1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * This file contains the setup_arch() code, which handles the architecture-dependent 6 * parts of early kernel initialization. 7 */ 8 #include <linux/console.h> 9 #include <linux/crash_dump.h> 10 #include <linux/dmi.h> 11 #include <linux/efi.h> 12 #include <linux/init_ohci1394_dma.h> 13 #include <linux/initrd.h> 14 #include <linux/iscsi_ibft.h> 15 #include <linux/memblock.h> 16 #include <linux/pci.h> 17 #include <linux/root_dev.h> 18 #include <linux/sfi.h> 19 #include <linux/hugetlb.h> 20 #include <linux/tboot.h> 21 #include <linux/usb/xhci-dbgp.h> 22 23 #include <uapi/linux/mount.h> 24 25 #include <xen/xen.h> 26 27 #include <asm/apic.h> 28 #include <asm/bios_ebda.h> 29 #include <asm/bugs.h> 30 #include <asm/cpu.h> 31 #include <asm/efi.h> 32 #include <asm/gart.h> 33 #include <asm/hypervisor.h> 34 #include <asm/io_apic.h> 35 #include <asm/kasan.h> 36 #include <asm/kaslr.h> 37 #include <asm/mce.h> 38 #include <asm/mtrr.h> 39 #include <asm/realmode.h> 40 #include <asm/olpc_ofw.h> 41 #include <asm/pci-direct.h> 42 #include <asm/prom.h> 43 #include <asm/proto.h> 44 #include <asm/unwind.h> 45 #include <asm/vsyscall.h> 46 #include <linux/vmalloc.h> 47 48 /* 49 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB 50 * max_pfn_mapped: highest directly mapped pfn > 4 GB 51 * 52 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are 53 * represented by pfn_mapped[]. 54 */ 55 unsigned long max_low_pfn_mapped; 56 unsigned long max_pfn_mapped; 57 58 #ifdef CONFIG_DMI 59 RESERVE_BRK(dmi_alloc, 65536); 60 #endif 61 62 63 /* 64 * Range of the BSS area. The size of the BSS area is determined 65 * at link time, with RESERVE_BRK*() facility reserving additional 66 * chunks. 67 */ 68 unsigned long _brk_start = (unsigned long)__brk_base; 69 unsigned long _brk_end = (unsigned long)__brk_base; 70 71 struct boot_params boot_params; 72 73 /* 74 * These are the four main kernel memory regions, we put them into 75 * the resource tree so that kdump tools and other debugging tools 76 * recover it: 77 */ 78 79 static struct resource rodata_resource = { 80 .name = "Kernel rodata", 81 .start = 0, 82 .end = 0, 83 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 84 }; 85 86 static struct resource data_resource = { 87 .name = "Kernel data", 88 .start = 0, 89 .end = 0, 90 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 91 }; 92 93 static struct resource code_resource = { 94 .name = "Kernel code", 95 .start = 0, 96 .end = 0, 97 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 98 }; 99 100 static struct resource bss_resource = { 101 .name = "Kernel bss", 102 .start = 0, 103 .end = 0, 104 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 105 }; 106 107 108 #ifdef CONFIG_X86_32 109 /* CPU data as detected by the assembly code in head_32.S */ 110 struct cpuinfo_x86 new_cpu_data; 111 112 /* Common CPU data for all CPUs */ 113 struct cpuinfo_x86 boot_cpu_data __read_mostly; 114 EXPORT_SYMBOL(boot_cpu_data); 115 116 unsigned int def_to_bigsmp; 117 118 /* For MCA, but anyone else can use it if they want */ 119 unsigned int machine_id; 120 unsigned int machine_submodel_id; 121 unsigned int BIOS_revision; 122 123 struct apm_info apm_info; 124 EXPORT_SYMBOL(apm_info); 125 126 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ 127 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) 128 struct ist_info ist_info; 129 EXPORT_SYMBOL(ist_info); 130 #else 131 struct ist_info ist_info; 132 #endif 133 134 #else 135 struct cpuinfo_x86 boot_cpu_data __read_mostly; 136 EXPORT_SYMBOL(boot_cpu_data); 137 #endif 138 139 140 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) 141 __visible unsigned long mmu_cr4_features __ro_after_init; 142 #else 143 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; 144 #endif 145 146 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ 147 int bootloader_type, bootloader_version; 148 149 /* 150 * Setup options 151 */ 152 struct screen_info screen_info; 153 EXPORT_SYMBOL(screen_info); 154 struct edid_info edid_info; 155 EXPORT_SYMBOL_GPL(edid_info); 156 157 extern int root_mountflags; 158 159 unsigned long saved_video_mode; 160 161 #define RAMDISK_IMAGE_START_MASK 0x07FF 162 #define RAMDISK_PROMPT_FLAG 0x8000 163 #define RAMDISK_LOAD_FLAG 0x4000 164 165 static char __initdata command_line[COMMAND_LINE_SIZE]; 166 #ifdef CONFIG_CMDLINE_BOOL 167 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 168 #endif 169 170 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) 171 struct edd edd; 172 #ifdef CONFIG_EDD_MODULE 173 EXPORT_SYMBOL(edd); 174 #endif 175 /** 176 * copy_edd() - Copy the BIOS EDD information 177 * from boot_params into a safe place. 