xref: /openbmc/linux/arch/x86/kernel/setup.c (revision 6d99a79c)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *
6  *  Memory region support
7  *	David Parsons <orc@pell.chi.il.us>, July-August 1999
8  *
9  *  Added E820 sanitization routine (removes overlapping memory regions);
10  *  Brian Moyle <bmoyle@mvista.com>, February 2001
11  *
12  * Moved CPU detection code to cpu/${cpu}.c
13  *    Patrick Mochel <mochel@osdl.org>, March 2002
14  *
15  *  Provisions for empty E820 memory regions (reported by certain BIOSes).
16  *  Alex Achenbach <xela@slit.de>, December 2002.
17  *
18  */
19 
20 /*
21  * This file handles the architecture-dependent parts of initialization
22  */
23 
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/memblock.h>
34 #include <linux/seq_file.h>
35 #include <linux/console.h>
36 #include <linux/root_dev.h>
37 #include <linux/highmem.h>
38 #include <linux/export.h>
39 #include <linux/efi.h>
40 #include <linux/init.h>
41 #include <linux/edd.h>
42 #include <linux/iscsi_ibft.h>
43 #include <linux/nodemask.h>
44 #include <linux/kexec.h>
45 #include <linux/dmi.h>
46 #include <linux/pfn.h>
47 #include <linux/pci.h>
48 #include <asm/pci-direct.h>
49 #include <linux/init_ohci1394_dma.h>
50 #include <linux/kvm_para.h>
51 #include <linux/dma-contiguous.h>
52 #include <xen/xen.h>
53 
54 #include <linux/errno.h>
55 #include <linux/kernel.h>
56 #include <linux/stddef.h>
57 #include <linux/unistd.h>
58 #include <linux/ptrace.h>
59 #include <linux/user.h>
60 #include <linux/delay.h>
61 
62 #include <linux/kallsyms.h>
63 #include <linux/cpufreq.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/ctype.h>
66 #include <linux/uaccess.h>
67 
68 #include <linux/percpu.h>
69 #include <linux/crash_dump.h>
70 #include <linux/tboot.h>
71 #include <linux/jiffies.h>
72 #include <linux/mem_encrypt.h>
73 
74 #include <linux/usb/xhci-dbgp.h>
75 #include <video/edid.h>
76 
77 #include <asm/mtrr.h>
78 #include <asm/apic.h>
79 #include <asm/realmode.h>
80 #include <asm/e820/api.h>
81 #include <asm/mpspec.h>
82 #include <asm/setup.h>
83 #include <asm/efi.h>
84 #include <asm/timer.h>
85 #include <asm/i8259.h>
86 #include <asm/sections.h>
87 #include <asm/io_apic.h>
88 #include <asm/ist.h>
89 #include <asm/setup_arch.h>
90 #include <asm/bios_ebda.h>
91 #include <asm/cacheflush.h>
92 #include <asm/processor.h>
93 #include <asm/bugs.h>
94 #include <asm/kasan.h>
95 
96 #include <asm/vsyscall.h>
97 #include <asm/cpu.h>
98 #include <asm/desc.h>
99 #include <asm/dma.h>
100 #include <asm/iommu.h>
101 #include <asm/gart.h>
102 #include <asm/mmu_context.h>
103 #include <asm/proto.h>
104 
105 #include <asm/paravirt.h>
106 #include <asm/hypervisor.h>
107 #include <asm/olpc_ofw.h>
108 
109 #include <asm/percpu.h>
110 #include <asm/topology.h>
111 #include <asm/apicdef.h>
112 #include <asm/amd_nb.h>
113 #include <asm/mce.h>
114 #include <asm/alternative.h>
115 #include <asm/prom.h>
116 #include <asm/microcode.h>
117 #include <asm/kaslr.h>
118 #include <asm/unwind.h>
119 
120 /*
121  * max_low_pfn_mapped: highest direct mapped pfn under 4GB
122  * max_pfn_mapped:     highest direct mapped pfn over 4GB
123  *
124  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
125  * represented by pfn_mapped
126  */
127 unsigned long max_low_pfn_mapped;
128 unsigned long max_pfn_mapped;
129 
130 #ifdef CONFIG_DMI
131 RESERVE_BRK(dmi_alloc, 65536);
132 #endif
133 
134 
135 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
136 unsigned long _brk_end = (unsigned long)__brk_base;
137 
138 struct boot_params boot_params;
139 
140 /*
141  * Machine setup..
