1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * This file contains the setup_arch() code, which handles the architecture-dependent 6 * parts of early kernel initialization. 7 */ 8 #include <linux/console.h> 9 #include <linux/crash_dump.h> 10 #include <linux/dmi.h> 11 #include <linux/efi.h> 12 #include <linux/init_ohci1394_dma.h> 13 #include <linux/initrd.h> 14 #include <linux/iscsi_ibft.h> 15 #include <linux/memblock.h> 16 #include <linux/pci.h> 17 #include <linux/root_dev.h> 18 #include <linux/sfi.h> 19 #include <linux/hugetlb.h> 20 #include <linux/tboot.h> 21 #include <linux/usb/xhci-dbgp.h> 22 23 #include <uapi/linux/mount.h> 24 25 #include <xen/xen.h> 26 27 #include <asm/apic.h> 28 #include <asm/bios_ebda.h> 29 #include <asm/bugs.h> 30 #include <asm/cpu.h> 31 #include <asm/efi.h> 32 #include <asm/gart.h> 33 #include <asm/hypervisor.h> 34 #include <asm/io_apic.h> 35 #include <asm/kasan.h> 36 #include <asm/kaslr.h> 37 #include <asm/mce.h> 38 #include <asm/mtrr.h> 39 #include <asm/realmode.h> 40 #include <asm/olpc_ofw.h> 41 #include <asm/pci-direct.h> 42 #include <asm/prom.h> 43 #include <asm/proto.h> 44 #include <asm/unwind.h> 45 #include <asm/vsyscall.h> 46 #include <linux/vmalloc.h> 47 48 /* 49 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB 50 * max_pfn_mapped: highest directly mapped pfn > 4 GB 51 * 52 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are 53 * represented by pfn_mapped[]. 54 */ 55 unsigned long max_low_pfn_mapped; 56 unsigned long max_pfn_mapped; 57 58 #ifdef CONFIG_DMI 59 RESERVE_BRK(dmi_alloc, 65536); 60 #endif 61 62 63 /* 64 * Range of the BSS area. The size of the BSS area is determined 65 * at link time, with RESERVE_BRK*() facility reserving additional 66 * chunks. 67 */ 68 unsigned long _brk_start = (unsigned long)__brk_base; 69 unsigned long _brk_end = (unsigned long)__brk_base; 70 71 struct boot_params boot_params; 72 73 /* 74 * These are the four main kernel memory regions, we put them into 75 * the resource tree so that kdump tools and other debugging tools 76 * recover it: 77 */ 78 79 static struct resource rodata_resource = { 80 .name = "Kernel rodata", 81 .start = 0, 82 .end = 0, 83 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 84 }; 85 86 static struct resource data_resource = { 87 .name = "Kernel data", 88 .start = 0, 89 .end = 0, 90 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 91 }; 92 93 static struct resource code_resource = { 94 .name = "Kernel code", 95 .start = 0, 96 .end = 0, 97 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 98 }; 99 100 static struct resource bss_resource = { 101 .name = "Kernel bss", 102 .start = 0, 103 .end = 0, 104 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 105 }; 106 107 108 #ifdef CONFIG_X86_32 109 /* CPU data as detected by the assembly code in head_32.S */ 110 struct cpuinfo_x86 new_cpu_data; 111 112 /* Common CPU data for all CPUs */ 113 struct cpuinfo_x86 boot_cpu_data __read_mostly; 114 EXPORT_SYMBOL(boot_cpu_data); 115 116 unsigned int def_to_bigsmp; 117 118 /* For MCA, but anyone else can use it if they want */ 119 unsigned int machine_id; 120 unsigned int machine_submodel_id; 121 unsigned int BIOS_revision; 122 123 struct apm_info apm_info; 124 EXPORT_SYMBOL(apm_info); 125 126 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ 127 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) 128 struct ist_info ist_info; 129 EXPORT_SYMBOL(ist_info); 130 #else 131 struct ist_info ist_info; 132 #endif 133 134 #else 135 struct cpuinfo_x86 boot_cpu_data __read_mostly; 136 EXPORT_SYMBOL(boot_cpu_data); 137 #endif 138 139 140 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) 141 __visible unsigned long mmu_cr4_features __ro_after_init; 142 #else 143 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; 144 #endif 145 146 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ 147 int bootloader_type, bootloader_version; 148 149 /* 150 * Setup options 151 */ 152 struct screen_info screen_info; 153 EXPORT_SYMBOL(screen_info); 154 struct edid_info edid_info; 155 EXPORT_SYMBOL_GPL(edid_info); 156 157 extern int root_mountflags; 158 159 unsigned long saved_video_mode; 160 161 #define RAMDISK_IMAGE_START_MASK 0x07FF 162 #define RAMDISK_PROMPT_FLAG 0x8000 163 #define RAMDISK_LOAD_FLAG 0x4000 164 165 static char __initdata command_line[COMMAND_LINE_SIZE]; 166 #ifdef CONFIG_CMDLINE_BOOL 167 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 168 #endif 169 170 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) 171 struct edd edd; 172 #ifdef CONFIG_EDD_MODULE 173 EXPORT_SYMBOL(edd); 174 #endif 175 /** 176 * copy_edd() - Copy the BIOS EDD information 177 * from boot_params into a safe place. 