1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * This file contains the setup_arch() code, which handles the architecture-dependent 6 * parts of early kernel initialization. 7 */ 8 #include <linux/acpi.h> 9 #include <linux/console.h> 10 #include <linux/crash_dump.h> 11 #include <linux/dma-map-ops.h> 12 #include <linux/dmi.h> 13 #include <linux/efi.h> 14 #include <linux/init_ohci1394_dma.h> 15 #include <linux/initrd.h> 16 #include <linux/iscsi_ibft.h> 17 #include <linux/memblock.h> 18 #include <linux/panic_notifier.h> 19 #include <linux/pci.h> 20 #include <linux/root_dev.h> 21 #include <linux/hugetlb.h> 22 #include <linux/tboot.h> 23 #include <linux/usb/xhci-dbgp.h> 24 #include <linux/static_call.h> 25 #include <linux/swiotlb.h> 26 27 #include <uapi/linux/mount.h> 28 29 #include <xen/xen.h> 30 31 #include <asm/apic.h> 32 #include <asm/numa.h> 33 #include <asm/bios_ebda.h> 34 #include <asm/bugs.h> 35 #include <asm/cpu.h> 36 #include <asm/efi.h> 37 #include <asm/gart.h> 38 #include <asm/hypervisor.h> 39 #include <asm/io_apic.h> 40 #include <asm/kasan.h> 41 #include <asm/kaslr.h> 42 #include <asm/mce.h> 43 #include <asm/memtype.h> 44 #include <asm/mtrr.h> 45 #include <asm/realmode.h> 46 #include <asm/olpc_ofw.h> 47 #include <asm/pci-direct.h> 48 #include <asm/prom.h> 49 #include <asm/proto.h> 50 #include <asm/thermal.h> 51 #include <asm/unwind.h> 52 #include <asm/vsyscall.h> 53 #include <linux/vmalloc.h> 54 55 /* 56 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB 57 * max_pfn_mapped: highest directly mapped pfn > 4 GB 58 * 59 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are 60 * represented by pfn_mapped[]. 61 */ 62 unsigned long max_low_pfn_mapped; 63 unsigned long max_pfn_mapped; 64 65 #ifdef CONFIG_DMI 66 RESERVE_BRK(dmi_alloc, 65536); 67 #endif 68 69 70 unsigned long _brk_start = (unsigned long)__brk_base; 71 unsigned long _brk_end = (unsigned long)__brk_base; 72 73 struct boot_params boot_params; 74 75 /* 76 * These are the four main kernel memory regions, we put them into 77 * the resource tree so that kdump tools and other debugging tools 78 * recover it: 79 */ 80 81 static struct resource rodata_resource = { 82 .name = "Kernel rodata", 83 .start = 0, 84 .end = 0, 85 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 86 }; 87 88 static struct resource data_resource = { 89 .name = "Kernel data", 90 .start = 0, 91 .end = 0, 92 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 93 }; 94 95 static struct resource code_resource = { 96 .name = "Kernel code", 97 .start = 0, 98 .end = 0, 99 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 100 }; 101 102 static struct resource bss_resource = { 103 .name = "Kernel bss", 104 .start = 0, 105 .end = 0, 106 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 107 }; 108 109 110 #ifdef CONFIG_X86_32 111 /* CPU data as detected by the assembly code in head_32.S */ 112 struct cpuinfo_x86 new_cpu_data; 113 114 /* Common CPU data for all CPUs */ 115 struct cpuinfo_x86 boot_cpu_data __read_mostly; 116 EXPORT_SYMBOL(boot_cpu_data); 117 118 unsigned int def_to_bigsmp; 119 120 struct apm_info apm_info; 121 EXPORT_SYMBOL(apm_info); 122 123 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ 124 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) 125 struct ist_info ist_info; 126 EXPORT_SYMBOL(ist_info); 127 #else 128 struct ist_info ist_info; 129 #endif 130 131 #else 132 struct cpuinfo_x86 boot_cpu_data __read_mostly; 133 EXPORT_SYMBOL(boot_cpu_data); 134 #endif 135 136 137 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) 138 __visible unsigned long mmu_cr4_features __ro_after_init; 139 #else 140 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; 141 #endif 142 143 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ 144 int bootloader_type, bootloader_version; 145 146 /* 147 * Setup options 148 */ 149 struct screen_info screen_info; 150 EXPORT_SYMBOL(screen_info); 151 struct edid_info edid_info; 152 EXPORT_SYMBOL_GPL(edid_info); 153 154 extern int root_mountflags; 155 156 unsigned long saved_video_mode; 157 158 #define RAMDISK_IMAGE_START_MASK 0x07FF 159 #define RAMDISK_PROMPT_FLAG 0x8000 160 #define RAMDISK_LOAD_FLAG 0x4000 161 162 static char __initdata command_line[COMMAND_LINE_SIZE]; 163 #ifdef CONFIG_CMDLINE_BOOL 164 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 165 #endif 166 167 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) 168 struct edd edd; 169 #ifdef CONFIG_EDD_MODULE 170 EXPORT_SYMBOL(edd); 171 #endif 172 /** 173 * copy_edd() - Copy the BIOS EDD information 174 * from boot_params into a safe place. 