142  */
143 static struct resource data_resource = {
144 	.name	= "Kernel data",
145 	.start	= 0,
146 	.end	= 0,
147 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
148 };
149 
150 static struct resource code_resource = {
151 	.name	= "Kernel code",
152 	.start	= 0,
153 	.end	= 0,
154 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
155 };
156 
157 static struct resource bss_resource = {
158 	.name	= "Kernel bss",
159 	.start	= 0,
160 	.end	= 0,
161 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
162 };
163 
164 
165 #ifdef CONFIG_X86_32
166 /* cpu data as detected by the assembly code in head_32.S */
167 struct cpuinfo_x86 new_cpu_data;
168 
169 /* common cpu data for all cpus */
170 struct cpuinfo_x86 boot_cpu_data __read_mostly;
171 EXPORT_SYMBOL(boot_cpu_data);
172 
173 unsigned int def_to_bigsmp;
174 
175 /* for MCA, but anyone else can use it if they want */
176 unsigned int machine_id;
177 unsigned int machine_submodel_id;
178 unsigned int BIOS_revision;
179 
180 struct apm_info apm_info;
181 EXPORT_SYMBOL(apm_info);
182 
183 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
184 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
185 struct ist_info ist_info;
186 EXPORT_SYMBOL(ist_info);
187 #else
188 struct ist_info ist_info;
189 #endif
190 
191 #else
192 struct cpuinfo_x86 boot_cpu_data __read_mostly;
193 EXPORT_SYMBOL(boot_cpu_data);
194 #endif
195 
196 
197 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
198 __visible unsigned long mmu_cr4_features __ro_after_init;
199 #else
200 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
201 #endif
202 
203 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
204 int bootloader_type, bootloader_version;
205 
206 /*
207  * Setup options
208  */
209 struct screen_info screen_info;
210 EXPORT_SYMBOL(screen_info);
211 struct edid_info edid_info;
212 EXPORT_SYMBOL_GPL(edid_info);
213 
214 extern int root_mountflags;
215 
216 unsigned long saved_video_mode;
217 
218 #define RAMDISK_IMAGE_START_MASK	0x07FF
219 #define RAMDISK_PROMPT_FLAG		0x8000
220 #define RAMDISK_LOAD_FLAG		0x4000
221 
222 static char __initdata command_line[COMMAND_LINE_SIZE];
223 #ifdef CONFIG_CMDLINE_BOOL
224 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
225 #endif
226 
227 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
228 struct edd edd;
229 #ifdef CONFIG_EDD_MODULE
230 EXPORT_SYMBOL(edd);
231 #endif
232 /**
233  * copy_edd() - Copy the BIOS EDD information
234  *              from boot_params into a safe place.
235  *
236  */
237 static inline void __init copy_edd(void)
238 {
239      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
240 	    sizeof(edd.mbr_signature));
241      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
242      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
243      edd.edd_info_nr = boot_params.eddbuf_entries;
244 }
245 #else
246 static inline void __init copy_edd(void)
247 {
248 }
249 #endif
250 
251 void * __init extend_brk(size_t size, size_t align)
252 {
253 	size_t mask = align - 1;
254 	void *ret;
255 
256 	BUG_ON(_brk_start == 0);
257 	BUG_ON(align & mask);
258 
259 	_brk_end = (_brk_end + mask) & ~mask;
260 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
261 
262 	ret = (void *)_brk_end;
263 	_brk_end += size;
264 
265 	memset(ret, 0, size);
266 
267 	return ret;
268 }
269 
270 #ifdef CONFIG_X86_32
271 static void __init cleanup_highmap(void)
272 {
273 }
274 #endif
275 
276 static void __init reserve_brk(void)
277 {
278 	if (_brk_end > _brk_start)
279 		memblock_reserve(__pa_symbol(_brk_start),
280 				 _brk_end - _brk_start);
281 
282 	/* Mark brk area as locked down and no longer taking any
283 	   new allocations */
284 	_brk_start = 0;
285 }
286 
287 u64 relocated_ramdisk;
288 
289 #ifdef CONFIG_BLK_DEV_INITRD
290 
291 static u64 __init get_ramdisk_image(void)
292 {
293 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
294 
295 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
296 
297 	return ramdisk_image;
298 }
299 static u64 __init get_ramdisk_size(void)
300 {
301 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
302 
303 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
304 
305 	return ramdisk_size;
306 }
307 
308 static void __init relocate_initrd(void)
309 {
310 	/* Assume only end is not page aligned */
311 	u64 ramdisk_image = get_ramdisk_image();
312 	u64 ramdisk_size  = get_ramdisk_size();
313 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
314 
315 	/* We need to move the initrd down into directly mapped mem */
316 	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
317 						   area_size, PAGE_SIZE);
318 
319 	if (!relocated_ramdisk)
320 		panic("Cannot find place for new RAMDISK of size %lld\n",
321 		      ramdisk_size);
322 
323 	/* Note: this includes all the mem currently occupied by
324 	   the initrd, we rely on that fact to keep the data intact. */