178 * 179 */ 180 static inline void __init copy_edd(void) 181 { 182 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, 183 sizeof(edd.mbr_signature)); 184 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); 185 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; 186 edd.edd_info_nr = boot_params.eddbuf_entries; 187 } 188 #else 189 static inline void __init copy_edd(void) 190 { 191 } 192 #endif 193 194 void * __init extend_brk(size_t size, size_t align) 195 { 196 size_t mask = align - 1; 197 void *ret; 198 199 BUG_ON(_brk_start == 0); 200 BUG_ON(align & mask); 201 202 _brk_end = (_brk_end + mask) & ~mask; 203 BUG_ON((char *)(_brk_end + size) > __brk_limit); 204 205 ret = (void *)_brk_end; 206 _brk_end += size; 207 208 memset(ret, 0, size); 209 210 return ret; 211 } 212 213 #ifdef CONFIG_X86_32 214 static void __init cleanup_highmap(void) 215 { 216 } 217 #endif 218 219 static void __init reserve_brk(void) 220 { 221 if (_brk_end > _brk_start) 222 memblock_reserve(__pa_symbol(_brk_start), 223 _brk_end - _brk_start); 224 225 /* Mark brk area as locked down and no longer taking any 226 new allocations */ 227 _brk_start = 0; 228 } 229 230 u64 relocated_ramdisk; 231 232 #ifdef CONFIG_BLK_DEV_INITRD 233 234 static u64 __init get_ramdisk_image(void) 235 { 236 u64 ramdisk_image = boot_params.hdr.ramdisk_image; 237 238 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; 239 240 if (ramdisk_image == 0) 241 ramdisk_image = phys_initrd_start; 242 243 return ramdisk_image; 244 } 245 static u64 __init get_ramdisk_size(void) 246 { 247 u64 ramdisk_size = boot_params.hdr.ramdisk_size; 248 249 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; 250 251 if (ramdisk_size == 0) 252 ramdisk_size = phys_initrd_size; 253 254 return ramdisk_size; 255 } 256 257 static void __init relocate_initrd(void) 258 { 259 /* Assume only end is not page aligned */ 260 u64 ramdisk_image = get_ramdisk_image(); 261 u64 ramdisk_size = get_ramdisk_size(); 262 u64 area_size = PAGE_ALIGN(ramdisk_size); 263 264 /* We need to move the initrd down into directly mapped mem */ 265 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), 266 area_size, PAGE_SIZE); 267 268 if (!relocated_ramdisk) 269 panic("Cannot find place for new RAMDISK of size %lld\n", 270 ramdisk_size); 271 272 /* Note: this includes all the mem currently occupied by 273 the initrd, we rely on that fact to keep the data intact. */ 274 memblock_reserve(relocated_ramdisk, area_size); 275 initrd_start = relocated_ramdisk + PAGE_OFFSET; 276 initrd_end = initrd_start + ramdisk_size; 277 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", 278 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 279 280 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size); 281 282 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" 283 " [mem %#010llx-%#010llx]\n", 284 ramdisk_image, ramdisk_image + ramdisk_size - 1, 285 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 286 } 287 288 static void __init early_reserve_initrd(void) 289 { 290 /* Assume only end is not page aligned */ 291 u64 ramdisk_image = get_ramdisk_image(); 292 u64 ramdisk_size = get_ramdisk_size(); 293 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 294 295 if (!boot_params.hdr.type_of_loader || 296 !ramdisk_image || !ramdisk_size) 297 return; /* No initrd provided by bootloader */ 298 299 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image); 300 } 301 static void __init reserve_initrd(void) 302 { 303 /* Assume only end is not page aligned */ 304 u64 ramdisk_image = get_ramdisk_image(); 305 u64 ramdisk_size = get_ramdisk_size(); 306 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 307 u64 mapped_size; 308 309 if (!boot_params.hdr.type_of_loader || 310 !ramdisk_image || !ramdisk_size) 311 return; /* No initrd provided by bootloader */ 312 313 initrd_start = 0; 314 315 mapped_size = memblock_mem_size(max_pfn_mapped); 316 if (ramdisk_size >= (mapped_size>>1)) 317 panic("initrd too large to handle, " 318 "disabling initrd (%lld needed, %lld available)\n", 319 ramdisk_size, mapped_size>>1); 320 321 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, 322 ramdisk_end - 1); 323 324 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), 325 PFN_DOWN(ramdisk_end))) { 326 /* All are mapped, easy case */ 327 initrd_start = ramdisk_image + PAGE_OFFSET; 328 initrd_end = initrd_start + ramdisk_size; 329 