 		set_bit(EFI_BOOT, &efi.flags);
944 		set_bit(EFI_64BIT, &efi.flags);
945 	}
946 #endif
947 
948 	x86_init.oem.arch_setup();
949 
950 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
951 	e820__memory_setup();
952 	parse_setup_data();
953 
954 	copy_edd();
955 
956 	if (!boot_params.hdr.root_flags)
957 		root_mountflags &= ~MS_RDONLY;
958 	init_mm.start_code = (unsigned long) _text;
959 	init_mm.end_code = (unsigned long) _etext;
960 	init_mm.end_data = (unsigned long) _edata;
961 	init_mm.brk = _brk_end;
962 
963 	mpx_mm_init(&init_mm);
964 
965 	code_resource.start = __pa_symbol(_text);
966 	code_resource.end = __pa_symbol(_etext)-1;
967 	rodata_resource.start = __pa_symbol(__start_rodata);
968 	rodata_resource.end = __pa_symbol(__end_rodata)-1;
969 	data_resource.start = __pa_symbol(_sdata);
970 	data_resource.end = __pa_symbol(_edata)-1;
971 	bss_resource.start = __pa_symbol(__bss_start);
972 	bss_resource.end = __pa_symbol(__bss_stop)-1;
973 
974 #ifdef CONFIG_CMDLINE_BOOL
975 #ifdef CONFIG_CMDLINE_OVERRIDE
976 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
977 #else
978 	if (builtin_cmdline[0]) {
979 		/* append boot loader cmdline to builtin */
980 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
981 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
982 		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
983 	}
984 #endif
985 #endif
986 
987 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
988 	*cmdline_p = command_line;
989 
990 	/*
991 	 * x86_configure_nx() is called before parse_early_param() to detect
992 	 * whether hardware doesn't support NX (so that the early EHCI debug
993 	 * console setup can safely call set_fixmap()). It may then be called
994 	 * again from within noexec_setup() during parsing early parameters
995 	 * to honor the respective command line option.
996 	 */
997 	x86_configure_nx();
998 
999 	parse_early_param();
1000 
1001 	if (efi_enabled(EFI_BOOT))
1002 		efi_memblock_x86_reserve_range();
1003 #ifdef CONFIG_MEMORY_HOTPLUG
1004 	/*
1005 	 * Memory used by the kernel cannot be hot-removed because Linux
1006 	 * cannot migrate the kernel pages. When memory hotplug is
1007 	 * enabled, we should prevent memblock from allocating memory
1008 	 * for the kernel.
1009 	 *
1010 	 * ACPI SRAT records all hotpluggable memory ranges. But before
1011 	 * SRAT is parsed, we don't know about it.
1012 	 *
1013 	 * The kernel image is loaded into memory at very early time. We
1014 	 * cannot prevent this anyway. So on NUMA system, we set any
1015 	 * node the kernel resides in as un-hotpluggable.
1016 	 *
1017 	 * Since on modern servers, one node could have double-digit
1018 	 * gigabytes memory, we can assume the memory around the kernel
1019 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1020 	 * allocate memory near the kernel image to try the best to keep
1021 	 * the kernel away from hotpluggable memory.
1022 	 */
1023 	if (movable_node_is_enabled())
1024 		memblock_set_bottom_up(true);
1025 #endif
1026 
1027 	x86_report_nx();
1028 
1029 	/* after early param, so could get panic from serial */
1030 	memblock_x86_reserve_range_setup_data();
1031 
1032 	if (acpi_mps_check()) {
1033 #ifdef CONFIG_X86_LOCAL_APIC
1034 		disable_apic = 1;
1035 #endif
1036 		setup_clear_cpu_cap(X86_FEATURE_APIC);
1037 	}
1038 
1039 	e820__reserve_setup_data();
1040 	e820__finish_early_params();
1041 
1042 	if (efi_enabled(EFI_BOOT))
1043 		efi_init();
1044 
1045 	dmi_setup();
1046 
1047 	/*
1048 	 * VMware detection requires dmi to be available, so this
1049 	 * needs to be done after dmi_setup(), for the boot CPU.