325 	memblock_reserve(relocated_ramdisk, area_size);
326 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
327 	initrd_end   = initrd_start + ramdisk_size;
328 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
329 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
330 
331 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
332 
333 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
334 		" [mem %#010llx-%#010llx]\n",
335 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
336 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
337 }
338 
339 static void __init early_reserve_initrd(void)
340 {
341 	/* Assume only end is not page aligned */
342 	u64 ramdisk_image = get_ramdisk_image();
343 	u64 ramdisk_size  = get_ramdisk_size();
344 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
345 
346 	if (!boot_params.hdr.type_of_loader ||
347 	    !ramdisk_image || !ramdisk_size)
348 		return;		/* No initrd provided by bootloader */
349 
350 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
351 }
352 static void __init reserve_initrd(void)
353 {
354 	/* Assume only end is not page aligned */
355 	u64 ramdisk_image = get_ramdisk_image();
356 	u64 ramdisk_size  = get_ramdisk_size();
357 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
358 	u64 mapped_size;
359 
360 	if (!boot_params.hdr.type_of_loader ||
361 	    !ramdisk_image || !ramdisk_size)
362 		return;		/* No initrd provided by bootloader */
363 
364 	initrd_start = 0;
365 
366 	mapped_size = memblock_mem_size(max_pfn_mapped);
367 	if (ramdisk_size >= (mapped_size>>1))
368 		panic("initrd too large to handle, "
369 		       "disabling initrd (%lld needed, %lld available)\n",
370 		       ramdisk_size, mapped_size>>1);
371 
372 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
373 			ramdisk_end - 1);
374 
375 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
376 				PFN_DOWN(ramdisk_end))) {
377 		/* All are mapped, easy case */
378 		initrd_start = ramdisk_image + PAGE_OFFSET;
379 		initrd_end = initrd_start + ramdisk_size;
380 		return;
381 	}
382 
383 	relocate_initrd();
384 
385 	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
386 }
387 
388 #else
389 static void __init early_reserve_initrd(void)
390 {
391 }
392 static void __init reserve_initrd(void)
393 {
394 }
395 #endif /* CONFIG_BLK_DEV_INITRD */
396 
397 static void __init parse_setup_data(void)
398 {
399 	struct setup_data *data;
400 	u64 pa_data, pa_next;
401 
402 	pa_data = boot_params.hdr.setup_data;
403 	while (pa_data) {
404 		u32 data_len, data_type;
405 
406 		data = early_memremap(pa_data, sizeof(*data));
407 		data_len = data->len + sizeof(struct setup_data);
408 		data_type = data->type;
409 		pa_next = data->next;
410 		early_memunmap(data, sizeof(*data));
411 
412 		switch (data_type) {
413 		case SETUP_E820_EXT:
414 			e820__memory_setup_extended(pa_data, data_len);
415 			break;
416 		case SETUP_DTB:
417 			add_dtb(pa_data);
418 			break;
419 		case SETUP_EFI:
420 			parse_efi_setup(pa_data, data_len);
421 			break;
422 		default:
423 			break;
424 		}
425 		pa_data = pa_next;
426 	}
427 }
428 
429 static void __init memblock_x86_reserve_range_setup_data(void)
430 {
431 	struct setup_data *data;
432 	u64 pa_data;
433 
434 	pa_data = boot_params.hdr.setup_data;
435 	while (pa_data) {
436 		data = early_memremap(pa_data, sizeof(*data));
437 		memblock_reserve(pa_data, sizeof(*data) + data->len);
438 		pa_data = data->next;
439 		early_memunmap(data, sizeof(*data));
440 	}
441 }
442 
443 /*
444  * --------- Crashkernel reservation ------------------------------
445  */
446 
447 #ifdef CONFIG_KEXEC_CORE
448 
449 /* 16M alignment for crash kernel regions */
450 #define CRASH_ALIGN		(16 << 20)
451 
452 /*
453  * Keep the crash kernel below this limit.  On 32 bits earlier kernels
454  * would limit the kernel to the low 512 MiB due to mapping restrictions.
455  * On 64bit, old kexec-tools need to under 896MiB.
456  */
457 #ifdef CONFIG_X86_32
458 # define CRASH_ADDR_LOW_MAX	(512 << 20)
459 # define CRASH_ADDR_HIGH_MAX	(512 << 20)
460 #else
461 # define CRASH_ADDR_LOW_MAX	(896UL << 20)
462 # define CRASH_ADDR_HIGH_MAX	MAXMEM
463 #endif
464 
465 static int __init reserve_crashkernel_low(void)
466 {
467 #ifdef CONFIG_X86_64
468 	unsigned long long base, low_base = 0, low_size = 0;
469 	unsigned long total_low_mem;
470 	int ret;
471 
472 	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
473 
474 	/* crashkernel=Y,low */
475 	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
476 	if (ret) {
477 		/*
478 		 * two parts from lib/swiotlb.c:
479 		 * -swiotlb size: user-specified with swiotlb= or default.
480 		 *
481 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
482 		 * to 8M for other buffers that may need to stay low too. Also
483 		 * make sure we allocate enough extra low memory so that we
484 		 * don't run out of DMA buffers for 32-bit devices.