return; 330 } 331 332 relocate_initrd(); 333 334 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image); 335 } 336 337 #else 338 static void __init early_reserve_initrd(void) 339 { 340 } 341 static void __init reserve_initrd(void) 342 { 343 } 344 #endif /* CONFIG_BLK_DEV_INITRD */ 345 346 static void __init parse_setup_data(void) 347 { 348 struct setup_data *data; 349 u64 pa_data, pa_next; 350 351 pa_data = boot_params.hdr.setup_data; 352 while (pa_data) { 353 u32 data_len, data_type; 354 355 data = early_memremap(pa_data, sizeof(*data)); 356 data_len = data->len + sizeof(struct setup_data); 357 data_type = data->type; 358 pa_next = data->next; 359 early_memunmap(data, sizeof(*data)); 360 361 switch (data_type) { 362 case SETUP_E820_EXT: 363 e820__memory_setup_extended(pa_data, data_len); 364 break; 365 case SETUP_DTB: 366 add_dtb(pa_data); 367 break; 368 case SETUP_EFI: 369 parse_efi_setup(pa_data, data_len); 370 break; 371 default: 372 break; 373 } 374 pa_data = pa_next; 375 } 376 } 377 378 static void __init memblock_x86_reserve_range_setup_data(void) 379 { 380 struct setup_data *data; 381 u64 pa_data; 382 383 pa_data = boot_params.hdr.setup_data; 384 while (pa_data) { 385 data = early_memremap(pa_data, sizeof(*data)); 386 memblock_reserve(pa_data, sizeof(*data) + data->len); 387 388 if (data->type == SETUP_INDIRECT && 389 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) 390 memblock_reserve(((struct setup_indirect *)data->data)->addr, 391 ((struct setup_indirect *)data->data)->len); 392 393 pa_data = data->next; 394 early_memunmap(data, sizeof(*data)); 395 } 396 } 397 398 /* 399 * --------- Crashkernel reservation ------------------------------ 400 */ 401 402 #ifdef CONFIG_KEXEC_CORE 403 404 /* 16M alignment for crash kernel regions */ 405 #define CRASH_ALIGN SZ_16M 406 407 /* 408 * Keep the crash kernel below this limit. 409 * 410 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range 411 * due to mapping restrictions. 412 * 413 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is 414 * the upper limit of system RAM in 4-level paging mode. Since the kdump 415 * jump could be from 5-level paging to 4-level paging, the jump will fail if 416 * the kernel is put above 64 TB, and during the 1st kernel bootup there's 417 * no good way to detect the paging mode of the target kernel which will be 418 * loaded for dumping. 419 */ 420 #ifdef CONFIG_X86_32 421 # define CRASH_ADDR_LOW_MAX SZ_512M 422 # define CRASH_ADDR_HIGH_MAX SZ_512M 423 #else 424 # define CRASH_ADDR_LOW_MAX SZ_4G 425 # define CRASH_ADDR_HIGH_MAX SZ_64T 426 #endif 427 428 static int __init reserve_crashkernel_low(void) 429 { 430 #ifdef CONFIG_X86_64 431 unsigned long long base, low_base = 0, low_size = 0; 432 unsigned long total_low_mem; 433 int ret; 434 435 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT)); 436 437 /* crashkernel=Y,low */ 438 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base); 439 if (ret) { 440 /* 441 * two parts from kernel/dma/swiotlb.c: 442 * -swiotlb size: user-specified with swiotlb= or default. 443 * 444 * -swiotlb overflow buffer: now hardcoded to 32k. We round it 445 * to 8M for other buffers that may need to stay low too. Also 446 * make sure we allocate enough extra low memory so that we 447 * don't run out of DMA buffers for 32-bit devices. 448 */ 449 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20); 450 } else { 451 /* passed with crashkernel=0,low ? */ 452 if (!low_size) 453 return 0; 454 } 455 456 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN); 457 if (!low_base) { 458 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n", 459 (unsigned long)(low_size >> 20)); 460 return -ENOMEM; 461 } 462 463 ret = memblock_reserve(low_base, low_size); 464 if (ret) { 465 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__); 466 return ret; 467 } 468 469 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n", 470 (unsigned long)(low_size >> 20), 471 (unsigned long)(low_base >> 20), 472 (unsigned long)(total_low_mem >> 20)); 473 474 crashk_low_res.start = low_base; 475 crashk_low_res.end = low_base + low_size - 1; 476 insert_resource(&iomem_resource, &crashk_low_res); 477 #endif 478 return 0; 479 } 480 481 static void __init reserve_crashkernel(void) 482 { 483 unsigned long long crash_size, crash_base, total_mem; 484 bool high = false; 485 int ret; 486 487 total_mem = memblock_phys_mem_size(); 488 489 /* crashkernel=XM */ 490 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); 491 if (ret != 0 || crash_size <= 0) { 492 /* crashkernel=X,high */ 493 ret = parse_crashkernel_high(boot_command_line, total_mem, 494 &crash_size, &crash_base); 495 if (ret != 0 || crash_size <= 0) 496 return; 497 high = true; 498 } 499 500 if (xen_pv_domain()) { 501 pr_info("Ignoring crashkernel for a Xen PV domain\n"); 502 return; 503 } 504 505 /* 0 means: find the address automatically */ 506 if (!crash_base) { 507 /* 508 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory, 509 * crashkernel=x,high reserves memory over 4G, also allocates 510 * 256M extra low memory for DMA buffers and swiotlb. 