1050 	 */
1051 	init_hypervisor_platform();
1052 
1053 	tsc_early_init();
1054 	x86_init.resources.probe_roms();
1055 
1056 	/* after parse_early_param, so could debug it */
1057 	insert_resource(&iomem_resource, &code_resource);
1058 	insert_resource(&iomem_resource, &rodata_resource);
1059 	insert_resource(&iomem_resource, &data_resource);
1060 	insert_resource(&iomem_resource, &bss_resource);
1061 
1062 	e820_add_kernel_range();
1063 	trim_bios_range();
1064 #ifdef CONFIG_X86_32
1065 	if (ppro_with_ram_bug()) {
1066 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1067 				  E820_TYPE_RESERVED);
1068 		e820__update_table(e820_table);
1069 		printk(KERN_INFO "fixed physical RAM map:\n");
1070 		e820__print_table("bad_ppro");
1071 	}
1072 #else
1073 	early_gart_iommu_check();
1074 #endif
1075 
1076 	/*
1077 	 * partially used pages are not usable - thus
1078 	 * we are rounding upwards:
1079 	 */
1080 	max_pfn = e820__end_of_ram_pfn();
1081 
1082 	/* update e820 for memory not covered by WB MTRRs */
1083 	mtrr_bp_init();
1084 	if (mtrr_trim_uncached_memory(max_pfn))
1085 		max_pfn = e820__end_of_ram_pfn();
1086 
1087 	max_possible_pfn = max_pfn;
1088 
1089 	/*
1090 	 * This call is required when the CPU does not support PAT. If
1091 	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1092 	 * effect.
1093 	 */
1094 	init_cache_modes();
1095 
1096 	/*
1097 	 * Define random base addresses for memory sections after max_pfn is
1098 	 * defined and before each memory section base is used.
1099 	 */
1100 	kernel_randomize_memory();
1101 
1102 #ifdef CONFIG_X86_32
1103 	/* max_low_pfn get updated here */
1104 	find_low_pfn_range();
1105 #else
1106 	check_x2apic();
1107 
1108 	/* How many end-of-memory variables you have, grandma! */
1109 	/* need this before calling reserve_initrd */
1110 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1111 		max_low_pfn = e820__end_of_low_ram_pfn();
1112 	else
1113 		max_low_pfn = max_pfn;
1114 
1115 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1116 #endif
1117 
1118 	/*
1119 	 * Find and reserve possible boot-time SMP configuration:
1120 	 */
1121 	find_smp_config();
1122 
1123 	reserve_ibft_region();
1124 
1125 	early_alloc_pgt_buf();
1126 
1127 	/*
1128 	 * Need to conclude brk, before e820__memblock_setup()
1129 	 *  it could use memblock_find_in_range, could overlap with
1130 	 *  brk area.
1131 	 */
1132 	reserve_brk();
1133 
1134 	cleanup_highmap();
1135 
1136 	memblock_set_current_limit(ISA_END_ADDRESS);
1137 	e820__memblock_setup();
1138 
1139 	reserve_bios_regions();
1140 
1141 	efi_fake_memmap();
1142 	efi_find_mirror();
1143 	efi_esrt_init();
1144 
1145 	/*
1146 	 * The EFI specification says that boot service code won't be
1147 	 * called after ExitBootServices(). This is, in fact, a lie.
1148 	 */
1149 	efi_reserve_boot_services();
1150 
1151 	/* preallocate 4k for mptable mpc */
1152 	e820__memblock_alloc_reserved_mpc_new();
1153 
1154 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1155 	setup_bios_corruption_check();
1156 #endif
1157 
1158 #ifdef CONFIG_X86_32
1159 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1160 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1161 #endif
1162 
1163 	reserve_real_mode();
1164 
1165 	trim_platform_memory_ranges();
1166 	trim_low_memory_range();
1167 
1168 	init_mem_mapping();
1169 
1170 	idt_setup_early_pf();
1171 
1172 	/*
1173 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1174 	 * with the current CR4 value.  This may not be necessary, but
1175 	 * auditing all the early-boot CR4 manipulation would be needed to
1176 	 * rule it out.
1177 	 *
1178 	 * Mask off features that don't work outside long mode (just
1179 	 * PCIDE for now).