485 		 */
486 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
487 	} else {
488 		/* passed with crashkernel=0,low ? */
489 		if (!low_size)
490 			return 0;
491 	}
492 
493 	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
494 	if (!low_base) {
495 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
496 		       (unsigned long)(low_size >> 20));
497 		return -ENOMEM;
498 	}
499 
500 	ret = memblock_reserve(low_base, low_size);
501 	if (ret) {
502 		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
503 		return ret;
504 	}
505 
506 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
507 		(unsigned long)(low_size >> 20),
508 		(unsigned long)(low_base >> 20),
509 		(unsigned long)(total_low_mem >> 20));
510 
511 	crashk_low_res.start = low_base;
512 	crashk_low_res.end   = low_base + low_size - 1;
513 	insert_resource(&iomem_resource, &crashk_low_res);
514 #endif
515 	return 0;
516 }
517 
518 static void __init reserve_crashkernel(void)
519 {
520 	unsigned long long crash_size, crash_base, total_mem;
521 	bool high = false;
522 	int ret;
523 
524 	total_mem = memblock_phys_mem_size();
525 
526 	/* crashkernel=XM */
527 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
528 	if (ret != 0 || crash_size <= 0) {
529 		/* crashkernel=X,high */
530 		ret = parse_crashkernel_high(boot_command_line, total_mem,
531 					     &crash_size, &crash_base);
532 		if (ret != 0 || crash_size <= 0)
533 			return;
534 		high = true;
535 	}
536 
537 	if (xen_pv_domain()) {
538 		pr_info("Ignoring crashkernel for a Xen PV domain\n");
539 		return;
540 	}
541 
542 	/* 0 means: find the address automatically */
543 	if (crash_base <= 0) {
544 		/*
545 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
546 		 * as old kexec-tools loads bzImage below that, unless
547 		 * "crashkernel=size[KMG],high" is specified.
548 		 */
549 		crash_base = memblock_find_in_range(CRASH_ALIGN,
550 						    high ? CRASH_ADDR_HIGH_MAX
551 							 : CRASH_ADDR_LOW_MAX,
552 						    crash_size, CRASH_ALIGN);
553 		if (!crash_base) {
554 			pr_info("crashkernel reservation failed - No suitable area found.\n");
555 			return;
556 		}
557 
558 	} else {
559 		unsigned long long start;
560 
561 		start = memblock_find_in_range(crash_base,
562 					       crash_base + crash_size,
563 					       crash_size, 1 << 20);
564 		if (start != crash_base) {
565 			pr_info("crashkernel reservation failed - memory is in use.\n");
566 			return;
567 		}
568 	}
569 	ret = memblock_reserve(crash_base, crash_size);
570 	if (ret) {
571 		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
572 		return;
573 	}
574 
575 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
576 		memblock_free(crash_base, crash_size);
577 		return;
578 	}
579 
580 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
581 		(unsigned long)(crash_size >> 20),
582 		(unsigned long)(crash_base >> 20),
583 		(unsigned long)(total_mem >> 20));
584 
585 	crashk_res.start = crash_base;
586 	crashk_res.end   = crash_base + crash_size - 1;
587 	insert_resource(&iomem_resource, &crashk_res);
588 }
589 #else
590 static void __init reserve_crashkernel(void)
591 {
592 }
593 #endif
594 
595 static struct resource standard_io_resources[] = {
596 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
597 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
598 	{ .name = "pic1", .start = 0x20, .end = 0x21,
599 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
600 	{ .name = "timer0", .start = 0x40, .end = 0x43,
601 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
602 	{ .name = "timer1", .start = 0x50, .end = 0x53,
603 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
604 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
605 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
606 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
607 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
608 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
609 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
610 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
611 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
612 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
613 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
614 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
615 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
616 };
617 
618 void __init reserve_standard_io_resources(void)
619 {
620 	int i;
621 
622 	/* request I/O space for devices used on all i[345]86 PCs */
623 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
624 		request_resource(&ioport_resource, &standard_io_resources[i]);
625 
626 }
627 
628 static __init void reserve_ibft_region(void)
629 {
630 	unsigned long addr, size = 0;
631 
632 	addr = find_ibft_region(&size);
633 
634 	if (size)
635 		memblock_reserve(addr, size);
636 }
637 
638 static bool __init snb_gfx_workaround_needed(void)
639 {
640 #ifdef CONFIG_PCI
641 	int i;
642 	u16 vendor, devid;
643 	static const __initconst u16 snb_ids[] = {
644 		0x0102,
645 		0x0112,
646 		0x0122,
647 		0x0106,
648 		0x0116,
649 		0x0126,
650 		0x010a,
651 	};
652 
653 	/* Assume no if something weird is going on with PCI */
654 	if (!early_pci_allowed())
655 		return false;
656 
657 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
658 	if (vendor != 0x8086)
659 		return false;
660 
661 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
662 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
663 		if (devid == snb_ids[i])
664 			return true;
665 #endif
666 
667 	return false;
668 }
669 
670 /*
671  * Sandy Bridge graphics has trouble with certain ranges, exclude
672  * them from allocation.
673  */
674 static void __init trim_snb_memory(void)
675 {
676 	static const __initconst unsigned long bad_pages[] = {
677 		0x20050000,
678 		0x20110000,
679 		0x20130000,
680 		0x20138000,
681 		0x40004000,
682 	};
683 	int i;
684 
685 	if (!snb_gfx_workaround_needed())
686 		return;
687 
688 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
689 
690 	/*
691 	 * Reserve all memory below the 1 MB mark that has not
692 	 * already been reserved.