511 * But the extra memory is not required for all machines. 512 * So try low memory first and fall back to high memory 513 * unless "crashkernel=size[KMG],high" is specified. 514 */ 515 if (!high) 516 crash_base = memblock_find_in_range(CRASH_ALIGN, 517 CRASH_ADDR_LOW_MAX, 518 crash_size, CRASH_ALIGN); 519 if (!crash_base) 520 crash_base = memblock_find_in_range(CRASH_ALIGN, 521 CRASH_ADDR_HIGH_MAX, 522 crash_size, CRASH_ALIGN); 523 if (!crash_base) { 524 pr_info("crashkernel reservation failed - No suitable area found.\n"); 525 return; 526 } 527 } else { 528 unsigned long long start; 529 530 start = memblock_find_in_range(crash_base, 531 crash_base + crash_size, 532 crash_size, 1 << 20); 533 if (start != crash_base) { 534 pr_info("crashkernel reservation failed - memory is in use.\n"); 535 return; 536 } 537 } 538 ret = memblock_reserve(crash_base, crash_size); 539 if (ret) { 540 pr_err("%s: Error reserving crashkernel memblock.\n", __func__); 541 return; 542 } 543 544 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) { 545 memblock_free(crash_base, crash_size); 546 return; 547 } 548 549 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", 550 (unsigned long)(crash_size >> 20), 551 (unsigned long)(crash_base >> 20), 552 (unsigned long)(total_mem >> 20)); 553 554 crashk_res.start = crash_base; 555 crashk_res.end = crash_base + crash_size - 1; 556 insert_resource(&iomem_resource, &crashk_res); 557 } 558 #else 559 static void __init reserve_crashkernel(void) 560 { 561 } 562 #endif 563 564 static struct resource standard_io_resources[] = { 565 { .name = "dma1", .start = 0x00, .end = 0x1f, 566 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 567 { .name = "pic1", .start = 0x20, .end = 0x21, 568 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 569 { .name = "timer0", .start = 0x40, .end = 0x43, 570 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 571 { .name = "timer1", .start = 0x50, .end = 0x53, 572 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 573 { .name = "keyboard", .start = 0x60, .end = 0x60, 574 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 575 { .name = "keyboard", .start = 0x64, .end = 0x64, 576 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 577 { .name = "dma page reg", .start = 0x80, .end = 0x8f, 578 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 579 { .name = "pic2", .start = 0xa0, .end = 0xa1, 580 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 581 { .name = "dma2", .start = 0xc0, .end = 0xdf, 582 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 583 { .name = "fpu", .start = 0xf0, .end = 0xff, 584 .flags = IORESOURCE_BUSY | IORESOURCE_IO } 585 }; 586 587 void __init reserve_standard_io_resources(void) 588 { 589 int i; 590 591 /* request I/O space for devices used on all i[345]86 PCs */ 592 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) 593 request_resource(&ioport_resource, &standard_io_resources[i]); 594 595 } 596 597 static __init void reserve_ibft_region(void) 598 { 599 unsigned long addr, size = 0; 600 601 addr = find_ibft_region(&size); 602 603 if (size) 604 memblock_reserve(addr, size); 605 } 606 607 static bool __init snb_gfx_workaround_needed(void) 608 { 609 #ifdef CONFIG_PCI 610 int i; 611 u16 vendor, devid; 612 static const __initconst u16 snb_ids[] = { 613 0x0102, 614 0x0112, 615 0x0122, 616 0x0106, 617 0x0116, 618 0x0126, 619 0x010a, 620 }; 621 622 /* Assume no if something weird is going on with PCI */ 623 if (!early_pci_allowed()) 624 return false; 625 626 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); 627 if (vendor != 0x8086) 628 return false; 629 630 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); 631 for (i = 0; i < ARRAY_SIZE(snb_ids); i++) 632 if (devid == snb_ids[i]) 633 return true; 634 #endif 635 636 return false; 637 } 638 639 /* 640 * Sandy Bridge graphics has trouble with certain ranges, exclude 641 * them from allocation. 