175 * 176 */ 177 static inline void __init copy_edd(void) 178 { 179 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, 180 sizeof(edd.mbr_signature)); 181 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); 182 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; 183 edd.edd_info_nr = boot_params.eddbuf_entries; 184 } 185 #else 186 static inline void __init copy_edd(void) 187 { 188 } 189 #endif 190 191 void * __init extend_brk(size_t size, size_t align) 192 { 193 size_t mask = align - 1; 194 void *ret; 195 196 BUG_ON(_brk_start == 0); 197 BUG_ON(align & mask); 198 199 _brk_end = (_brk_end + mask) & ~mask; 200 BUG_ON((char *)(_brk_end + size) > __brk_limit); 201 202 ret = (void *)_brk_end; 203 _brk_end += size; 204 205 memset(ret, 0, size); 206 207 return ret; 208 } 209 210 #ifdef CONFIG_X86_32 211 static void __init cleanup_highmap(void) 212 { 213 } 214 #endif 215 216 static void __init reserve_brk(void) 217 { 218 if (_brk_end > _brk_start) 219 memblock_reserve(__pa_symbol(_brk_start), 220 _brk_end - _brk_start); 221 222 /* Mark brk area as locked down and no longer taking any 223 new allocations */ 224 _brk_start = 0; 225 } 226 227 u64 relocated_ramdisk; 228 229 #ifdef CONFIG_BLK_DEV_INITRD 230 231 static u64 __init get_ramdisk_image(void) 232 { 233 u64 ramdisk_image = boot_params.hdr.ramdisk_image; 234 235 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; 236 237 if (ramdisk_image == 0) 238 ramdisk_image = phys_initrd_start; 239 240 return ramdisk_image; 241 } 242 static u64 __init get_ramdisk_size(void) 243 { 244 u64 ramdisk_size = boot_params.hdr.ramdisk_size; 245 246 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; 247 248 if (ramdisk_size == 0) 249 ramdisk_size = phys_initrd_size; 250 251 return ramdisk_size; 252 } 253 254 static void __init relocate_initrd(void) 255 { 256 /* Assume only end is not page aligned */ 257 u64 ramdisk_image = get_ramdisk_image(); 258 u64 ramdisk_size = get_ramdisk_size(); 259 u64 area_size = PAGE_ALIGN(ramdisk_size); 260 261 /* We need to move the initrd down into directly mapped mem */ 262 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0, 263 PFN_PHYS(max_pfn_mapped)); 264 if (!relocated_ramdisk) 265 panic("Cannot find place for new RAMDISK of size %lld\n", 266 ramdisk_size); 267 268 initrd_start = relocated_ramdisk + PAGE_OFFSET; 269 initrd_end = initrd_start + ramdisk_size; 270 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", 271 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 272 273 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size); 274 275 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" 276 " [mem %#010llx-%#010llx]\n", 277 ramdisk_image, ramdisk_image + ramdisk_size - 1, 278 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 279 } 280 281 static void __init early_reserve_initrd(void) 282 { 283 /* Assume only end is not page aligned */ 284 u64 ramdisk_image = get_ramdisk_image(); 285 u64 ramdisk_size = get_ramdisk_size(); 286 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 287 288 if (!boot_params.hdr.type_of_loader || 289 !ramdisk_image || !ramdisk_size) 290 return; /* No initrd provided by bootloader */ 291 292 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image); 293 } 294 295 static void __init reserve_initrd(void) 296 { 297 /* Assume only end is not page aligned */ 298 u64 ramdisk_image = get_ramdisk_image(); 299 u64 ramdisk_size = get_ramdisk_size(); 300 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 301 302 if (!boot_params.hdr.type_of_loader || 303 !ramdisk_image || !ramdisk_size) 304 return; /* No initrd provided by bootloader */ 305 306 initrd_start = 0; 307 308 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, 309 ramdisk_end - 1); 310 311 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), 312 PFN_DOWN(ramdisk_end))) { 313 /* All are mapped, easy case */ 314 initrd_start = ramdisk_image + PAGE_OFFSET; 315 initrd_end = initrd_start + ramdisk_size; 316 return; 317 } 318 319 relocate_initrd(); 320 321 memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image); 322 } 323 324 #else 325 static void __init early_reserve_initrd(void) 326 { 327 } 328 static void __init reserve_initrd(void) 329 { 330 } 331 #endif /* CONFIG_BLK_DEV_INITRD */ 332 333 static void __init parse_setup_data(void) 334 { 335 struct setup_data *data; 336 u64 pa_data, pa_next; 337 338 pa_data = boot_params.hdr.setup_data; 339 while (pa_data) { 340 u32 data_len, data_type; 341 342 data = early_memremap(pa_data, sizeof(*data)); 343 data_len = data->len + sizeof(struct setup_data); 344 data_type = data->type; 345 pa_next = data->next; 346 early_memunmap(data, sizeof(*data)); 347 348 switch (data_type) { 349 case SETUP_E820_EXT: 350 