178 * 179 */ 180 static inline void __init copy_edd(void) 181 { 182 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, 183 sizeof(edd.mbr_signature)); 184 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); 185 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; 186 edd.edd_info_nr = boot_params.eddbuf_entries; 187 } 188 #else 189 static inline void __init copy_edd(void) 190 { 191 } 192 #endif 193 194 void * __init extend_brk(size_t size, size_t align) 195 { 196 size_t mask = align - 1; 197 void *ret; 198 199 BUG_ON(_brk_start == 0); 200 BUG_ON(align & mask); 201 202 _brk_end = (_brk_end + mask) & ~mask; 203 BUG_ON((char *)(_brk_end + size) > __brk_limit); 204 205 ret = (void *)_brk_end; 206 _brk_end += size; 207 208 memset(ret, 0, size); 209 210 return ret; 211 } 212 213 #ifdef CONFIG_X86_32 214 static void __init cleanup_highmap(void) 215 { 216 } 217 #endif 218 219 static void __init reserve_brk(void) 220 { 221 if (_brk_end > _brk_start) 222 memblock_reserve(__pa_symbol(_brk_start), 223 _brk_end - _brk_start); 224 225 /* Mark brk area as locked down and no longer taking any 226 new allocations */ 227 _brk_start = 0; 228 } 229 230 u64 relocated_ramdisk; 231 232 #ifdef CONFIG_BLK_DEV_INITRD 233 234 static u64 __init get_ramdisk_image(void) 235 { 236 u64 ramdisk_image = boot_params.hdr.ramdisk_image; 237 238 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; 239 240 return ramdisk_image; 241 } 242 static u64 __init get_ramdisk_size(void) 243 { 244 u64 ramdisk_size = boot_params.hdr.ramdisk_size; 245 246 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; 247 248 return ramdisk_size; 249 } 250 251 static void __init relocate_initrd(void) 252 { 253 /* Assume only end is not page aligned */ 254 u64 ramdisk_image = get_ramdisk_image(); 255 u64 ramdisk_size = get_ramdisk_size(); 256 u64 area_size = PAGE_ALIGN(ramdisk_size); 257 258 /* We need to move the initrd down into directly mapped mem */ 259 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), 260 area_size, PAGE_SIZE); 261 262 if (!relocated_ramdisk) 263 panic("Cannot find place for new RAMDISK of size %lld\n", 264 ramdisk_size); 265 266 /* Note: this includes all the mem currently occupied by 267 the initrd, we rely on that fact to keep the data intact. */ 268 memblock_reserve(relocated_ramdisk, area_size); 269 initrd_start = relocated_ramdisk + PAGE_OFFSET; 270 initrd_end = initrd_start + ramdisk_size; 271 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", 272 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 273 274 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size); 275 276 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" 277 " [mem %#010llx-%#010llx]\n", 278 ramdisk_image, ramdisk_image + ramdisk_size - 1, 279 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 280 } 281 282 static void __init early_reserve_initrd(void) 283 { 284 /* Assume only end is not page aligned */ 285 u64 ramdisk_image = get_ramdisk_image(); 286 u64 ramdisk_size = get_ramdisk_size(); 287 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 288 289 if (!boot_params.hdr.type_of_loader || 290 !ramdisk_image || !ramdisk_size) 291 return; /* No initrd provided by bootloader */ 292 293 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image); 294 } 295 static void __init reserve_initrd(void) 296 { 297 /* Assume only end is not page aligned */ 298 u64 ramdisk_image = get_ramdisk_image(); 299 u64 ramdisk_size = get_ramdisk_size(); 300 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 301 u64 mapped_size; 302 303 if (!boot_params.hdr.type_of_loader || 304 !ramdisk_image || !ramdisk_size) 305 return; /* No initrd provided by bootloader */ 306 307 initrd_start = 0; 308 309 mapped_size = memblock_mem_size(max_pfn_mapped); 310 if (ramdisk_size >= (mapped_size>>1)) 311 panic("initrd too large to handle, " 312 "disabling initrd (%lld needed, %lld available)\n", 313 ramdisk_size, mapped_size>>1); 314 315 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, 316 ramdisk_end - 1); 317 318 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), 319 PFN_DOWN(ramdisk_end))) { 320 /* All are mapped, easy case */ 321 initrd_start = ramdisk_image + PAGE_OFFSET; 322 initrd_end = initrd_start + ramdisk_size; 323 return; 324 } 325 326 relocate_initrd(); 327 328 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image); 