xref: /openbmc/linux/arch/x86/kernel/setup.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  * This file contains the setup_arch() code, which handles the architecture-dependent
6  * parts of early kernel initialization.
7  */
8 #include <linux/acpi.h>
9 #include <linux/console.h>
10 #include <linux/crash_dump.h>
11 #include <linux/dma-map-ops.h>
12 #include <linux/dmi.h>
13 #include <linux/efi.h>
14 #include <linux/ima.h>
15 #include <linux/init_ohci1394_dma.h>
16 #include <linux/initrd.h>
17 #include <linux/iscsi_ibft.h>
18 #include <linux/memblock.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/pci.h>
21 #include <linux/root_dev.h>
22 #include <linux/hugetlb.h>
23 #include <linux/tboot.h>
24 #include <linux/usb/xhci-dbgp.h>
25 #include <linux/static_call.h>
26 #include <linux/swiotlb.h>
27 #include <linux/random.h>
28 
29 #include <uapi/linux/mount.h>
30 
31 #include <xen/xen.h>
32 
33 #include <asm/apic.h>
34 #include <asm/efi.h>
35 #include <asm/numa.h>
36 #include <asm/bios_ebda.h>
37 #include <asm/bugs.h>
38 #include <asm/cacheinfo.h>
39 #include <asm/cpu.h>
40 #include <asm/efi.h>
41 #include <asm/gart.h>
42 #include <asm/hypervisor.h>
43 #include <asm/io_apic.h>
44 #include <asm/kasan.h>
45 #include <asm/kaslr.h>
46 #include <asm/mce.h>
47 #include <asm/memtype.h>
48 #include <asm/mtrr.h>
49 #include <asm/realmode.h>
50 #include <asm/olpc_ofw.h>
51 #include <asm/pci-direct.h>
52 #include <asm/prom.h>
53 #include <asm/proto.h>
54 #include <asm/thermal.h>
55 #include <asm/unwind.h>
56 #include <asm/vsyscall.h>
57 #include <linux/vmalloc.h>
58 
59 /*
60  * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
61  * max_pfn_mapped:     highest directly mapped pfn > 4 GB
62  *
63  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
64  * represented by pfn_mapped[].
65  */
66 unsigned long max_low_pfn_mapped;
67 unsigned long max_pfn_mapped;
68 
69 #ifdef CONFIG_DMI
70 RESERVE_BRK(dmi_alloc, 65536);
71 #endif
72 
73 
74 unsigned long _brk_start = (unsigned long)__brk_base;
75 unsigned long _brk_end   = (unsigned long)__brk_base;
76 
77 struct boot_params boot_params;
78 
79 /*
80  * These are the four main kernel memory regions, we put them into
81  * the resource tree so that kdump tools and other debugging tools
82  * recover it:
83  */
84 
85 static struct resource rodata_resource = {
86 	.name	= "Kernel rodata",
87 	.start	= 0,
88 	.end	= 0,
89 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
90 };
91 
92 static struct resource data_resource = {
93 	.name	= "Kernel data",
94 	.start	= 0,
95 	.end	= 0,
96 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
97 };
98 
99 static struct resource code_resource = {
100 	.name	= "Kernel code",
101 	.start	= 0,
102 	.end	= 0,
103 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
104 };
105 
106 static struct resource bss_resource = {
107 	.name	= "Kernel bss",
108 	.start	= 0,
109 	.end	= 0,
110 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
111 };
112 
113 
114 #ifdef CONFIG_X86_32
115 /* CPU data as detected by the assembly code in head_32.S */
116 struct cpuinfo_x86 new_cpu_data;
117 unsigned int def_to_bigsmp;
118 
119 struct apm_info apm_info;
120 EXPORT_SYMBOL(apm_info);
121 
122 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
123 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
124 struct ist_info ist_info;
125 EXPORT_SYMBOL(ist_info);
126 #else
127 struct ist_info ist_info;
128 #endif
129 
130 #endif
131 
132 struct cpuinfo_x86 boot_cpu_data __read_mostly;
133 EXPORT_SYMBOL(boot_cpu_data);
134 
135 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
136 __visible unsigned long mmu_cr4_features __ro_after_init;
137 #else
138 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
139 #endif
140 
141 #ifdef CONFIG_IMA
142 static phys_addr_t ima_kexec_buffer_phys;
143 static size_t ima_kexec_buffer_size;
144 #endif
145 
146 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
147 int bootloader_type, bootloader_version;
148 
149 /*
150  * Setup options
151  */
152 struct screen_info screen_info;
153 EXPORT_SYMBOL(screen_info);
154 struct edid_info edid_info;
155 EXPORT_SYMBOL_GPL(edid_info);
156 
157 extern int root_mountflags;
158 
159 unsigned long saved_video_mode;
160 
161 #define RAMDISK_IMAGE_START_MASK	0x07FF
162 #define RAMDISK_PROMPT_FLAG		0x8000
163 #define RAMDISK_LOAD_FLAG		0x4000
164 
165 static char __initdata command_line[COMMAND_LINE_SIZE];
166 #ifdef CONFIG_CMDLINE_BOOL
167 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
168 #endif
169 
170 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
171 struct edd edd;
172 #ifdef CONFIG_EDD_MODULE
173 EXPORT_SYMBOL(edd);
174 #endif
175 /**
176  * copy_edd() - Copy the BIOS EDD information
177  *              from boot_params into a safe place.