e820__memory_setup_extended(pa_data, data_len); 351 break; 352 case SETUP_DTB: 353 add_dtb(pa_data); 354 break; 355 case SETUP_EFI: 356 parse_efi_setup(pa_data, data_len); 357 break; 358 default: 359 break; 360 } 361 pa_data = pa_next; 362 } 363 } 364 365 static void __init memblock_x86_reserve_range_setup_data(void) 366 { 367 struct setup_indirect *indirect; 368 struct setup_data *data; 369 u64 pa_data, pa_next; 370 u32 len; 371 372 pa_data = boot_params.hdr.setup_data; 373 while (pa_data) { 374 data = early_memremap(pa_data, sizeof(*data)); 375 if (!data) { 376 pr_warn("setup: failed to memremap setup_data entry\n"); 377 return; 378 } 379 380 len = sizeof(*data); 381 pa_next = data->next; 382 383 memblock_reserve(pa_data, sizeof(*data) + data->len); 384 385 if (data->type == SETUP_INDIRECT) { 386 len += data->len; 387 early_memunmap(data, sizeof(*data)); 388 data = early_memremap(pa_data, len); 389 if (!data) { 390 pr_warn("setup: failed to memremap indirect setup_data\n"); 391 return; 392 } 393 394 indirect = (struct setup_indirect *)data->data; 395 396 if (indirect->type != SETUP_INDIRECT) 397 memblock_reserve(indirect->addr, indirect->len); 398 } 399 400 pa_data = pa_next; 401 early_memunmap(data, len); 402 } 403 } 404 405 /* 406 * --------- Crashkernel reservation ------------------------------ 407 */ 408 409 /* 16M alignment for crash kernel regions */ 410 #define CRASH_ALIGN SZ_16M 411 412 /* 413 * Keep the crash kernel below this limit. 414 * 415 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range 416 * due to mapping restrictions. 417 * 418 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is 419 * the upper limit of system RAM in 4-level paging mode. Since the kdump 420 * jump could be from 5-level paging to 4-level paging, the jump will fail if 421 * the kernel is put above 64 TB, and during the 1st kernel bootup there's 422 * no good way to detect the paging mode of the target kernel which will be 423 * loaded for dumping. 424 */ 425 #ifdef CONFIG_X86_32 426 # define CRASH_ADDR_LOW_MAX SZ_512M 427 # define CRASH_ADDR_HIGH_MAX SZ_512M 428 #else 429 # define CRASH_ADDR_LOW_MAX SZ_4G 430 # define CRASH_ADDR_HIGH_MAX SZ_64T 431 #endif 432 433 static int __init reserve_crashkernel_low(void) 434 { 435 #ifdef CONFIG_X86_64 436 unsigned long long base, low_base = 0, low_size = 0; 437 unsigned long low_mem_limit; 438 int ret; 439 440 low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX); 441 442 /* crashkernel=Y,low */ 443 ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base); 444 if (ret) { 445 /* 446 * two parts from kernel/dma/swiotlb.c: 447 * -swiotlb size: user-specified with swiotlb= or default. 448 * 449 * -swiotlb overflow buffer: now hardcoded to 32k. We round it 450 * to 8M for other buffers that may need to stay low too. Also 451 * make sure we allocate enough extra low memory so that we 452 * don't run out of DMA buffers for 32-bit devices. 453 */ 454 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20); 455 } else { 456 /* passed with crashkernel=0,low ? */ 457 if (!low_size) 458 return 0; 459 } 460 461 low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX); 462 if (!low_base) { 463 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n", 464 (unsigned long)(low_size >> 20)); 465 return -ENOMEM; 466 } 467 468 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n", 469 (unsigned long)(low_size >> 20), 470 (unsigned long)(low_base >> 20), 471 (unsigned long)(low_mem_limit >> 20)); 472 473 crashk_low_res.start = low_base; 474 crashk_low_res.end = low_base + low_size - 1; 475 insert_resource(&iomem_resource, &crashk_low_res); 476 #endif 477 return 0; 478 } 479 480 static void __init reserve_crashkernel(void) 481 { 482 unsigned long long crash_size, crash_base, total_mem; 483 bool high = false; 484 int ret; 485 486 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 487 return; 488 489 total_mem = memblock_phys_mem_size(); 490 491 /* crashkernel=XM */ 492 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); 493 if (ret != 0 || crash_size <= 0) { 494 /* crashkernel=X,high */ 495 ret = parse_crashkernel_high(boot_command_line, total_mem, 496 &crash_size, &crash_base); 497 if (ret != 0 || crash_size <= 0) 498 return; 499 high = true; 500 } 501 502 if (xen_pv_domain()) { 503 pr_info("Ignoring crashkernel for a Xen PV domain\n"); 504 return; 505 } 506 507 /* 0 means: find the address automatically */ 508 if (!crash_base) { 509 /* 510 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory, 511 * crashkernel=x,high reserves memory over 4G, also allocates 512 * 256M extra low memory for DMA buffers and swiotlb. 513 * But the extra memory is not required for all machines. 