329 } 330 331 #else 332 static void __init early_reserve_initrd(void) 333 { 334 } 335 static void __init reserve_initrd(void) 336 { 337 } 338 #endif /* CONFIG_BLK_DEV_INITRD */ 339 340 static void __init parse_setup_data(void) 341 { 342 struct setup_data *data; 343 u64 pa_data, pa_next; 344 345 pa_data = boot_params.hdr.setup_data; 346 while (pa_data) { 347 u32 data_len, data_type; 348 349 data = early_memremap(pa_data, sizeof(*data)); 350 data_len = data->len + sizeof(struct setup_data); 351 data_type = data->type; 352 pa_next = data->next; 353 early_memunmap(data, sizeof(*data)); 354 355 switch (data_type) { 356 case SETUP_E820_EXT: 357 e820__memory_setup_extended(pa_data, data_len); 358 break; 359 case SETUP_DTB: 360 add_dtb(pa_data); 361 break; 362 case SETUP_EFI: 363 parse_efi_setup(pa_data, data_len); 364 break; 365 default: 366 break; 367 } 368 pa_data = pa_next; 369 } 370 } 371 372 static void __init memblock_x86_reserve_range_setup_data(void) 373 { 374 struct setup_data *data; 375 u64 pa_data; 376 377 pa_data = boot_params.hdr.setup_data; 378 while (pa_data) { 379 data = early_memremap(pa_data, sizeof(*data)); 380 memblock_reserve(pa_data, sizeof(*data) + data->len); 381 382 if (data->type == SETUP_INDIRECT && 383 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) 384 memblock_reserve(((struct setup_indirect *)data->data)->addr, 385 ((struct setup_indirect *)data->data)->len); 386 387 pa_data = data->next; 388 early_memunmap(data, sizeof(*data)); 389 } 390 } 391 392 /* 393 * --------- Crashkernel reservation ------------------------------ 394 */ 395 396 #ifdef CONFIG_KEXEC_CORE 397 398 /* 16M alignment for crash kernel regions */ 399 #define CRASH_ALIGN SZ_16M 400 401 /* 402 * Keep the crash kernel below this limit. 403 * 404 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range 405 * due to mapping restrictions. 406 * 407 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is 408 * the upper limit of system RAM in 4-level paging mode. Since the kdump 409 * jump could be from 5-level paging to 4-level paging, the jump will fail if 410 * the kernel is put above 64 TB, and during the 1st kernel bootup there's 411 * no good way to detect the paging mode of the target kernel which will be 412 * loaded for dumping. 413 */ 414 #ifdef CONFIG_X86_32 415 # define CRASH_ADDR_LOW_MAX SZ_512M 416 # define CRASH_ADDR_HIGH_MAX SZ_512M 417 #else 418 # define CRASH_ADDR_LOW_MAX SZ_4G 419 # define CRASH_ADDR_HIGH_MAX SZ_64T 420 #endif 421 422 static int __init reserve_crashkernel_low(void) 423 { 424 #ifdef CONFIG_X86_64 425 unsigned long long base, low_base = 0, low_size = 0; 426 unsigned long total_low_mem; 427 int ret; 428 429 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT)); 430 431 /* crashkernel=Y,low */ 432 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base); 433 if (ret) { 434 /* 435 * two parts from kernel/dma/swiotlb.c: 436 * -swiotlb size: user-specified with swiotlb= or default. 437 * 438 * -swiotlb overflow buffer: now hardcoded to 32k. We round it 439 * to 8M for other buffers that may need to stay low too. Also 440 * make sure we allocate enough extra low memory so that we 441 * don't run out of DMA buffers for 32-bit devices. 442 */ 443 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20); 444 } else { 445 /* passed with crashkernel=0,low ? */ 446 if (!low_size) 447 return 0; 448 } 449 450 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN); 451 if (!low_base) { 452 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n", 453 (unsigned long)(low_size >> 20)); 454 return -ENOMEM; 455 } 456 457 ret = memblock_reserve(low_base, low_size); 458 if (ret) { 459 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__); 460 return ret; 461 } 462 463 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n", 464 (unsigned long)(low_size >> 20), 465 (unsigned long)(low_base >> 20), 466 (unsigned long)(total_low_mem >> 20)); 467 468 crashk_low_res.start = low_base; 469 crashk_low_res.end = low_base + low_size - 1; 470 insert_resource(&iomem_resource, &crashk_low_res); 471 #endif 472 return 0; 473 } 474 475 static void __init reserve_crashkernel(void) 476 { 477 unsigned long long crash_size, crash_base, total_mem; 478 bool high = false; 479 int ret; 480 481 total_mem = memblock_phys_mem_size(); 482 483 /* crashkernel=XM */ 484 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); 485 if (ret != 0 || crash_size <= 0) { 486 /* crashkernel=X,high */ 487 ret = parse_crashkernel_high(boot_command_line, total_mem, 488 &crash_size, &crash_base); 489 if (ret != 0 || crash_size <= 0) 490 return; 491 high = true; 492 } 493 494 if (xen_pv_domain()) { 495 pr_info("Ignoring crashkernel for a Xen PV domain\n"); 496 return; 497 } 498 499 /* 0 means: find the address automatically */ 500 if (!crash_base) { 501 /* 502 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory, 503 * crashkernel=x,high reserves memory over 4G, also allocates 504 * 256M extra low memory for DMA buffers and swiotlb. 