693 	 */
694 	memblock_reserve(0, 1<<20);
695 
696 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
697 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
698 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
699 			       bad_pages[i]);
700 	}
701 }
702 
703 /*
704  * Here we put platform-specific memory range workarounds, i.e.
705  * memory known to be corrupt or otherwise in need to be reserved on
706  * specific platforms.
707  *
708  * If this gets used more widely it could use a real dispatch mechanism.
709  */
710 static void __init trim_platform_memory_ranges(void)
711 {
712 	trim_snb_memory();
713 }
714 
715 static void __init trim_bios_range(void)
716 {
717 	/*
718 	 * A special case is the first 4Kb of memory;
719 	 * This is a BIOS owned area, not kernel ram, but generally
720 	 * not listed as such in the E820 table.
721 	 *
722 	 * This typically reserves additional memory (64KiB by default)
723 	 * since some BIOSes are known to corrupt low memory.  See the
724 	 * Kconfig help text for X86_RESERVE_LOW.
725 	 */
726 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
727 
728 	/*
729 	 * special case: Some BIOSen report the PC BIOS
730 	 * area (640->1Mb) as ram even though it is not.
731 	 * take them out.
732 	 */
733 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
734 
735 	e820__update_table(e820_table);
736 }
737 
738 /* called before trim_bios_range() to spare extra sanitize */
739 static void __init e820_add_kernel_range(void)
740 {
741 	u64 start = __pa_symbol(_text);
742 	u64 size = __pa_symbol(_end) - start;
743 
744 	/*
745 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
746 	 * attempt to fix it by adding the range. We may have a confused BIOS,
747 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
748 	 * exclude kernel range. If we really are running on top non-RAM,
749 	 * we will crash later anyways.
750 	 */
751 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
752 		return;
753 
754 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
755 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
756 	e820__range_add(start, size, E820_TYPE_RAM);
757 }
758 
759 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
760 
761 static int __init parse_reservelow(char *p)
762 {
763 	unsigned long long size;
764 
765 	if (!p)
766 		return -EINVAL;
767 
768 	size = memparse(p, &p);
769 
770 	if (size < 4096)
771 		size = 4096;
772 
773 	if (size > 640*1024)
774 		size = 640*1024;
775 
776 	reserve_low = size;
777 
778 	return 0;
779 }
780 
781 early_param("reservelow", parse_reservelow);
782 
783 static void __init trim_low_memory_range(void)
784 {
785 	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
786 }
787 
788 /*
789  * Dump out kernel offset information on panic.
790  */
791 static int
792 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
793 {
794 	if (kaslr_enabled()) {
795 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
796 			 kaslr_offset(),
797 			 __START_KERNEL,
798 			 __START_KERNEL_map,
799 			 MODULES_VADDR-1);
800 	} else {
801 		pr_emerg("Kernel Offset: disabled\n");
802 	}
803 
804 	return 0;
805 }
806 
807 /*
808  * Determine if we were loaded by an EFI loader.  If so, then we have also been
809  * passed the efi memmap, systab, etc., so we should use these data structures
810  * for initialization.  Note, the efi init code path is determined by the
811  * global efi_enabled. This allows the same kernel image to be used on existing
812  * systems (with a traditional BIOS) as well as on EFI systems.
813  */
814 /*
815  * setup_arch - architecture-specific boot-time initializations
816  *
817  * Note: On x86_64, fixmaps are ready for use even before this is called.
818  */
819 
820 void __init setup_arch(char **cmdline_p)
821 {
822 	memblock_reserve(__pa_symbol(_text),
823 			 (unsigned long)__bss_stop - (unsigned long)_text);
824 
825 	/*
826 	 * Make sure page 0 is always reserved because on systems with
827 	 * L1TF its contents can be leaked to user processes.
828 	 */
829 	memblock_reserve(0, PAGE_SIZE);
830 
831 	early_reserve_initrd();
832 
833 	/*
834 	 * At this point everything still needed from the boot loader
835 	 * or BIOS or kernel text should be early reserved or marked not
836 	 * RAM in e820. All other memory is free game.
837 	 */
838 
839 #ifdef CONFIG_X86_32
840 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
841 
842 	/*
843 	 * copy kernel address range established so far and switch
844 	 * to the proper swapper page table
845 	 */
846 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
847 			initial_page_table + KERNEL_PGD_BOUNDARY,
848 			KERNEL_PGD_PTRS);
849 
850 	load_cr3(swapper_pg_dir);
851 	/*
852 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
853 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
854 	 * will not flush anything because the cpu quirk which clears
855 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
856 	 * load_cr3() above the TLB has been flushed already. The
857 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
858 	 * so proper operation is guaranteed.
859 	 */
860 	__flush_tlb_all();
861 #else
862 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
863 	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
864 #endif
865 
866 	/*
867 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
868 	 * reserve_top(), so do this before touching the ioremap area.