514 * So try low memory first and fall back to high memory 515 * unless "crashkernel=size[KMG],high" is specified. 516 */ 517 if (!high) 518 crash_base = memblock_phys_alloc_range(crash_size, 519 CRASH_ALIGN, CRASH_ALIGN, 520 CRASH_ADDR_LOW_MAX); 521 if (!crash_base) 522 crash_base = memblock_phys_alloc_range(crash_size, 523 CRASH_ALIGN, CRASH_ALIGN, 524 CRASH_ADDR_HIGH_MAX); 525 if (!crash_base) { 526 pr_info("crashkernel reservation failed - No suitable area found.\n"); 527 return; 528 } 529 } else { 530 unsigned long long start; 531 532 start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base, 533 crash_base + crash_size); 534 if (start != crash_base) { 535 pr_info("crashkernel reservation failed - memory is in use.\n"); 536 return; 537 } 538 } 539 540 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) { 541 memblock_phys_free(crash_base, crash_size); 542 return; 543 } 544 545 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", 546 (unsigned long)(crash_size >> 20), 547 (unsigned long)(crash_base >> 20), 548 (unsigned long)(total_mem >> 20)); 549 550 crashk_res.start = crash_base; 551 crashk_res.end = crash_base + crash_size - 1; 552 insert_resource(&iomem_resource, &crashk_res); 553 } 554 555 static struct resource standard_io_resources[] = { 556 { .name = "dma1", .start = 0x00, .end = 0x1f, 557 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 558 { .name = "pic1", .start = 0x20, .end = 0x21, 559 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 560 { .name = "timer0", .start = 0x40, .end = 0x43, 561 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 562 { .name = "timer1", .start = 0x50, .end = 0x53, 563 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 564 { .name = "keyboard", .start = 0x60, .end = 0x60, 565 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 566 { .name = "keyboard", .start = 0x64, .end = 0x64, 567 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 568 { .name = "dma page reg", .start = 0x80, .end = 0x8f, 569 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 570 { .name = "pic2", .start = 0xa0, .end = 0xa1, 571 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 572 { .name = "dma2", .start = 0xc0, .end = 0xdf, 573 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 574 { .name = "fpu", .start = 0xf0, .end = 0xff, 575 .flags = IORESOURCE_BUSY | IORESOURCE_IO } 576 }; 577 578 void __init reserve_standard_io_resources(void) 579 { 580 int i; 581 582 /* request I/O space for devices used on all i[345]86 PCs */ 583 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) 584 request_resource(&ioport_resource, &standard_io_resources[i]); 585 586 } 587 588 static bool __init snb_gfx_workaround_needed(void) 589 { 590 #ifdef CONFIG_PCI 591 int i; 592 u16 vendor, devid; 593 static const __initconst u16 snb_ids[] = { 594 0x0102, 595 0x0112, 596 0x0122, 597 0x0106, 598 0x0116, 599 0x0126, 600 0x010a, 601 }; 602 603 /* Assume no if something weird is going on with PCI */ 604 if (!early_pci_allowed()) 605 return false; 606 607 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); 608 if (vendor != 0x8086) 609 return false; 610 611 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); 612 for (i = 0; i < ARRAY_SIZE(snb_ids); i++) 613 if (devid == snb_ids[i]) 614 return true; 615 #endif 616 617 return false; 618 } 619 620 /* 621 * Sandy Bridge graphics has trouble with certain ranges, exclude 622 * them from allocation. 623 */ 624 static void __init trim_snb_memory(void) 625 { 626 static const __initconst unsigned long bad_pages[] = { 627 0x20050000, 628 0x20110000, 629 0x20130000, 630 0x20138000, 631 0x40004000, 632 }; 633 int i; 634 635 if (!snb_gfx_workaround_needed()) 636 return; 637 638 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); 639 640 /* 641 * SandyBridge integrated graphics devices have a bug that prevents 642 * them from accessing certain memory ranges, namely anything below 643 * 1M and in the pages listed in bad_pages[] above. 644 * 645 * To avoid these pages being ever accessed by SNB gfx devices reserve 646 * bad_pages that have not already been reserved at boot time. 647 * All memory below the 1 MB mark is anyway reserved later during 648 * setup_arch(), so there is no need to reserve it here. 649 */ 650 651 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { 652 if (memblock_reserve(bad_pages[i], PAGE_SIZE)) 653 printk(KERN_WARNING "failed to reserve 0x%08lx\n", 654 bad_pages[i]); 655 } 656 } 657 658 static void __init trim_bios_range(void) 659 { 660 /* 661 * A special case is the first 4Kb of memory; 662 * This is a BIOS owned area, not kernel ram, but generally 663 * not listed as such in the E820 table. 