505 * But the extra memory is not required for all machines. 506 * So try low memory first and fall back to high memory 507 * unless "crashkernel=size[KMG],high" is specified. 508 */ 509 if (!high) 510 crash_base = memblock_find_in_range(CRASH_ALIGN, 511 CRASH_ADDR_LOW_MAX, 512 crash_size, CRASH_ALIGN); 513 if (!crash_base) 514 crash_base = memblock_find_in_range(CRASH_ALIGN, 515 CRASH_ADDR_HIGH_MAX, 516 crash_size, CRASH_ALIGN); 517 if (!crash_base) { 518 pr_info("crashkernel reservation failed - No suitable area found.\n"); 519 return; 520 } 521 } else { 522 unsigned long long start; 523 524 start = memblock_find_in_range(crash_base, 525 crash_base + crash_size, 526 crash_size, 1 << 20); 527 if (start != crash_base) { 528 pr_info("crashkernel reservation failed - memory is in use.\n"); 529 return; 530 } 531 } 532 ret = memblock_reserve(crash_base, crash_size); 533 if (ret) { 534 pr_err("%s: Error reserving crashkernel memblock.\n", __func__); 535 return; 536 } 537 538 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) { 539 memblock_free(crash_base, crash_size); 540 return; 541 } 542 543 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", 544 (unsigned long)(crash_size >> 20), 545 (unsigned long)(crash_base >> 20), 546 (unsigned long)(total_mem >> 20)); 547 548 crashk_res.start = crash_base; 549 crashk_res.end = crash_base + crash_size - 1; 550 insert_resource(&iomem_resource, &crashk_res); 551 } 552 #else 553 static void __init reserve_crashkernel(void) 554 { 555 } 556 #endif 557 558 static struct resource standard_io_resources[] = { 559 { .name = "dma1", .start = 0x00, .end = 0x1f, 560 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 561 { .name = "pic1", .start = 0x20, .end = 0x21, 562 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 563 { .name = "timer0", .start = 0x40, .end = 0x43, 564 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 565 { .name = "timer1", .start = 0x50, .end = 0x53, 566 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 567 { .name = "keyboard", .start = 0x60, .end = 0x60, 568 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 569 { .name = "keyboard", .start = 0x64, .end = 0x64, 570 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 571 { .name = "dma page reg", .start = 0x80, .end = 0x8f, 572 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 573 { .name = "pic2", .start = 0xa0, .end = 0xa1, 574 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 575 { .name = "dma2", .start = 0xc0, .end = 0xdf, 576 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 577 { .name = "fpu", .start = 0xf0, .end = 0xff, 578 .flags = IORESOURCE_BUSY | IORESOURCE_IO } 579 }; 580 581 void __init reserve_standard_io_resources(void) 582 { 583 int i; 584 585 /* request I/O space for devices used on all i[345]86 PCs */ 586 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) 587 request_resource(&ioport_resource, &standard_io_resources[i]); 588 589 } 590 591 static __init void reserve_ibft_region(void) 592 { 593 unsigned long addr, size = 0; 594 595 addr = find_ibft_region(&size); 596 597 if (size) 598 memblock_reserve(addr, size); 599 } 600 601 static bool __init snb_gfx_workaround_needed(void) 602 { 603 #ifdef CONFIG_PCI 604 int i; 605 u16 vendor, devid; 606 static const __initconst u16 snb_ids[] = { 607 0x0102, 608 0x0112, 609 0x0122, 610 0x0106, 611 0x0116, 612 0x0126, 613 0x010a, 614 }; 615 616 /* Assume no if something weird is going on with PCI */ 617 if (!early_pci_allowed()) 618 return false; 619 620 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); 621 if (vendor != 0x8086) 622 return false; 623 624 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); 625 for (i = 0; i < ARRAY_SIZE(snb_ids); i++) 626 if (devid == snb_ids[i]) 627 return true; 628 #endif 629 630 return false; 631 } 632 633 /* 634 * Sandy Bridge graphics has trouble with certain ranges, exclude 635 * them from allocation. 