869 	 */
870 	olpc_ofw_detect();
871 
872 	idt_setup_early_traps();
873 	early_cpu_init();
874 	arch_init_ideal_nops();
875 	jump_label_init();
876 	early_ioremap_init();
877 
878 	setup_olpc_ofw_pgd();
879 
880 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
881 	screen_info = boot_params.screen_info;
882 	edid_info = boot_params.edid_info;
883 #ifdef CONFIG_X86_32
884 	apm_info.bios = boot_params.apm_bios_info;
885 	ist_info = boot_params.ist_info;
886 #endif
887 	saved_video_mode = boot_params.hdr.vid_mode;
888 	bootloader_type = boot_params.hdr.type_of_loader;
889 	if ((bootloader_type >> 4) == 0xe) {
890 		bootloader_type &= 0xf;
891 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
892 	}
893 	bootloader_version  = bootloader_type & 0xf;
894 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
895 
896 #ifdef CONFIG_BLK_DEV_RAM
897 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
898 	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
899 	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
900 #endif
901 #ifdef CONFIG_EFI
902 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
903 		     EFI32_LOADER_SIGNATURE, 4)) {
904 		set_bit(EFI_BOOT, &efi.flags);
905 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
906 		     EFI64_LOADER_SIGNATURE, 4)) {
907 		set_bit(EFI_BOOT, &efi.flags);
908 		set_bit(EFI_64BIT, &efi.flags);
909 	}
910 #endif
911 
912 	x86_init.oem.arch_setup();
913 
914 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
915 	e820__memory_setup();
916 	parse_setup_data();
917 
918 	copy_edd();
919 
920 	if (!boot_params.hdr.root_flags)
921 		root_mountflags &= ~MS_RDONLY;
922 	init_mm.start_code = (unsigned long) _text;
923 	init_mm.end_code = (unsigned long) _etext;
924 	init_mm.end_data = (unsigned long) _edata;
925 	init_mm.brk = _brk_end;
926 
927 	mpx_mm_init(&init_mm);
928 
929 	code_resource.start = __pa_symbol(_text);
930 	code_resource.end = __pa_symbol(_etext)-1;
931 	data_resource.start = __pa_symbol(_etext);
932 	data_resource.end = __pa_symbol(_edata)-1;
933 	bss_resource.start = __pa_symbol(__bss_start);
934 	bss_resource.end = __pa_symbol(__bss_stop)-1;
935 
936 #ifdef CONFIG_CMDLINE_BOOL
937 #ifdef CONFIG_CMDLINE_OVERRIDE
938 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
939 #else
940 	if (builtin_cmdline[0]) {
941 		/* append boot loader cmdline to builtin */
942 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
943 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
944 		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
945 	}
946 #endif
947 #endif
948 
949 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
950 	*cmdline_p = command_line;
951 
952 	/*
953 	 * x86_configure_nx() is called before parse_early_param() to detect
954 	 * whether hardware doesn't support NX (so that the early EHCI debug
955 	 * console setup can safely call set_fixmap()). It may then be called
956 	 * again from within noexec_setup() during parsing early parameters
957 	 * to honor the respective command line option.
958 	 */
959 	x86_configure_nx();
960 
961 	parse_early_param();
962 
963 	if (efi_enabled(EFI_BOOT))
964 		efi_memblock_x86_reserve_range();
965 #ifdef CONFIG_MEMORY_HOTPLUG
966 	/*
967 	 * Memory used by the kernel cannot be hot-removed because Linux
968 	 * cannot migrate the kernel pages. When memory hotplug is
969 	 * enabled, we should prevent memblock from allocating memory
970 	 * for the kernel.
971 	 *
972 	 * ACPI SRAT records all hotpluggable memory ranges. But before
973 	 * SRAT is parsed, we don't know about it.
974 	 *
975 	 * The kernel image is loaded into memory at very early time. We
976 	 * cannot prevent this anyway. So on NUMA system, we set any
977 	 * node the kernel resides in as un-hotpluggable.
978 	 *
979 	 * Since on modern servers, one node could have double-digit
980 	 * gigabytes memory, we can assume the memory around the kernel
981 	 * image is also un-hotpluggable. So before SRAT is parsed, just
982 	 * allocate memory near the kernel image to try the best to keep
983 	 * the kernel away from hotpluggable memory.
984 	 */
985 	if (movable_node_is_enabled())
986 		memblock_set_bottom_up(true);
987 #endif
988 
989 	x86_report_nx();
990 
991 	/* after early param, so could get panic from serial */
992 	memblock_x86_reserve_range_setup_data();
993 
994 	if (acpi_mps_check()) {
995 #ifdef CONFIG_X86_LOCAL_APIC
996 		disable_apic = 1;
997 #endif
998 		setup_clear_cpu_cap(X86_FEATURE_APIC);
999 	}
1000 
1001 	e820__reserve_setup_data();
1002 	e820__finish_early_params();
1003 
1004 	if (efi_enabled(EFI_BOOT))
1005 		efi_init();
1006 
1007 	dmi_scan_machine();
1008 	dmi_memdev_walk();
1009 	dmi_set_dump_stack_arch_desc();
1010 
1011 	/*
1012 	 * VMware detection requires dmi to be available, so this
1013 	 * needs to be done after dmi_scan_machine(), for the boot CPU.