664 * 665 * This typically reserves additional memory (64KiB by default) 666 * since some BIOSes are known to corrupt low memory. See the 667 * Kconfig help text for X86_RESERVE_LOW. 668 */ 669 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); 670 671 /* 672 * special case: Some BIOSes report the PC BIOS 673 * area (640Kb -> 1Mb) as RAM even though it is not. 674 * take them out. 675 */ 676 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1); 677 678 e820__update_table(e820_table); 679 } 680 681 /* called before trim_bios_range() to spare extra sanitize */ 682 static void __init e820_add_kernel_range(void) 683 { 684 u64 start = __pa_symbol(_text); 685 u64 size = __pa_symbol(_end) - start; 686 687 /* 688 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and 689 * attempt to fix it by adding the range. We may have a confused BIOS, 690 * or the user may have used memmap=exactmap or memmap=xxM$yyM to 691 * exclude kernel range. If we really are running on top non-RAM, 692 * we will crash later anyways. 693 */ 694 if (e820__mapped_all(start, start + size, E820_TYPE_RAM)) 695 return; 696 697 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n"); 698 e820__range_remove(start, size, E820_TYPE_RAM, 0); 699 e820__range_add(start, size, E820_TYPE_RAM); 700 } 701 702 static void __init early_reserve_memory(void) 703 { 704 /* 705 * Reserve the memory occupied by the kernel between _text and 706 * __end_of_kernel_reserve symbols. Any kernel sections after the 707 * __end_of_kernel_reserve symbol must be explicitly reserved with a 708 * separate memblock_reserve() or they will be discarded. 709 */ 710 memblock_reserve(__pa_symbol(_text), 711 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text); 712 713 /* 714 * The first 4Kb of memory is a BIOS owned area, but generally it is 715 * not listed as such in the E820 table. 716 * 717 * Reserve the first 64K of memory since some BIOSes are known to 718 * corrupt low memory. After the real mode trampoline is allocated the 719 * rest of the memory below 640k is reserved. 720 * 721 * In addition, make sure page 0 is always reserved because on 722 * systems with L1TF its contents can be leaked to user processes. 723 */ 724 memblock_reserve(0, SZ_64K); 725 726 early_reserve_initrd(); 727 728 memblock_x86_reserve_range_setup_data(); 729 730 reserve_ibft_region(); 731 reserve_bios_regions(); 732 trim_snb_memory(); 733 } 734 735 /* 736 * Dump out kernel offset information on panic. 737 */ 738 static int 739 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) 740 { 741 if (kaslr_enabled()) { 742 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n", 743 kaslr_offset(), 744 __START_KERNEL, 745 __START_KERNEL_map, 746 MODULES_VADDR-1); 747 } else { 748 pr_emerg("Kernel Offset: disabled\n"); 749 } 750 751 return 0; 752 } 753 754 void x86_configure_nx(void) 755 { 756 if (boot_cpu_has(X86_FEATURE_NX)) 757 __supported_pte_mask |= _PAGE_NX; 758 else 759 __supported_pte_mask &= ~_PAGE_NX; 760 } 761 762 static void __init x86_report_nx(void) 763 { 764 if (!boot_cpu_has(X86_FEATURE_NX)) { 765 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " 766 "missing in CPU!\n"); 767 } else { 768 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 769 printk(KERN_INFO "NX (Execute Disable) protection: active\n"); 770 #else 771 /* 32bit non-PAE kernel, NX cannot be used */ 772 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " 773 "cannot be enabled: non-PAE kernel!\n"); 774 #endif 775 } 776 } 777 778 /* 779 * Determine if we were loaded by an EFI loader. If so, then we have also been 780 * passed the efi memmap, systab, etc., so we should use these data structures 781 * for initialization. Note, the efi init code path is determined by the 782 * global efi_enabled. This allows the same kernel image to be used on existing 783 * systems (with a traditional BIOS) as well as on EFI systems. 784 */ 785 /* 786 * setup_arch - architecture-specific boot-time initializations 787 * 788 * Note: On x86_64, fixmaps are ready for use even before this is called. 789 */ 790 791 void __init setup_arch(char **cmdline_p) 792 { 793 #ifdef CONFIG_X86_32 794 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); 795 796 /* 797 * copy kernel address range established so far and switch 798 * to the proper swapper page table 799 */ 800 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, 801 initial_page_table + KERNEL_PGD_BOUNDARY, 802 KERNEL_PGD_PTRS); 803 804 load_cr3(swapper_pg_dir); 805 /* 806 * Note: Quark X1000 CPUs advertise PGE incorrectly and require 807 * a cr3 based tlb flush, so the following __flush_tlb_all() 808 * will not flush anything because the CPU quirk which clears 809 * X86_FEATURE_PGE has not been invoked yet. Though due to the 810 * load_cr3() above the TLB has been flushed already. The 811 * quirk is invoked before subsequent calls to __flush_tlb_all() 812 * so proper operation is guaranteed. 