636 */ 637 static void __init trim_snb_memory(void) 638 { 639 static const __initconst unsigned long bad_pages[] = { 640 0x20050000, 641 0x20110000, 642 0x20130000, 643 0x20138000, 644 0x40004000, 645 }; 646 int i; 647 648 if (!snb_gfx_workaround_needed()) 649 return; 650 651 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); 652 653 /* 654 * Reserve all memory below the 1 MB mark that has not 655 * already been reserved. 656 */ 657 memblock_reserve(0, 1<<20); 658 659 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { 660 if (memblock_reserve(bad_pages[i], PAGE_SIZE)) 661 printk(KERN_WARNING "failed to reserve 0x%08lx\n", 662 bad_pages[i]); 663 } 664 } 665 666 /* 667 * Here we put platform-specific memory range workarounds, i.e. 668 * memory known to be corrupt or otherwise in need to be reserved on 669 * specific platforms. 670 * 671 * If this gets used more widely it could use a real dispatch mechanism. 672 */ 673 static void __init trim_platform_memory_ranges(void) 674 { 675 trim_snb_memory(); 676 } 677 678 static void __init trim_bios_range(void) 679 { 680 /* 681 * A special case is the first 4Kb of memory; 682 * This is a BIOS owned area, not kernel ram, but generally 683 * not listed as such in the E820 table. 684 * 685 * This typically reserves additional memory (64KiB by default) 686 * since some BIOSes are known to corrupt low memory. See the 687 * Kconfig help text for X86_RESERVE_LOW. 688 */ 689 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); 690 691 /* 692 * special case: Some BIOSes report the PC BIOS 693 * area (640Kb -> 1Mb) as RAM even though it is not. 694 * take them out. 695 */ 696 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1); 697 698 e820__update_table(e820_table); 699 } 700 701 /* called before trim_bios_range() to spare extra sanitize */ 702 static void __init e820_add_kernel_range(void) 703 { 704 u64 start = __pa_symbol(_text); 705 u64 size = __pa_symbol(_end) - start; 706 707 /* 708 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and 709 * attempt to fix it by adding the range. We may have a confused BIOS, 710 * or the user may have used memmap=exactmap or memmap=xxM$yyM to 711 * exclude kernel range. If we really are running on top non-RAM, 712 * we will crash later anyways. 713 */ 714 if (e820__mapped_all(start, start + size, E820_TYPE_RAM)) 715 return; 716 717 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n"); 718 e820__range_remove(start, size, E820_TYPE_RAM, 0); 719 e820__range_add(start, size, E820_TYPE_RAM); 720 } 721 722 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10; 723 724 static int __init parse_reservelow(char *p) 725 { 726 unsigned long long size; 727 728 if (!p) 729 return -EINVAL; 730 731 size = memparse(p, &p); 732 733 if (size < 4096) 734 size = 4096; 735 736 if (size > 640*1024) 737 size = 640*1024; 738 739 reserve_low = size; 740 741 return 0; 742 } 743 744 early_param("reservelow", parse_reservelow); 745 746 static void __init trim_low_memory_range(void) 747 { 748 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE)); 749 } 750 751 /* 752 * Dump out kernel offset information on panic. 753 */ 754 static int 755 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) 756 { 757 if (kaslr_enabled()) { 758 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n", 759 kaslr_offset(), 760 __START_KERNEL, 761 __START_KERNEL_map, 762 MODULES_VADDR-1); 763 } else { 764 pr_emerg("Kernel Offset: disabled\n"); 765 } 766 767 return 0; 768 } 769 770 /* 771 * Determine if we were loaded by an EFI loader. If so, then we have also been 772 * passed the efi memmap, systab, etc., so we should use these data structures 773 * for initialization. Note, the efi init code path is determined by the 774 * global efi_enabled. This allows the same kernel image to be used on existing 775 * systems (with a traditional BIOS) as well as on EFI systems. 776 */ 777 /* 778 * setup_arch - architecture-specific boot-time initializations 779 * 780 * Note: On x86_64, fixmaps are ready for use even before this is called. 781 */ 782 783 void __init setup_arch(char **cmdline_p) 784 { 785 /* 786 * Reserve the memory occupied by the kernel between _text and 787 * __end_of_kernel_reserve symbols. Any kernel sections after the 788 * __end_of_kernel_reserve symbol must be explicitly reserved with a 789 * separate memblock_reserve() or they will be discarded. 790 */ 791 memblock_reserve(__pa_symbol(_text), 792 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text); 793 794 /* 795 * Make sure page 0 is always reserved because on systems with 796 * L1TF its contents can be leaked to user processes. 