178  *
179  */
180 static inline void __init copy_edd(void)
181 {
182      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
183 	    sizeof(edd.mbr_signature));
184      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
185      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
186      edd.edd_info_nr = boot_params.eddbuf_entries;
187 }
188 #else
189 static inline void __init copy_edd(void)
190 {
191 }
192 #endif
193 
194 void * __init extend_brk(size_t size, size_t align)
195 {
196 	size_t mask = align - 1;
197 	void *ret;
198 
199 	BUG_ON(_brk_start == 0);
200 	BUG_ON(align & mask);
201 
202 	_brk_end = (_brk_end + mask) & ~mask;
203 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
204 
205 	ret = (void *)_brk_end;
206 	_brk_end += size;
207 
208 	memset(ret, 0, size);
209 
210 	return ret;
211 }
212 
213 #ifdef CONFIG_X86_32
214 static void __init cleanup_highmap(void)
215 {
216 }
217 #endif
218 
219 static void __init reserve_brk(void)
220 {
221 	if (_brk_end > _brk_start)
222 		memblock_reserve(__pa_symbol(_brk_start),
223 				 _brk_end - _brk_start);
224 
225 	/* Mark brk area as locked down and no longer taking any
226 	   new allocations */
227 	_brk_start = 0;
228 }
229 
230 u64 relocated_ramdisk;
231 
232 #ifdef CONFIG_BLK_DEV_INITRD
233 
234 static u64 __init get_ramdisk_image(void)
235 {
236 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
237 
238 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
239 
240 	if (ramdisk_image == 0)
241 		ramdisk_image = phys_initrd_start;
242 
243 	return ramdisk_image;
244 }
245 static u64 __init get_ramdisk_size(void)
246 {
247 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
248 
249 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
250 
251 	if (ramdisk_size == 0)
252 		ramdisk_size = phys_initrd_size;
253 
254 	return ramdisk_size;
255 }
256 
257 static void __init relocate_initrd(void)
258 {
259 	/* Assume only end is not page aligned */
260 	u64 ramdisk_image = get_ramdisk_image();
261 	u64 ramdisk_size  = get_ramdisk_size();
262 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
263 
264 	/* We need to move the initrd down into directly mapped mem */
265 	relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
266 						      PFN_PHYS(max_pfn_mapped));
267 	if (!relocated_ramdisk)
268 		panic("Cannot find place for new RAMDISK of size %lld\n",
269 		      ramdisk_size);
270 
271 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
272 	initrd_end   = initrd_start + ramdisk_size;
273 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
274 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
275 
276 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
277 
278 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
279 		" [mem %#010llx-%#010llx]\n",
280 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
281 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
282 }
283 
284 static void __init early_reserve_initrd(void)
285 {
286 	/* Assume only end is not page aligned */
287 	u64 ramdisk_image = get_ramdisk_image();
288 	u64 ramdisk_size  = get_ramdisk_size();
289 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
290 
291 	if (!boot_params.hdr.type_of_loader ||
292 	    !ramdisk_image || !ramdisk_size)
293 		return;		/* No initrd provided by bootloader */
294 
295 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
296 }
297 
298 static void __init reserve_initrd(void)
299 {
300 	/* Assume only end is not page aligned */
301 	u64 ramdisk_image = get_ramdisk_image();
302 	u64 ramdisk_size  = get_ramdisk_size();
303 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
304 
305 	if (!boot_params.hdr.type_of_loader ||
306 	    !ramdisk_image || !ramdisk_size)
307 		return;		/* No initrd provided by bootloader */
308 
309 	initrd_start = 0;
310 
311 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
312 			ramdisk_end - 1);
313 
314 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
315 				PFN_DOWN(ramdisk_end))) {
316 		/* All are mapped, easy case */
317 		initrd_start = ramdisk_image + PAGE_OFFSET;
318 		initrd_end = initrd_start + ramdisk_size;