813 */ 814 __flush_tlb_all(); 815 #else 816 printk(KERN_INFO "Command line: %s\n", boot_command_line); 817 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS; 818 #endif 819 820 /* 821 * If we have OLPC OFW, we might end up relocating the fixmap due to 822 * reserve_top(), so do this before touching the ioremap area. 823 */ 824 olpc_ofw_detect(); 825 826 idt_setup_early_traps(); 827 early_cpu_init(); 828 jump_label_init(); 829 static_call_init(); 830 early_ioremap_init(); 831 832 setup_olpc_ofw_pgd(); 833 834 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); 835 screen_info = boot_params.screen_info; 836 edid_info = boot_params.edid_info; 837 #ifdef CONFIG_X86_32 838 apm_info.bios = boot_params.apm_bios_info; 839 ist_info = boot_params.ist_info; 840 #endif 841 saved_video_mode = boot_params.hdr.vid_mode; 842 bootloader_type = boot_params.hdr.type_of_loader; 843 if ((bootloader_type >> 4) == 0xe) { 844 bootloader_type &= 0xf; 845 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; 846 } 847 bootloader_version = bootloader_type & 0xf; 848 bootloader_version |= boot_params.hdr.ext_loader_ver << 4; 849 850 #ifdef CONFIG_BLK_DEV_RAM 851 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; 852 #endif 853 #ifdef CONFIG_EFI 854 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 855 EFI32_LOADER_SIGNATURE, 4)) { 856 set_bit(EFI_BOOT, &efi.flags); 857 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 858 EFI64_LOADER_SIGNATURE, 4)) { 859 set_bit(EFI_BOOT, &efi.flags); 860 set_bit(EFI_64BIT, &efi.flags); 861 } 862 #endif 863 864 x86_init.oem.arch_setup(); 865 866 /* 867 * Do some memory reservations *before* memory is added to memblock, so 868 * memblock allocations won't overwrite it. 869 * 870 * After this point, everything still needed from the boot loader or 871 * firmware or kernel text should be early reserved or marked not RAM in 872 * e820. All other memory is free game. 873 * 874 * This call needs to happen before e820__memory_setup() which calls the 875 * xen_memory_setup() on Xen dom0 which relies on the fact that those 876 * early reservations have happened already. 877 */ 878 early_reserve_memory(); 879 880 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; 881 e820__memory_setup(); 882 parse_setup_data(); 883 884 copy_edd(); 885 886 if (!boot_params.hdr.root_flags) 887 root_mountflags &= ~MS_RDONLY; 888 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end); 889 890 code_resource.start = __pa_symbol(_text); 891 code_resource.end = __pa_symbol(_etext)-1; 892 rodata_resource.start = __pa_symbol(__start_rodata); 893 rodata_resource.end = __pa_symbol(__end_rodata)-1; 894 data_resource.start = __pa_symbol(_sdata); 895 data_resource.end = __pa_symbol(_edata)-1; 896 bss_resource.start = __pa_symbol(__bss_start); 897 bss_resource.end = __pa_symbol(__bss_stop)-1; 898 899 #ifdef CONFIG_CMDLINE_BOOL 900 #ifdef CONFIG_CMDLINE_OVERRIDE 901 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 902 #else 903 if (builtin_cmdline[0]) { 904 /* append boot loader cmdline to builtin */ 905 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); 906 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); 907 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 908 } 909 #endif 910 #endif 911 912 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 913 *cmdline_p = command_line; 914 915 /* 916 * x86_configure_nx() is called before parse_early_param() to detect 917 * whether hardware doesn't support NX (so that the early EHCI debug 918 * console setup can safely call set_fixmap()). 919 */ 920 x86_configure_nx(); 921 922 parse_early_param(); 923 924 if (efi_enabled(EFI_BOOT)) 925 efi_memblock_x86_reserve_range(); 926 927 #ifdef CONFIG_MEMORY_HOTPLUG 928 /* 929 * Memory used by the kernel cannot be hot-removed because Linux 930 * cannot migrate the kernel pages. When memory hotplug is 931 * enabled, we should prevent memblock from allocating memory 932 * for the kernel. 933 * 934 * ACPI SRAT records all hotpluggable memory ranges. But before 935 * SRAT is parsed, we don't know about it. 936 * 937 * The kernel image is loaded into memory at very early time. We 938 * cannot prevent this anyway. So on NUMA system, we set any 939 * node the kernel resides in as un-hotpluggable. 