642 */ 643 static void __init trim_snb_memory(void) 644 { 645 static const __initconst unsigned long bad_pages[] = { 646 0x20050000, 647 0x20110000, 648 0x20130000, 649 0x20138000, 650 0x40004000, 651 }; 652 int i; 653 654 if (!snb_gfx_workaround_needed()) 655 return; 656 657 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); 658 659 /* 660 * Reserve all memory below the 1 MB mark that has not 661 * already been reserved. 662 */ 663 memblock_reserve(0, 1<<20); 664 665 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { 666 if (memblock_reserve(bad_pages[i], PAGE_SIZE)) 667 printk(KERN_WARNING "failed to reserve 0x%08lx\n", 668 bad_pages[i]); 669 } 670 } 671 672 /* 673 * Here we put platform-specific memory range workarounds, i.e. 674 * memory known to be corrupt or otherwise in need to be reserved on 675 * specific platforms. 676 * 677 * If this gets used more widely it could use a real dispatch mechanism. 678 */ 679 static void __init trim_platform_memory_ranges(void) 680 { 681 trim_snb_memory(); 682 } 683 684 static void __init trim_bios_range(void) 685 { 686 /* 687 * A special case is the first 4Kb of memory; 688 * This is a BIOS owned area, not kernel ram, but generally 689 * not listed as such in the E820 table. 690 * 691 * This typically reserves additional memory (64KiB by default) 692 * since some BIOSes are known to corrupt low memory. See the 693 * Kconfig help text for X86_RESERVE_LOW. 694 */ 695 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); 696 697 /* 698 * special case: Some BIOSes report the PC BIOS 699 * area (640Kb -> 1Mb) as RAM even though it is not. 700 * take them out. 701 */ 702 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1); 703 704 e820__update_table(e820_table); 705 } 706 707 /* called before trim_bios_range() to spare extra sanitize */ 708 static void __init e820_add_kernel_range(void) 709 { 710 u64 start = __pa_symbol(_text); 711 u64 size = __pa_symbol(_end) - start; 712 713 /* 714 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and 715 * attempt to fix it by adding the range. We may have a confused BIOS, 716 * or the user may have used memmap=exactmap or memmap=xxM$yyM to 717 * exclude kernel range. If we really are running on top non-RAM, 718 * we will crash later anyways. 719 */ 720 if (e820__mapped_all(start, start + size, E820_TYPE_RAM)) 721 return; 722 723 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n"); 724 e820__range_remove(start, size, E820_TYPE_RAM, 0); 725 e820__range_add(start, size, E820_TYPE_RAM); 726 } 727 728 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10; 729 730 static int __init parse_reservelow(char *p) 731 { 732 unsigned long long size; 733 734 if (!p) 735 return -EINVAL; 736 737 size = memparse(p, &p); 738 739 if (size < 4096) 740 size = 4096; 741 742 if (size > 640*1024) 743 size = 640*1024; 744 745 reserve_low = size; 746 747 return 0; 748 } 749 750 early_param("reservelow", parse_reservelow); 751 752 static void __init trim_low_memory_range(void) 753 { 754 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE)); 755 } 756 757 /* 758 * Dump out kernel offset information on panic. 759 */ 760 static int 761 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) 762 { 763 if (kaslr_enabled()) { 764 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n", 765 kaslr_offset(), 766 __START_KERNEL, 767 __START_KERNEL_map, 768 MODULES_VADDR-1); 769 } else { 770 pr_emerg("Kernel Offset: disabled\n"); 771 } 772 773 return 0; 774 } 775 776 /* 777 * Determine if we were loaded by an EFI loader. If so, then we have also been 778 * passed the efi memmap, systab, etc., so we should use these data structures 779 * for initialization. Note, the efi init code path is determined by the 780 * global efi_enabled. This allows the same kernel image to be used on existing 781 * systems (with a traditional BIOS) as well as on EFI systems. 782 */ 783 /* 784 * setup_arch - architecture-specific boot-time initializations 785 * 786 * Note: On x86_64, fixmaps are ready for use even before this is called. 787 */ 788 789 void __init setup_arch(char **cmdline_p) 790 { 791 /* 792 * Reserve the memory occupied by the kernel between _text and 793 * __end_of_kernel_reserve symbols. Any kernel sections after the 794 * __end_of_kernel_reserve symbol must be explicitly reserved with a 795 * separate memblock_reserve() or they will be discarded. 796 */ 797 memblock_reserve(__pa_symbol(_text), 798 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text); 799 800 /* 801 * Make sure page 0 is always reserved because on systems with 802 * L1TF its contents can be leaked to user processes. 