319 		return;
320 	}
321 
322 	relocate_initrd();
323 
324 	memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
325 }
326 
327 #else
328 static void __init early_reserve_initrd(void)
329 {
330 }
331 static void __init reserve_initrd(void)
332 {
333 }
334 #endif /* CONFIG_BLK_DEV_INITRD */
335 
336 static void __init add_early_ima_buffer(u64 phys_addr)
337 {
338 #ifdef CONFIG_IMA
339 	struct ima_setup_data *data;
340 
341 	data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
342 	if (!data) {
343 		pr_warn("setup: failed to memremap ima_setup_data entry\n");
344 		return;
345 	}
346 
347 	if (data->size) {
348 		memblock_reserve(data->addr, data->size);
349 		ima_kexec_buffer_phys = data->addr;
350 		ima_kexec_buffer_size = data->size;
351 	}
352 
353 	early_memunmap(data, sizeof(*data));
354 #else
355 	pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
356 #endif
357 }
358 
359 #if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
360 int __init ima_free_kexec_buffer(void)
361 {
362 	int rc;
363 
364 	if (!ima_kexec_buffer_size)
365 		return -ENOENT;
366 
367 	rc = memblock_phys_free(ima_kexec_buffer_phys,
368 				ima_kexec_buffer_size);
369 	if (rc)
370 		return rc;
371 
372 	ima_kexec_buffer_phys = 0;
373 	ima_kexec_buffer_size = 0;
374 
375 	return 0;
376 }
377 
378 int __init ima_get_kexec_buffer(void **addr, size_t *size)
379 {
380 	if (!ima_kexec_buffer_size)
381 		return -ENOENT;
382 
383 	*addr = __va(ima_kexec_buffer_phys);
384 	*size = ima_kexec_buffer_size;
385 
386 	return 0;
387 }
388 #endif
389 
390 static void __init parse_setup_data(void)
391 {
392 	struct setup_data *data;
393 	u64 pa_data, pa_next;
394 
395 	pa_data = boot_params.hdr.setup_data;
396 	while (pa_data) {
397 		u32 data_len, data_type;
398 
399 		data = early_memremap(pa_data, sizeof(*data));
400 		data_len = data->len + sizeof(struct setup_data);
401 		data_type = data->type;
402 		pa_next = data->next;
403 		early_memunmap(data, sizeof(*data));
404 
405 		switch (data_type) {
406 		case SETUP_E820_EXT:
407 			e820__memory_setup_extended(pa_data, data_len);
408 			break;
409 		case SETUP_DTB:
410 			add_dtb(pa_data);
411 			break;
412 		case SETUP_EFI:
413 			parse_efi_setup(pa_data, data_len);
414 			break;
415 		case SETUP_IMA:
416 			add_early_ima_buffer(pa_data);
417 			break;
418 		case SETUP_RNG_SEED:
419 			data = early_memremap(pa_data, data_len);
420 			add_bootloader_randomness(data->data, data->len);
421 			/* Zero seed for forward secrecy. */
422 			memzero_explicit(data->data, data->len);
423 			/* Zero length in case we find ourselves back here by accident. */
424 			memzero_explicit(&data->len, sizeof(data->len));
425 			early_memunmap(data, data_len);
426 			break;
427 		default:
428 			break;
429 		}
430 		pa_data = pa_next;
431 	}
432 }
433 
434 static void __init memblock_x86_reserve_range_setup_data(void)
435 {
436 	struct setup_indirect *indirect;
437 	struct setup_data *data;
438 	u64 pa_data, pa_next;
439 	u32 len;
440 
441 	pa_data = boot_params.hdr.setup_data;
442 	while (pa_data) {
443 		data = early_memremap(pa_data, sizeof(*data));
444 		if (!data) {
445 			pr_warn("setup: failed to memremap setup_data entry\n");
446 			return;
447 		}
448 
449 		len = sizeof(*data);
450 		pa_next = data->next;
451 
452 		memblock_reserve(pa_data, sizeof(*data) + data->len);
453 
454 		if (data->type == SETUP_INDIRECT) {
455 			len += data->len;
456 			early_memunmap(data, sizeof(*data));
457 			data = early_memremap(pa_data, len);
458 			if (!data) {
459 				pr_warn("setup: failed to memremap indirect setup_data\n");
460 				return;
461 			}
462 
463 			indirect = (struct setup_indirect *)data->data;
464 
465 			if (indirect->type != SETUP_INDIRECT)
466 				memblock_reserve(indirect->addr, indirect->len);
467 		}
468 
469 		pa_data = pa_next;
470 		early_memunmap(data, len);
471 	}
472 }
473 
474 /*
475  * --------- Crashkernel reservation ------------------------------
476  */
477 
478 /* 16M alignment for crash kernel regions */
479 #define CRASH_ALIGN		SZ_16M
480 
481 /*
482  * Keep the crash kernel below this limit.