940 * 941 * Since on modern servers, one node could have double-digit 942 * gigabytes memory, we can assume the memory around the kernel 943 * image is also un-hotpluggable. So before SRAT is parsed, just 944 * allocate memory near the kernel image to try the best to keep 945 * the kernel away from hotpluggable memory. 946 */ 947 if (movable_node_is_enabled()) 948 memblock_set_bottom_up(true); 949 #endif 950 951 x86_report_nx(); 952 953 if (acpi_mps_check()) { 954 #ifdef CONFIG_X86_LOCAL_APIC 955 disable_apic = 1; 956 #endif 957 setup_clear_cpu_cap(X86_FEATURE_APIC); 958 } 959 960 e820__reserve_setup_data(); 961 e820__finish_early_params(); 962 963 if (efi_enabled(EFI_BOOT)) 964 efi_init(); 965 966 dmi_setup(); 967 968 /* 969 * VMware detection requires dmi to be available, so this 970 * needs to be done after dmi_setup(), for the boot CPU. 971 */ 972 init_hypervisor_platform(); 973 974 tsc_early_init(); 975 x86_init.resources.probe_roms(); 976 977 /* after parse_early_param, so could debug it */ 978 insert_resource(&iomem_resource, &code_resource); 979 insert_resource(&iomem_resource, &rodata_resource); 980 insert_resource(&iomem_resource, &data_resource); 981 insert_resource(&iomem_resource, &bss_resource); 982 983 e820_add_kernel_range(); 984 trim_bios_range(); 985 #ifdef CONFIG_X86_32 986 if (ppro_with_ram_bug()) { 987 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM, 988 E820_TYPE_RESERVED); 989 e820__update_table(e820_table); 990 printk(KERN_INFO "fixed physical RAM map:\n"); 991 e820__print_table("bad_ppro"); 992 } 993 #else 994 early_gart_iommu_check(); 995 #endif 996 997 /* 998 * partially used pages are not usable - thus 999 * we are rounding upwards: 1000 */ 1001 max_pfn = e820__end_of_ram_pfn(); 1002 1003 /* update e820 for memory not covered by WB MTRRs */ 1004 if (IS_ENABLED(CONFIG_MTRR)) 1005 mtrr_bp_init(); 1006 else 1007 pat_disable("PAT support disabled because CONFIG_MTRR is disabled in the kernel."); 1008 1009 if (mtrr_trim_uncached_memory(max_pfn)) 1010 max_pfn = e820__end_of_ram_pfn(); 1011 1012 max_possible_pfn = max_pfn; 1013 1014 /* 1015 * This call is required when the CPU does not support PAT. If 1016 * mtrr_bp_init() invoked it already via pat_init() the call has no 1017 * effect. 1018 */ 1019 init_cache_modes(); 1020 1021 /* 1022 * Define random base addresses for memory sections after max_pfn is 1023 * defined and before each memory section base is used. 1024 */ 1025 kernel_randomize_memory(); 1026 1027 #ifdef CONFIG_X86_32 1028 /* max_low_pfn get updated here */ 1029 find_low_pfn_range(); 1030 #else 1031 check_x2apic(); 1032 1033 /* How many end-of-memory variables you have, grandma! */ 1034 /* need this before calling reserve_initrd */ 1035 if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) 1036 max_low_pfn = e820__end_of_low_ram_pfn(); 1037 else 1038 max_low_pfn = max_pfn; 1039 1040 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 1041 #endif 1042 1043 /* 1044 * Find and reserve possible boot-time SMP configuration: 1045 */ 1046 find_smp_config(); 1047 1048 early_alloc_pgt_buf(); 1049 1050 /* 1051 * Need to conclude brk, before e820__memblock_setup() 1052 * it could use memblock_find_in_range, could overlap with 1053 * brk area. 1054 */ 1055 reserve_brk(); 1056 1057 cleanup_highmap(); 1058 1059 memblock_set_current_limit(ISA_END_ADDRESS); 1060 e820__memblock_setup(); 1061 1062 /* 1063 * Needs to run after memblock setup because it needs the physical 1064 * memory size. 1065 */ 1066 sev_setup_arch(); 1067 1068 efi_fake_memmap(); 1069 efi_find_mirror(); 1070 efi_esrt_init(); 1071 efi_mokvar_table_init(); 1072 1073 /* 1074 * The EFI specification says that boot service code won't be 1075 * called after ExitBootServices(). This is, in fact, a lie. 1076 */ 1077 efi_reserve_boot_services(); 1078 1079 /* preallocate 4k for mptable mpc */ 1080 e820__memblock_alloc_reserved_mpc_new(); 1081 1082 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION 1083 setup_bios_corruption_check(); 1084 #endif 1085 1086 #ifdef CONFIG_X86_32 1087 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", 1088 (max_pfn_mapped<<PAGE_SHIFT) - 1); 1089 #endif 1090 1091 /* 1092 * Find free memory for the real mode trampoline and place it there. If 1093 * there is not enough free memory under 1M, on EFI-enabled systems 1094 * there will be additional attempt to reclaim the memory for the real 1095 * mode trampoline at efi_free_boot_services(). 1096 * 1097 * Unconditionally reserve the entire first 1M of RAM because BIOSes 1098 * are known to corrupt low memory and several hundred kilobytes are not 1099 * worth complex detection what memory gets clobbered. Windows does the 1100 * same thing for very similar reasons. 1101 * 1102 * Moreover, on machines with SandyBridge graphics or in setups that use 1103 * crashkernel the entire 1M is reserved anyway. 