803 */ 804 memblock_reserve(0, PAGE_SIZE); 805 806 early_reserve_initrd(); 807 808 /* 809 * At this point everything still needed from the boot loader 810 * or BIOS or kernel text should be early reserved or marked not 811 * RAM in e820. All other memory is free game. 812 */ 813 814 #ifdef CONFIG_X86_32 815 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); 816 817 /* 818 * copy kernel address range established so far and switch 819 * to the proper swapper page table 820 */ 821 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, 822 initial_page_table + KERNEL_PGD_BOUNDARY, 823 KERNEL_PGD_PTRS); 824 825 load_cr3(swapper_pg_dir); 826 /* 827 * Note: Quark X1000 CPUs advertise PGE incorrectly and require 828 * a cr3 based tlb flush, so the following __flush_tlb_all() 829 * will not flush anything because the CPU quirk which clears 830 * X86_FEATURE_PGE has not been invoked yet. Though due to the 831 * load_cr3() above the TLB has been flushed already. The 832 * quirk is invoked before subsequent calls to __flush_tlb_all() 833 * so proper operation is guaranteed. 834 */ 835 __flush_tlb_all(); 836 #else 837 printk(KERN_INFO "Command line: %s\n", boot_command_line); 838 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS; 839 #endif 840 841 /* 842 * If we have OLPC OFW, we might end up relocating the fixmap due to 843 * reserve_top(), so do this before touching the ioremap area. 844 */ 845 olpc_ofw_detect(); 846 847 idt_setup_early_traps(); 848 early_cpu_init(); 849 arch_init_ideal_nops(); 850 jump_label_init(); 851 early_ioremap_init(); 852 853 setup_olpc_ofw_pgd(); 854 855 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); 856 screen_info = boot_params.screen_info; 857 edid_info = boot_params.edid_info; 858 #ifdef CONFIG_X86_32 859 apm_info.bios = boot_params.apm_bios_info; 860 ist_info = boot_params.ist_info; 861 #endif 862 saved_video_mode = boot_params.hdr.vid_mode; 863 bootloader_type = boot_params.hdr.type_of_loader; 864 if ((bootloader_type >> 4) == 0xe) { 865 bootloader_type &= 0xf; 866 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; 867 } 868 bootloader_version = bootloader_type & 0xf; 869 bootloader_version |= boot_params.hdr.ext_loader_ver << 4; 870 871 #ifdef CONFIG_BLK_DEV_RAM 872 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; 873 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0); 874 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0); 875 #endif 876 #ifdef CONFIG_EFI 877 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 878 EFI32_LOADER_SIGNATURE, 4)) { 879 set_bit(EFI_BOOT, &efi.flags); 880 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 881 EFI64_LOADER_SIGNATURE, 4)) { 882 set_bit(EFI_BOOT, &efi.flags); 883 set_bit(EFI_64BIT, &efi.flags); 884 } 885 #endif 886 887 x86_init.oem.arch_setup(); 888 889 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; 890 e820__memory_setup(); 891 parse_setup_data(); 892 893 copy_edd(); 894 895 if (!boot_params.hdr.root_flags) 896 root_mountflags &= ~MS_RDONLY; 897 init_mm.start_code = (unsigned long) _text; 898 init_mm.end_code = (unsigned long) _etext; 899 init_mm.end_data = (unsigned long) _edata; 900 init_mm.brk = _brk_end; 901 902 code_resource.start = __pa_symbol(_text); 903 code_resource.end = __pa_symbol(_etext)-1; 904 rodata_resource.start = __pa_symbol(__start_rodata); 905 rodata_resource.end = __pa_symbol(__end_rodata)-1; 906 data_resource.start = __pa_symbol(_sdata); 907 data_resource.end = __pa_symbol(_edata)-1; 908 bss_resource.start = __pa_symbol(__bss_start); 909 bss_resource.end = __pa_symbol(__bss_stop)-1; 910 911 #ifdef CONFIG_CMDLINE_BOOL 912 #ifdef CONFIG_CMDLINE_OVERRIDE 913 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 914 #else 915 if (builtin_cmdline[0]) { 916 /* append boot loader cmdline to builtin */ 917 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); 918 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); 919 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 920 } 921 #endif 922 #endif 923 924 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 925 *cmdline_p = command_line; 926 927 /* 928 * x86_configure_nx() is called before parse_early_param() to detect 929 * whether hardware doesn't support NX (so that the early EHCI debug 930 * console setup can safely call set_fixmap()). It may then be called 931 * again from within noexec_setup() during parsing early parameters 932 * to honor the respective command line option. 