483  *
484  * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
485  * due to mapping restrictions.
486  *
487  * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
488  * the upper limit of system RAM in 4-level paging mode. Since the kdump
489  * jump could be from 5-level paging to 4-level paging, the jump will fail if
490  * the kernel is put above 64 TB, and during the 1st kernel bootup there's
491  * no good way to detect the paging mode of the target kernel which will be
492  * loaded for dumping.
493  */
494 #ifdef CONFIG_X86_32
495 # define CRASH_ADDR_LOW_MAX	SZ_512M
496 # define CRASH_ADDR_HIGH_MAX	SZ_512M
497 #else
498 # define CRASH_ADDR_LOW_MAX	SZ_4G
499 # define CRASH_ADDR_HIGH_MAX	SZ_64T
500 #endif
501 
502 static int __init reserve_crashkernel_low(void)
503 {
504 #ifdef CONFIG_X86_64
505 	unsigned long long base, low_base = 0, low_size = 0;
506 	unsigned long low_mem_limit;
507 	int ret;
508 
509 	low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
510 
511 	/* crashkernel=Y,low */
512 	ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
513 	if (ret) {
514 		/*
515 		 * two parts from kernel/dma/swiotlb.c:
516 		 * -swiotlb size: user-specified with swiotlb= or default.
517 		 *
518 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
519 		 * to 8M for other buffers that may need to stay low too. Also
520 		 * make sure we allocate enough extra low memory so that we
521 		 * don't run out of DMA buffers for 32-bit devices.
522 		 */
523 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
524 	} else {
525 		/* passed with crashkernel=0,low ? */
526 		if (!low_size)
527 			return 0;
528 	}
529 
530 	low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
531 	if (!low_base) {
532 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
533 		       (unsigned long)(low_size >> 20));
534 		return -ENOMEM;
535 	}
536 
537 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
538 		(unsigned long)(low_size >> 20),
539 		(unsigned long)(low_base >> 20),
540 		(unsigned long)(low_mem_limit >> 20));
541 
542 	crashk_low_res.start = low_base;
543 	crashk_low_res.end   = low_base + low_size - 1;
544 	insert_resource(&iomem_resource, &crashk_low_res);
545 #endif
546 	return 0;
547 }
548 
549 static void __init reserve_crashkernel(void)
550 {
551 	unsigned long long crash_size, crash_base, total_mem;
552 	bool high = false;
553 	int ret;
554 
555 	if (!IS_ENABLED(CONFIG_KEXEC_CORE))
556 		return;
557 
558 	total_mem = memblock_phys_mem_size();
559 
560 	/* crashkernel=XM */
561 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
562 	if (ret != 0 || crash_size <= 0) {
563 		/* crashkernel=X,high */
564 		ret = parse_crashkernel_high(boot_command_line, total_mem,
565 					     &crash_size, &crash_base);
566 		if (ret != 0 || crash_size <= 0)
567 			return;
568 		high = true;
569 	}
570 
571 	if (xen_pv_domain()) {
572 		pr_info("Ignoring crashkernel for a Xen PV domain\n");
573 		return;
574 	}
575 
576 	/* 0 means: find the address automatically */
577 	if (!crash_base) {
578 		/*
579 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
580 		 * crashkernel=x,high reserves memory over 4G, also allocates
581 		 * 256M extra low memory for DMA buffers and swiotlb.