1104 */ 1105 reserve_real_mode(); 1106 1107 init_mem_mapping(); 1108 1109 idt_setup_early_pf(); 1110 1111 /* 1112 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features) 1113 * with the current CR4 value. This may not be necessary, but 1114 * auditing all the early-boot CR4 manipulation would be needed to 1115 * rule it out. 1116 * 1117 * Mask off features that don't work outside long mode (just 1118 * PCIDE for now). 1119 */ 1120 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE; 1121 1122 memblock_set_current_limit(get_max_mapped()); 1123 1124 /* 1125 * NOTE: On x86-32, only from this point on, fixmaps are ready for use. 1126 */ 1127 1128 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT 1129 if (init_ohci1394_dma_early) 1130 init_ohci1394_dma_on_all_controllers(); 1131 #endif 1132 /* Allocate bigger log buffer */ 1133 setup_log_buf(1); 1134 1135 if (efi_enabled(EFI_BOOT)) { 1136 switch (boot_params.secure_boot) { 1137 case efi_secureboot_mode_disabled: 1138 pr_info("Secure boot disabled\n"); 1139 break; 1140 case efi_secureboot_mode_enabled: 1141 pr_info("Secure boot enabled\n"); 1142 break; 1143 default: 1144 pr_info("Secure boot could not be determined\n"); 1145 break; 1146 } 1147 } 1148 1149 reserve_initrd(); 1150 1151 acpi_table_upgrade(); 1152 /* Look for ACPI tables and reserve memory occupied by them. */ 1153 acpi_boot_table_init(); 1154 1155 vsmp_init(); 1156 1157 io_delay_init(); 1158 1159 early_platform_quirks(); 1160 1161 early_acpi_boot_init(); 1162 1163 initmem_init(); 1164 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT); 1165 1166 if (boot_cpu_has(X86_FEATURE_GBPAGES)) 1167 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 1168 1169 /* 1170 * Reserve memory for crash kernel after SRAT is parsed so that it 1171 * won't consume hotpluggable memory. 1172 */ 1173 reserve_crashkernel(); 1174 1175 memblock_find_dma_reserve(); 1176 1177 if (!early_xdbc_setup_hardware()) 1178 early_xdbc_register_console(); 1179 1180 x86_init.paging.pagetable_init(); 1181 1182 kasan_init(); 1183 1184 /* 1185 * Sync back kernel address range. 1186 * 1187 * FIXME: Can the later sync in setup_cpu_entry_areas() replace 1188 * this call? 1189 */ 1190 sync_initial_page_table(); 1191 1192 tboot_probe(); 1193 1194 map_vsyscall(); 1195 1196 generic_apic_probe(); 1197 1198 early_quirks(); 1199 1200 /* 1201 * Read APIC and some other early information from ACPI tables. 1202 */ 1203 acpi_boot_init(); 1204 x86_dtb_init(); 1205 1206 /* 1207 * get boot-time SMP configuration: 1208 */ 1209 get_smp_config(); 1210 1211 /* 1212 * Systems w/o ACPI and mptables might not have it mapped the local 1213 * APIC yet, but prefill_possible_map() might need to access it. 1214 */ 1215 init_apic_mappings(); 1216 1217 prefill_possible_map(); 1218 1219 init_cpu_to_node(); 1220 init_gi_nodes(); 1221 1222 io_apic_init_mappings(); 1223 1224 x86_init.hyper.guest_late_init(); 1225 1226 e820__reserve_resources(); 1227 e820__register_nosave_regions(max_pfn); 1228 1229 x86_init.resources.reserve_resources(); 1230 1231 e820__setup_pci_gap(); 1232 1233 #ifdef CONFIG_VT 1234 #if defined(CONFIG_VGA_CONSOLE) 1235 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) 1236 conswitchp = &vga_con; 1237 #endif 1238 #endif 1239 x86_init.oem.banner(); 1240 1241 x86_init.timers.wallclock_init(); 1242 1243 /* 1244 * This needs to run before setup_local_APIC() which soft-disables the 1245 * local APIC temporarily and that masks the thermal LVT interrupt, 1246 * leading to softlockups on machines which have configured SMI 1247 * interrupt delivery. 1248 */ 1249 therm_lvt_init(); 1250 1251 mcheck_init(); 1252 1253 register_refined_jiffies(CLOCK_TICK_RATE); 1254 1255 #ifdef CONFIG_EFI 1256 if (efi_enabled(EFI_BOOT)) 1257 efi_apply_memmap_quirks(); 1258 #endif 1259 1260 unwind_init(); 1261 } 1262 1263 #ifdef CONFIG_X86_32 1264 1265 static struct resource video_ram_resource = { 1266 .name = "Video RAM area", 1267 .start = 0xa0000, 1268 .end = 0xbffff, 1269 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 1270 }; 1271 1272 void __init i386_reserve_resources(void) 1273 { 1274 request_resource(&iomem_resource, &video_ram_resource); 1275 reserve_standard_io_resources(); 1276 } 1277 1278 #endif /* CONFIG_X86_32 */ 1279 1280 static struct notifier_block kernel_offset_notifier = { 1281 .notifier_call = dump_kernel_offset 1282 }; 1283 1284 static int __init register_kernel_offset_dumper(void) 1285 { 1286 atomic_notifier_chain_register(&panic_notifier_list, 1287 &kernel_offset_notifier); 1288 return 0; 1289 } 1290 __initcall(register_kernel_offset_dumper); 1291