933 */ 934 x86_configure_nx(); 935 936 parse_early_param(); 937 938 if (efi_enabled(EFI_BOOT)) 939 efi_memblock_x86_reserve_range(); 940 #ifdef CONFIG_MEMORY_HOTPLUG 941 /* 942 * Memory used by the kernel cannot be hot-removed because Linux 943 * cannot migrate the kernel pages. When memory hotplug is 944 * enabled, we should prevent memblock from allocating memory 945 * for the kernel. 946 * 947 * ACPI SRAT records all hotpluggable memory ranges. But before 948 * SRAT is parsed, we don't know about it. 949 * 950 * The kernel image is loaded into memory at very early time. We 951 * cannot prevent this anyway. So on NUMA system, we set any 952 * node the kernel resides in as un-hotpluggable. 953 * 954 * Since on modern servers, one node could have double-digit 955 * gigabytes memory, we can assume the memory around the kernel 956 * image is also un-hotpluggable. So before SRAT is parsed, just 957 * allocate memory near the kernel image to try the best to keep 958 * the kernel away from hotpluggable memory. 959 */ 960 if (movable_node_is_enabled()) 961 memblock_set_bottom_up(true); 962 #endif 963 964 x86_report_nx(); 965 966 /* after early param, so could get panic from serial */ 967 memblock_x86_reserve_range_setup_data(); 968 969 if (acpi_mps_check()) { 970 #ifdef CONFIG_X86_LOCAL_APIC 971 disable_apic = 1; 972 #endif 973 setup_clear_cpu_cap(X86_FEATURE_APIC); 974 } 975 976 e820__reserve_setup_data(); 977 e820__finish_early_params(); 978 979 if (efi_enabled(EFI_BOOT)) 980 efi_init(); 981 982 dmi_setup(); 983 984 /* 985 * VMware detection requires dmi to be available, so this 986 * needs to be done after dmi_setup(), for the boot CPU. 987 */ 988 init_hypervisor_platform(); 989 990 tsc_early_init(); 991 x86_init.resources.probe_roms(); 992 993 /* after parse_early_param, so could debug it */ 994 insert_resource(&iomem_resource, &code_resource); 995 insert_resource(&iomem_resource, &rodata_resource); 996 insert_resource(&iomem_resource, &data_resource); 997 insert_resource(&iomem_resource, &bss_resource); 998 999 e820_add_kernel_range(); 1000 trim_bios_range(); 1001 #ifdef CONFIG_X86_32 1002 if (ppro_with_ram_bug()) { 1003 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM, 1004 E820_TYPE_RESERVED); 1005 e820__update_table(e820_table); 1006 printk(KERN_INFO "fixed physical RAM map:\n"); 1007 e820__print_table("bad_ppro"); 1008 } 1009 #else 1010 early_gart_iommu_check(); 1011 #endif 1012 1013 /* 1014 * partially used pages are not usable - thus 1015 * we are rounding upwards: 1016 */ 1017 max_pfn = e820__end_of_ram_pfn(); 1018 1019 /* update e820 for memory not covered by WB MTRRs */ 1020 mtrr_bp_init(); 1021 if (mtrr_trim_uncached_memory(max_pfn)) 1022 max_pfn = e820__end_of_ram_pfn(); 1023 1024 max_possible_pfn = max_pfn; 1025 1026 /* 1027 * This call is required when the CPU does not support PAT. If 1028 * mtrr_bp_init() invoked it already via pat_init() the call has no 1029 * effect. 1030 */ 1031 init_cache_modes(); 1032 1033 /* 1034 * Define random base addresses for memory sections after max_pfn is 1035 * defined and before each memory section base is used. 1036 */ 1037 kernel_randomize_memory(); 1038 1039 #ifdef CONFIG_X86_32 1040 /* max_low_pfn get updated here */ 1041 find_low_pfn_range(); 1042 #else 1043 check_x2apic(); 1044 1045 /* How many end-of-memory variables you have, grandma! */ 1046 /* need this before calling reserve_initrd */ 1047 if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) 1048 max_low_pfn = e820__end_of_low_ram_pfn(); 1049 else 1050 max_low_pfn = max_pfn; 1051 1052 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 1053 #endif 1054 1055 /* 1056 * Find and reserve possible boot-time SMP configuration: 1057 */ 1058 find_smp_config(); 1059 1060 reserve_ibft_region(); 1061 1062 early_alloc_pgt_buf(); 1063 1064 /* 1065 * Need to conclude brk, before e820__memblock_setup() 1066 * it could use memblock_find_in_range, could overlap with 1067 * brk area. 1068 */ 1069 reserve_brk(); 1070 1071 cleanup_highmap(); 1072 1073 memblock_set_current_limit(ISA_END_ADDRESS); 1074 e820__memblock_setup(); 1075 1076 reserve_bios_regions(); 1077 1078 efi_fake_memmap(); 1079 efi_find_mirror(); 1080 efi_esrt_init(); 1081 1082 /* 1083 * The EFI specification says that boot service code won't be 1084 * called after ExitBootServices(). This is, in fact, a lie. 1085 */ 1086 efi_reserve_boot_services(); 1087 1088 /* preallocate 4k for mptable mpc */ 1089 e820__memblock_alloc_reserved_mpc_new(); 1090 1091 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION 1092 setup_bios_corruption_check(); 1093 #endif 1094 1095 #ifdef CONFIG_X86_32 1096 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", 1097 (max_pfn_mapped<<PAGE_SHIFT) - 1); 1098 #endif 1099 1100 reserve_real_mode(); 1101 1102 trim_platform_memory_ranges(); 1103 trim_low_memory_range(); 1104 1105 init_mem_mapping(); 1106 1107 idt_setup_early_pf(); 1108 1109 /* 1110 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features) 1111 * with the current CR4 value. This may not be necessary, but 1112 * auditing all the early-boot CR4 manipulation would be needed to 1113 * rule it out. 1114 * 1115 * Mask off features that don't work outside long mode (just 1116 * PCIDE for now). 