1014 	 */
1015 	init_hypervisor_platform();
1016 
1017 	tsc_early_init();
1018 	x86_init.resources.probe_roms();
1019 
1020 	/* after parse_early_param, so could debug it */
1021 	insert_resource(&iomem_resource, &code_resource);
1022 	insert_resource(&iomem_resource, &data_resource);
1023 	insert_resource(&iomem_resource, &bss_resource);
1024 
1025 	e820_add_kernel_range();
1026 	trim_bios_range();
1027 #ifdef CONFIG_X86_32
1028 	if (ppro_with_ram_bug()) {
1029 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1030 				  E820_TYPE_RESERVED);
1031 		e820__update_table(e820_table);
1032 		printk(KERN_INFO "fixed physical RAM map:\n");
1033 		e820__print_table("bad_ppro");
1034 	}
1035 #else
1036 	early_gart_iommu_check();
1037 #endif
1038 
1039 	/*
1040 	 * partially used pages are not usable - thus
1041 	 * we are rounding upwards:
1042 	 */
1043 	max_pfn = e820__end_of_ram_pfn();
1044 
1045 	/* update e820 for memory not covered by WB MTRRs */
1046 	mtrr_bp_init();
1047 	if (mtrr_trim_uncached_memory(max_pfn))
1048 		max_pfn = e820__end_of_ram_pfn();
1049 
1050 	max_possible_pfn = max_pfn;
1051 
1052 	/*
1053 	 * This call is required when the CPU does not support PAT. If
1054 	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1055 	 * effect.
1056 	 */
1057 	init_cache_modes();
1058 
1059 	/*
1060 	 * Define random base addresses for memory sections after max_pfn is
1061 	 * defined and before each memory section base is used.
1062 	 */
1063 	kernel_randomize_memory();
1064 
1065 #ifdef CONFIG_X86_32
1066 	/* max_low_pfn get updated here */
1067 	find_low_pfn_range();
1068 #else
1069 	check_x2apic();
1070 
1071 	/* How many end-of-memory variables you have, grandma! */
1072 	/* need this before calling reserve_initrd */
1073 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1074 		max_low_pfn = e820__end_of_low_ram_pfn();
1075 	else
1076 		max_low_pfn = max_pfn;
1077 
1078 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1079 #endif
1080 
1081 	/*
1082 	 * Find and reserve possible boot-time SMP configuration:
1083 	 */
1084 	find_smp_config();
1085 
1086 	reserve_ibft_region();
1087 
1088 	early_alloc_pgt_buf();
1089 
1090 	/*
1091 	 * Need to conclude brk, before e820__memblock_setup()
1092 	 *  it could use memblock_find_in_range, could overlap with
1093 	 *  brk area.
1094 	 */
1095 	reserve_brk();
1096 
1097 	cleanup_highmap();
1098 
1099 	memblock_set_current_limit(ISA_END_ADDRESS);
1100 	e820__memblock_setup();
1101 
1102 	reserve_bios_regions();
1103 
1104 	if (efi_enabled(EFI_MEMMAP)) {
1105 		efi_fake_memmap();
1106 		efi_find_mirror();
1107 		efi_esrt_init();
1108 
1109 		/*
1110 		 * The EFI specification says that boot service code won't be
1111 		 * called after ExitBootServices(). This is, in fact, a lie.
1112 		 */
1113 		efi_reserve_boot_services();
1114 	}
1115 
1116 	/* preallocate 4k for mptable mpc */
1117 	e820__memblock_alloc_reserved_mpc_new();
1118 
1119 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1120 	setup_bios_corruption_check();
1121 #endif
1122 
1123 #ifdef CONFIG_X86_32
1124 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1125 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1126 #endif
1127 
1128 	reserve_real_mode();
1129 
1130 	trim_platform_memory_ranges();
1131 	trim_low_memory_range();
1132 
1133 	init_mem_mapping();
1134 
1135 	idt_setup_early_pf();
1136 
1137 	/*
1138 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1139 	 * with the current CR4 value.  This may not be necessary, but
1140 	 * auditing all the early-boot CR4 manipulation would be needed to
1141 	 * rule it out.
1142 	 *
1143 	 * Mask off features that don't work outside long mode (just
1144 	 * PCIDE for now).