797 */ 798 memblock_reserve(0, PAGE_SIZE); 799 800 early_reserve_initrd(); 801 802 /* 803 * At this point everything still needed from the boot loader 804 * or BIOS or kernel text should be early reserved or marked not 805 * RAM in e820. All other memory is free game. 806 */ 807 808 #ifdef CONFIG_X86_32 809 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); 810 811 /* 812 * copy kernel address range established so far and switch 813 * to the proper swapper page table 814 */ 815 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, 816 initial_page_table + KERNEL_PGD_BOUNDARY, 817 KERNEL_PGD_PTRS); 818 819 load_cr3(swapper_pg_dir); 820 /* 821 * Note: Quark X1000 CPUs advertise PGE incorrectly and require 822 * a cr3 based tlb flush, so the following __flush_tlb_all() 823 * will not flush anything because the CPU quirk which clears 824 * X86_FEATURE_PGE has not been invoked yet. Though due to the 825 * load_cr3() above the TLB has been flushed already. The 826 * quirk is invoked before subsequent calls to __flush_tlb_all() 827 * so proper operation is guaranteed. 828 */ 829 __flush_tlb_all(); 830 #else 831 printk(KERN_INFO "Command line: %s\n", boot_command_line); 832 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS; 833 #endif 834 835 /* 836 * If we have OLPC OFW, we might end up relocating the fixmap due to 837 * reserve_top(), so do this before touching the ioremap area. 838 */ 839 olpc_ofw_detect(); 840 841 idt_setup_early_traps(); 842 early_cpu_init(); 843 arch_init_ideal_nops(); 844 jump_label_init(); 845 early_ioremap_init(); 846 847 setup_olpc_ofw_pgd(); 848 849 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); 850 screen_info = boot_params.screen_info; 851 edid_info = boot_params.edid_info; 852 #ifdef CONFIG_X86_32 853 apm_info.bios = boot_params.apm_bios_info; 854 ist_info = boot_params.ist_info; 855 #endif 856 saved_video_mode = boot_params.hdr.vid_mode; 857 bootloader_type = boot_params.hdr.type_of_loader; 858 if ((bootloader_type >> 4) == 0xe) { 859 bootloader_type &= 0xf; 860 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; 861 } 862 bootloader_version = bootloader_type & 0xf; 863 bootloader_version |= boot_params.hdr.ext_loader_ver << 4; 864 865 #ifdef CONFIG_BLK_DEV_RAM 866 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; 867 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0); 868 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0); 869 #endif 870 #ifdef CONFIG_EFI 871 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 872 EFI32_LOADER_SIGNATURE, 4)) { 873 set_bit(EFI_BOOT, &efi.flags); 874 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 875 EFI64_LOADER_SIGNATURE, 4)) { 876 set_bit(EFI_BOOT, &efi.flags); 877 set_bit(EFI_64BIT, &efi.flags); 878 } 879 #endif 880 881 x86_init.oem.arch_setup(); 882 883 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; 884 e820__memory_setup(); 885 parse_setup_data(); 886 887 copy_edd(); 888 889 if (!boot_params.hdr.root_flags) 890 root_mountflags &= ~MS_RDONLY; 891 init_mm.start_code = (unsigned long) _text; 892 init_mm.end_code = (unsigned long) _etext; 893 init_mm.end_data = (unsigned long) _edata; 894 init_mm.brk = _brk_end; 895 896 code_resource.start = __pa_symbol(_text); 897 code_resource.end = __pa_symbol(_etext)-1; 898 rodata_resource.start = __pa_symbol(__start_rodata); 899 rodata_resource.end = __pa_symbol(__end_rodata)-1; 900 data_resource.start = __pa_symbol(_sdata); 901 data_resource.end = __pa_symbol(_edata)-1; 902 bss_resource.start = __pa_symbol(__bss_start); 903 bss_resource.end = __pa_symbol(__bss_stop)-1; 904 905 #ifdef CONFIG_CMDLINE_BOOL 906 #ifdef CONFIG_CMDLINE_OVERRIDE 907 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 908 #else 909 if (builtin_cmdline[0]) { 910 /* append boot loader cmdline to builtin */ 911 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); 912 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); 913 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 914 } 915 #endif 916 #endif 917 918 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 919 *cmdline_p = command_line; 920 921 /* 922 * x86_configure_nx() is called before parse_early_param() to detect 923 * whether hardware doesn't support NX (so that the early EHCI debug 924 * console setup can safely call set_fixmap()). It may then be called 925 * again from within noexec_setup() during parsing early parameters 926 * to honor the respective command line option. 