1180 	 */
1181 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1182 
1183 	memblock_set_current_limit(get_max_mapped());
1184 
1185 	/*
1186 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1187 	 */
1188 
1189 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1190 	if (init_ohci1394_dma_early)
1191 		init_ohci1394_dma_on_all_controllers();
1192 #endif
1193 	/* Allocate bigger log buffer */
1194 	setup_log_buf(1);
1195 
1196 	if (efi_enabled(EFI_BOOT)) {
1197 		switch (boot_params.secure_boot) {
1198 		case efi_secureboot_mode_disabled:
1199 			pr_info("Secure boot disabled\n");
1200 			break;
1201 		case efi_secureboot_mode_enabled:
1202 			pr_info("Secure boot enabled\n");
1203 			break;
1204 		default:
1205 			pr_info("Secure boot could not be determined\n");
1206 			break;
1207 		}
1208 	}
1209 
1210 	reserve_initrd();
1211 
1212 	acpi_table_upgrade();
1213 
1214 	vsmp_init();
1215 
1216 	io_delay_init();
1217 
1218 	early_platform_quirks();
1219 
1220 	/*
1221 	 * Parse the ACPI tables for possible boot-time SMP configuration.
1222 	 */
1223 	acpi_boot_table_init();
1224 
1225 	early_acpi_boot_init();
1226 
1227 	initmem_init();
1228 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1229 
1230 	/*
1231 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1232 	 * won't consume hotpluggable memory.
1233 	 */
1234 	reserve_crashkernel();
1235 
1236 	memblock_find_dma_reserve();
1237 
1238 	if (!early_xdbc_setup_hardware())
1239 		early_xdbc_register_console();
1240 
1241 	x86_init.paging.pagetable_init();
1242 
1243 	kasan_init();
1244 
1245 	/*
1246 	 * Sync back kernel address range.
1247 	 *
1248 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1249 	 * this call?
1250 	 */
1251 	sync_initial_page_table();
1252 
1253 	tboot_probe();
1254 
1255 	map_vsyscall();
1256 
1257 	generic_apic_probe();
1258 
1259 	early_quirks();
1260 
1261 	/*
1262 	 * Read APIC and some other early information from ACPI tables.
1263 	 */
1264 	acpi_boot_init();
1265 	sfi_init();
1266 	x86_dtb_init();
1267 
1268 	/*
1269 	 * get boot-time SMP configuration:
1270 	 */
1271 	get_smp_config();
1272 
1273 	/*
1274 	 * Systems w/o ACPI and mptables might not have it mapped the local
1275 	 * APIC yet, but prefill_possible_map() might need to access it.
1276 	 */
1277 	init_apic_mappings();
1278 
1279 	prefill_possible_map();
1280 
1281 	init_cpu_to_node();
1282 
1283 	io_apic_init_mappings();
1284 
1285 	x86_init.hyper.guest_late_init();
1286 
1287 	e820__reserve_resources();
1288 	e820__register_nosave_regions(max_pfn);
1289 
1290 	x86_init.resources.reserve_resources();
1291 
1292 	e820__setup_pci_gap();
1293 
1294 #ifdef CONFIG_VT
1295 #if defined(CONFIG_VGA_CONSOLE)
1296 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1297 		conswitchp = &vga_con;
1298 #elif defined(CONFIG_DUMMY_CONSOLE)
1299 	conswitchp = &dummy_con;
1300 #endif
1301 #endif
1302 	x86_init.oem.banner();
1303 
1304 	x86_init.timers.wallclock_init();
1305 
1306 	mcheck_init();
1307 
1308 	register_refined_jiffies(CLOCK_TICK_RATE);
1309 
1310 #ifdef CONFIG_EFI
1311 	if (efi_enabled(EFI_BOOT))
1312 		efi_apply_memmap_quirks();
1313 #endif
1314 
1315 	unwind_init();
1316 }
1317 
1318 #ifdef CONFIG_X86_32
1319 
1320 static struct resource video_ram_resource = {
1321 	.name	= "Video RAM area",
1322 	.start	= 0xa0000,
1323 	.end	= 0xbffff,
1324 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1325 };
1326 
1327 void __init i386_reserve_resources(void)
1328 {
1329 	request_resource(&iomem_resource, &video_ram_resource);
1330 	reserve_standard_io_resources();
1331 }
1332 
1333 #endif /* CONFIG_X86_32 */
1334 
1335 static struct notifier_block kernel_offset_notifier = {
1336 	.notifier_call = dump_kernel_offset
1337 };
1338 
1339 static int __init register_kernel_offset_dumper(void)
1340 {
1341 	atomic_notifier_chain_register(&panic_notifier_list,
1342 					&kernel_offset_notifier);
1343 	return 0;
1344 }
1345 __initcall(register_kernel_offset_dumper);
1346