1145 	 */
1146 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1147 
1148 	memblock_set_current_limit(get_max_mapped());
1149 
1150 	/*
1151 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1152 	 */
1153 
1154 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1155 	if (init_ohci1394_dma_early)
1156 		init_ohci1394_dma_on_all_controllers();
1157 #endif
1158 	/* Allocate bigger log buffer */
1159 	setup_log_buf(1);
1160 
1161 	if (efi_enabled(EFI_BOOT)) {
1162 		switch (boot_params.secure_boot) {
1163 		case efi_secureboot_mode_disabled:
1164 			pr_info("Secure boot disabled\n");
1165 			break;
1166 		case efi_secureboot_mode_enabled:
1167 			pr_info("Secure boot enabled\n");
1168 			break;
1169 		default:
1170 			pr_info("Secure boot could not be determined\n");
1171 			break;
1172 		}
1173 	}
1174 
1175 	reserve_initrd();
1176 
1177 	acpi_table_upgrade();
1178 
1179 	vsmp_init();
1180 
1181 	io_delay_init();
1182 
1183 	early_platform_quirks();
1184 
1185 	/*
1186 	 * Parse the ACPI tables for possible boot-time SMP configuration.
1187 	 */
1188 	acpi_boot_table_init();
1189 
1190 	early_acpi_boot_init();
1191 
1192 	initmem_init();
1193 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1194 
1195 	/*
1196 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1197 	 * won't consume hotpluggable memory.
1198 	 */
1199 	reserve_crashkernel();
1200 
1201 	memblock_find_dma_reserve();
1202 
1203 	if (!early_xdbc_setup_hardware())
1204 		early_xdbc_register_console();
1205 
1206 	x86_init.paging.pagetable_init();
1207 
1208 	kasan_init();
1209 
1210 	/*
1211 	 * Sync back kernel address range.
1212 	 *
1213 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1214 	 * this call?
1215 	 */
1216 	sync_initial_page_table();
1217 
1218 	tboot_probe();
1219 
1220 	map_vsyscall();
1221 
1222 	generic_apic_probe();
1223 
1224 	early_quirks();
1225 
1226 	/*
1227 	 * Read APIC and some other early information from ACPI tables.
1228 	 */
1229 	acpi_boot_init();
1230 	sfi_init();
1231 	x86_dtb_init();
1232 
1233 	/*
1234 	 * get boot-time SMP configuration:
1235 	 */
1236 	get_smp_config();
1237 
1238 	/*
1239 	 * Systems w/o ACPI and mptables might not have it mapped the local
1240 	 * APIC yet, but prefill_possible_map() might need to access it.
1241 	 */
1242 	init_apic_mappings();
1243 
1244 	prefill_possible_map();
1245 
1246 	init_cpu_to_node();
1247 
1248 	io_apic_init_mappings();
1249 
1250 	x86_init.hyper.guest_late_init();
1251 
1252 	e820__reserve_resources();
1253 	e820__register_nosave_regions(max_pfn);
1254 
1255 	x86_init.resources.reserve_resources();
1256 
1257 	e820__setup_pci_gap();
1258 
1259 #ifdef CONFIG_VT
1260 #if defined(CONFIG_VGA_CONSOLE)
1261 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1262 		conswitchp = &vga_con;
1263 #elif defined(CONFIG_DUMMY_CONSOLE)
1264 	conswitchp = &dummy_con;
1265 #endif
1266 #endif
1267 	x86_init.oem.banner();
1268 
1269 	x86_init.timers.wallclock_init();
1270 
1271 	mcheck_init();
1272 
1273 	register_refined_jiffies(CLOCK_TICK_RATE);
1274 
1275 #ifdef CONFIG_EFI
1276 	if (efi_enabled(EFI_BOOT))
1277 		efi_apply_memmap_quirks();
1278 #endif
1279 
1280 	unwind_init();
1281 }
1282 
1283 /*
1284  * From boot protocol 2.14 onwards we expect the bootloader to set the
1285  * version to "0x8000 | <used version>". In case we find a version >= 2.14
1286  * without the 0x8000 we assume the boot loader supports 2.13 only and
1287  * reset the version accordingly. The 0x8000 flag is removed in any case.
1288  */
1289 void __init x86_verify_bootdata_version(void)
1290 {
1291 	if (boot_params.hdr.version & VERSION_WRITTEN)
1292 		boot_params.hdr.version &= ~VERSION_WRITTEN;
1293 	else if (boot_params.hdr.version >= 0x020e)
1294 		boot_params.hdr.version = 0x020d;
1295 
1296 	if (boot_params.hdr.version < 0x020e)
1297 		boot_params.hdr.acpi_rsdp_addr = 0;
1298 }
1299 
1300 #ifdef CONFIG_X86_32
1301 
1302 static struct resource video_ram_resource = {
1303 	.name	= "Video RAM area",
1304 	.start	= 0xa0000,
1305 	.end	= 0xbffff,
1306 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1307 };
1308 
1309 void __init i386_reserve_resources(void)
1310 {
1311 	request_resource(&iomem_resource, &video_ram_resource);
1312 	reserve_standard_io_resources();
1313 }
1314 
1315 #endif /* CONFIG_X86_32 */
1316 
1317 static struct notifier_block kernel_offset_notifier = {
1318 	.notifier_call = dump_kernel_offset
1319 };
1320 
1321 static int __init register_kernel_offset_dumper(void)
1322 {
1323 	atomic_notifier_chain_register(&panic_notifier_list,
1324 					&kernel_offset_notifier);
1325 	return 0;
1326 }
1327 __initcall(register_kernel_offset_dumper);
1328