1117 */ 1118 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE; 1119 1120 memblock_set_current_limit(get_max_mapped()); 1121 1122 /* 1123 * NOTE: On x86-32, only from this point on, fixmaps are ready for use. 1124 */ 1125 1126 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT 1127 if (init_ohci1394_dma_early) 1128 init_ohci1394_dma_on_all_controllers(); 1129 #endif 1130 /* Allocate bigger log buffer */ 1131 setup_log_buf(1); 1132 1133 if (efi_enabled(EFI_BOOT)) { 1134 switch (boot_params.secure_boot) { 1135 case efi_secureboot_mode_disabled: 1136 pr_info("Secure boot disabled\n"); 1137 break; 1138 case efi_secureboot_mode_enabled: 1139 pr_info("Secure boot enabled\n"); 1140 break; 1141 default: 1142 pr_info("Secure boot could not be determined\n"); 1143 break; 1144 } 1145 } 1146 1147 reserve_initrd(); 1148 1149 acpi_table_upgrade(); 1150 1151 vsmp_init(); 1152 1153 io_delay_init(); 1154 1155 early_platform_quirks(); 1156 1157 /* 1158 * Parse the ACPI tables for possible boot-time SMP configuration. 1159 */ 1160 acpi_boot_table_init(); 1161 1162 early_acpi_boot_init(); 1163 1164 initmem_init(); 1165 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT); 1166 1167 if (boot_cpu_has(X86_FEATURE_GBPAGES)) 1168 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 1169 1170 /* 1171 * Reserve memory for crash kernel after SRAT is parsed so that it 1172 * won't consume hotpluggable memory. 1173 */ 1174 reserve_crashkernel(); 1175 1176 memblock_find_dma_reserve(); 1177 1178 if (!early_xdbc_setup_hardware()) 1179 early_xdbc_register_console(); 1180 1181 x86_init.paging.pagetable_init(); 1182 1183 kasan_init(); 1184 1185 /* 1186 * Sync back kernel address range. 1187 * 1188 * FIXME: Can the later sync in setup_cpu_entry_areas() replace 1189 * this call? 1190 */ 1191 sync_initial_page_table(); 1192 1193 tboot_probe(); 1194 1195 map_vsyscall(); 1196 1197 generic_apic_probe(); 1198 1199 early_quirks(); 1200 1201 /* 1202 * Read APIC and some other early information from ACPI tables. 1203 */ 1204 acpi_boot_init(); 1205 sfi_init(); 1206 x86_dtb_init(); 1207 1208 /* 1209 * get boot-time SMP configuration: 1210 */ 1211 get_smp_config(); 1212 1213 /* 1214 * Systems w/o ACPI and mptables might not have it mapped the local 1215 * APIC yet, but prefill_possible_map() might need to access it. 1216 */ 1217 init_apic_mappings(); 1218 1219 prefill_possible_map(); 1220 1221 init_cpu_to_node(); 1222 1223 io_apic_init_mappings(); 1224 1225 x86_init.hyper.guest_late_init(); 1226 1227 e820__reserve_resources(); 1228 e820__register_nosave_regions(max_pfn); 1229 1230 x86_init.resources.reserve_resources(); 1231 1232 e820__setup_pci_gap(); 1233 1234 #ifdef CONFIG_VT 1235 #if defined(CONFIG_VGA_CONSOLE) 1236 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) 1237 conswitchp = &vga_con; 1238 #endif 1239 #endif 1240 x86_init.oem.banner(); 1241 1242 x86_init.timers.wallclock_init(); 1243 1244 mcheck_init(); 1245 1246 register_refined_jiffies(CLOCK_TICK_RATE); 1247 1248 #ifdef CONFIG_EFI 1249 if (efi_enabled(EFI_BOOT)) 1250 efi_apply_memmap_quirks(); 1251 #endif 1252 1253 unwind_init(); 1254 } 1255 1256 #ifdef CONFIG_X86_32 1257 1258 static struct resource video_ram_resource = { 1259 .name = "Video RAM area", 1260 .start = 0xa0000, 1261 .end = 0xbffff, 1262 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 1263 }; 1264 1265 void __init i386_reserve_resources(void) 1266 { 1267 request_resource(&iomem_resource, &video_ram_resource); 1268 reserve_standard_io_resources(); 1269 } 1270 1271 #endif /* CONFIG_X86_32 */ 1272 1273 static struct notifier_block kernel_offset_notifier = { 1274 .notifier_call = dump_kernel_offset 1275 }; 1276 1277 static int __init register_kernel_offset_dumper(void) 1278 { 1279 atomic_notifier_chain_register(&panic_notifier_list, 1280 &kernel_offset_notifier); 1281 return 0; 1282 } 1283 __initcall(register_kernel_offset_dumper); 1284