927 */ 928 x86_configure_nx(); 929 930 parse_early_param(); 931 932 if (efi_enabled(EFI_BOOT)) 933 efi_memblock_x86_reserve_range(); 934 #ifdef CONFIG_MEMORY_HOTPLUG 935 /* 936 * Memory used by the kernel cannot be hot-removed because Linux 937 * cannot migrate the kernel pages. When memory hotplug is 938 * enabled, we should prevent memblock from allocating memory 939 * for the kernel. 940 * 941 * ACPI SRAT records all hotpluggable memory ranges. But before 942 * SRAT is parsed, we don't know about it. 943 * 944 * The kernel image is loaded into memory at very early time. We 945 * cannot prevent this anyway. So on NUMA system, we set any 946 * node the kernel resides in as un-hotpluggable. 947 * 948 * Since on modern servers, one node could have double-digit 949 * gigabytes memory, we can assume the memory around the kernel 950 * image is also un-hotpluggable. So before SRAT is parsed, just 951 * allocate memory near the kernel image to try the best to keep 952 * the kernel away from hotpluggable memory. 953 */ 954 if (movable_node_is_enabled()) 955 memblock_set_bottom_up(true); 956 #endif 957 958 x86_report_nx(); 959 960 /* after early param, so could get panic from serial */ 961 memblock_x86_reserve_range_setup_data(); 962 963 if (acpi_mps_check()) { 964 #ifdef CONFIG_X86_LOCAL_APIC 965 disable_apic = 1; 966 #endif 967 setup_clear_cpu_cap(X86_FEATURE_APIC); 968 } 969 970 e820__reserve_setup_data(); 971 e820__finish_early_params(); 972 973 if (efi_enabled(EFI_BOOT)) 974 efi_init(); 975 976 dmi_setup(); 977 978 /* 979 * VMware detection requires dmi to be available, so this 980 * needs to be done after dmi_setup(), for the boot CPU. 981 */ 982 init_hypervisor_platform(); 983 984 tsc_early_init(); 985 x86_init.resources.probe_roms(); 986 987 /* after parse_early_param, so could debug it */ 988 insert_resource(&iomem_resource, &code_resource); 989 insert_resource(&iomem_resource, &rodata_resource); 990 insert_resource(&iomem_resource, &data_resource); 991 insert_resource(&iomem_resource, &bss_resource); 992 993 e820_add_kernel_range(); 994 trim_bios_range(); 995 #ifdef CONFIG_X86_32 996 if (ppro_with_ram_bug()) { 997 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM, 998 E820_TYPE_RESERVED); 999 e820__update_table(e820_table); 1000 printk(KERN_INFO "fixed physical RAM map:\n"); 1001 e820__print_table("bad_ppro"); 1002 } 1003 #else 1004 early_gart_iommu_check(); 1005 #endif 1006 1007 /* 1008 * partially used pages are not usable - thus 1009 * we are rounding upwards: 1010 */ 1011 max_pfn = e820__end_of_ram_pfn(); 1012 1013 /* update e820 for memory not covered by WB MTRRs */ 1014 mtrr_bp_init(); 1015 if (mtrr_trim_uncached_memory(max_pfn)) 1016 max_pfn = e820__end_of_ram_pfn(); 1017 1018 max_possible_pfn = max_pfn; 1019 1020 /* 1021 * This call is required when the CPU does not support PAT. If 1022 * mtrr_bp_init() invoked it already via pat_init() the call has no 1023 * effect. 1024 */ 1025 init_cache_modes(); 1026 1027 /* 1028 * Define random base addresses for memory sections after max_pfn is 1029 * defined and before each memory section base is used. 1030 */ 1031 kernel_randomize_memory(); 1032 1033 #ifdef CONFIG_X86_32 1034 /* max_low_pfn get updated here */ 1035 find_low_pfn_range(); 1036 #else 1037 check_x2apic(); 1038 1039 /* How many end-of-memory variables you have, grandma! */ 1040 /* need this before calling reserve_initrd */ 1041 if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) 1042 max_low_pfn = e820__end_of_low_ram_pfn(); 1043 else 1044 max_low_pfn = max_pfn; 1045 1046 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 1047 #endif 1048 1049 /* 1050 * Find and reserve possible boot-time SMP configuration: 1051 */ 1052 find_smp_config(); 1053 1054 reserve_ibft_region(); 1055 1056 early_alloc_pgt_buf(); 1057 1058 /* 1059 * Need to conclude brk, before e820__memblock_setup() 1060 * it could use memblock_find_in_range, could overlap with 1061 * brk area. 1062 */ 1063 reserve_brk(); 1064 1065 cleanup_highmap(); 1066 1067 memblock_set_current_limit(ISA_END_ADDRESS); 1068 e820__memblock_setup(); 1069 1070 reserve_bios_regions(); 1071 1072 efi_fake_memmap(); 1073 efi_find_mirror(); 1074 efi_esrt_init(); 1075 1076 /* 1077 * The EFI specification says that boot service code won't be 1078 * called after ExitBootServices(). This is, in fact, a lie. 1079 */ 1080 efi_reserve_boot_services(); 1081 1082 /* preallocate 4k for mptable mpc */ 1083 e820__memblock_alloc_reserved_mpc_new(); 1084 1085 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION 1086 setup_bios_corruption_check(); 1087 #endif 1088 1089 #ifdef CONFIG_X86_32 1090 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", 1091 (max_pfn_mapped<<PAGE_SHIFT) - 1); 1092 #endif 1093 1094 reserve_real_mode(); 1095 1096 trim_platform_memory_ranges(); 1097 trim_low_memory_range(); 1098 1099 init_mem_mapping(); 1100 1101 idt_setup_early_pf(); 1102 1103 /* 1104 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features) 1105 * with the current CR4 value. This may not be necessary, but 1106 * auditing all the early-boot CR4 manipulation would be needed to 1107 * rule it out. 1108 * 1109 * Mask off features that don't work outside long mode (just 1110 * PCIDE for now). 1111 */ 1112 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE; 1113 1114 memblock_set_current_limit(get_max_mapped()); 1115 1116 /* 1117 * NOTE: On x86-32, only from this point on, fixmaps are ready for use. 1118 */ 1119 1120 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT 1121 if (init_ohci1394_dma_early) 1122 init_ohci1394_dma_on_all_controllers(); 1123 #endif 1124 /* Allocate bigger log buffer */ 1125 setup_log_buf(1); 1126 1127 if (efi_enabled(EFI_BOOT)) { 1128 switch (boot_params.secure_boot) { 1129 case efi_secureboot_mode_disabled: 1130 pr_info("Secure boot disabled\n"); 1131 break; 1132 case efi_secureboot_mode_enabled: 1133 pr_info("Secure boot enabled\n"); 1134 break; 1135 default: 1136 pr_info("Secure boot could not be determined\n"); 1137 break; 1138 } 1139 } 1140 1141 reserve_initrd(); 1142 1143 acpi_table_upgrade(); 1144 1145 vsmp_init(); 1146 1147 io_delay_init(); 1148 1149 early_platform_quirks(); 1150 1151 /* 1152 * Parse the ACPI tables for possible boot-time SMP configuration. 1153 */ 1154 acpi_boot_table_init(); 1155 1156 early_acpi_boot_init(); 1157 1158 initmem_init(); 1159 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT); 1160 1161 if (boot_cpu_has(X86_FEATURE_GBPAGES)) 1162 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 1163 1164 /* 1165 * Reserve memory for crash kernel after SRAT is parsed so that it 1166 * won't consume hotpluggable memory. 1167 */ 1168 reserve_crashkernel(); 1169 1170 memblock_find_dma_reserve(); 1171 1172 if (!early_xdbc_setup_hardware()) 1173 early_xdbc_register_console(); 1174 1175 x86_init.paging.pagetable_init(); 1176 1177 kasan_init(); 1178 1179 /* 1180 * Sync back kernel address range. 1181 * 1182 * FIXME: Can the later sync in setup_cpu_entry_areas() replace 1183 * this call? 1184 */ 1185 sync_initial_page_table(); 1186 1187 tboot_probe(); 1188 1189 map_vsyscall(); 1190 1191 generic_apic_probe(); 1192 1193 early_quirks(); 1194 1195 /* 1196 * Read APIC and some other early information from ACPI tables. 1197 */ 1198 acpi_boot_init(); 1199 sfi_init(); 1200 x86_dtb_init(); 1201 1202 /* 1203 * get boot-time SMP configuration: 1204 */ 1205 get_smp_config(); 1206 1207 /* 1208 * Systems w/o ACPI and mptables might not have it mapped the local 1209 * APIC yet, but prefill_possible_map() might need to access it. 1210 */ 1211 init_apic_mappings(); 1212 1213 prefill_possible_map(); 1214 1215 init_cpu_to_node(); 1216 1217 io_apic_init_mappings(); 1218 1219 x86_init.hyper.guest_late_init(); 1220 1221 e820__reserve_resources(); 1222 e820__register_nosave_regions(max_pfn); 1223 1224 x86_init.resources.reserve_resources(); 1225 1226 e820__setup_pci_gap(); 1227 1228 #ifdef CONFIG_VT 1229 #if defined(CONFIG_VGA_CONSOLE) 1230 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) 1231 conswitchp = &vga_con; 1232 #endif 1233 #endif 1234 x86_init.oem.banner(); 1235 1236 x86_init.timers.wallclock_init(); 1237 1238 mcheck_init(); 1239 1240 register_refined_jiffies(CLOCK_TICK_RATE); 1241 1242 #ifdef CONFIG_EFI 1243 if (efi_enabled(EFI_BOOT)) 1244 efi_apply_memmap_quirks(); 1245 #endif 1246 1247 unwind_init(); 1248 } 1249 1250 #ifdef CONFIG_X86_32 1251 1252 static struct resource video_ram_resource = { 1253 .name = "Video RAM area", 1254 .start = 0xa0000, 1255 .end = 0xbffff, 1256 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 1257 }; 1258 1259 void __init i386_reserve_resources(void) 1260 { 1261 request_resource(&iomem_resource, &video_ram_resource); 1262 reserve_standard_io_resources(); 1263 } 1264 1265 #endif /* CONFIG_X86_32 */ 1266 1267 static struct notifier_block kernel_offset_notifier = { 1268 .notifier_call = dump_kernel_offset 1269 }; 1270 1271 static int __init register_kernel_offset_dumper(void) 1272 { 1273 atomic_notifier_chain_register(&panic_notifier_list, 1274 &kernel_offset_notifier); 1275 return 0; 1276 } 1277 __initcall(register_kernel_offset_dumper); 1278