582 		 * But the extra memory is not required for all machines.
583 		 * So try low memory first and fall back to high memory
584 		 * unless "crashkernel=size[KMG],high" is specified.
585 		 */
586 		if (!high)
587 			crash_base = memblock_phys_alloc_range(crash_size,
588 						CRASH_ALIGN, CRASH_ALIGN,
589 						CRASH_ADDR_LOW_MAX);
590 		if (!crash_base)
591 			crash_base = memblock_phys_alloc_range(crash_size,
592 						CRASH_ALIGN, CRASH_ALIGN,
593 						CRASH_ADDR_HIGH_MAX);
594 		if (!crash_base) {
595 			pr_info("crashkernel reservation failed - No suitable area found.\n");
596 			return;
597 		}
598 	} else {
599 		unsigned long long start;
600 
601 		start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
602 						  crash_base + crash_size);
603 		if (start != crash_base) {
604 			pr_info("crashkernel reservation failed - memory is in use.\n");
605 			return;
606 		}
607 	}
608 
609 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
610 		memblock_phys_free(crash_base, crash_size);
611 		return;
612 	}
613 
614 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
615 		(unsigned long)(crash_size >> 20),
616 		(unsigned long)(crash_base >> 20),
617 		(unsigned long)(total_mem >> 20));
618 
619 	crashk_res.start = crash_base;
620 	crashk_res.end   = crash_base + crash_size - 1;
621 	insert_resource(&iomem_resource, &crashk_res);
622 }
623 
624 static struct resource standard_io_resources[] = {
625 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
626 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
627 	{ .name = "pic1", .start = 0x20, .end = 0x21,
628 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
629 	{ .name = "timer0", .start = 0x40, .end = 0x43,
630 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
631 	{ .name = "timer1", .start = 0x50, .end = 0x53,
632 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
633 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
634 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
635 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
636 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
637 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
638 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
639 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
640 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
641 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
642 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
643 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
644 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
645 };
646 
647 void __init reserve_standard_io_resources(void)
648 {
649 	int i;
650 
651 	/* request I/O space for devices used on all i[345]86 PCs */
652 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
653 		request_resource(&ioport_resource, &standard_io_resources[i]);
654 
655 }
656 
657 static bool __init snb_gfx_workaround_needed(void)
658 {
659 #ifdef CONFIG_PCI
660 	int i;
661 	u16 vendor, devid;
662 	static const __initconst u16 snb_ids[] = {
663 		0x0102,
664 		0x0112,
665 		0x0122,
666 		0x0106,
667 		0x0116,
668 		0x0126,
669 		0x010a,
670 	};
671 
672 	/* Assume no if something weird is going on with PCI */
673 	if (!early_pci_allowed())
674 		return false;
675 
676 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
677 	if (vendor != 0x8086)
678 		return false;
679 
680 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
681 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
682 		if (devid == snb_ids[i])
683 			return true;
684 #endif
685 
686 	return false;
687 }
688 
689 /*
690  * Sandy Bridge graphics has trouble with certain ranges, exclude
691  * them from allocation.
692  */
693 static void __init trim_snb_memory(void)
694 {
695 	static const __initconst unsigned long bad_pages[] = {
696 		0x20050000,
697 		0x20110000,
698 		0x20130000,
699 		0x20138000,
700 		0x40004000,
701 	};
702 	int i;
703 
704 	if (!snb_gfx_workaround_needed())
705 		return;
706 
707 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
708 
709 	/*
710 	 * SandyBridge integrated graphics devices have a bug that prevents
711 	 * them from accessing certain memory ranges, namely anything below
712 	 * 1M and in the pages listed in bad_pages[] above.
713 	 *
714 	 * To avoid these pages being ever accessed by SNB gfx devices reserve
715 	 * bad_pages that have not already been reserved at boot time.
716 	 * All memory below the 1 MB mark is anyway reserved later during
717 	 * setup_arch(), so there is no need to reserve it here.
718 	 */
719 
720 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
721 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
722 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
723 			       bad_pages[i]);
724 	}
725 }
726 
727 static void __init trim_bios_range(void)
728 {
729 	/*
730 	 * A special case is the first 4Kb of memory;
731 	 * This is a BIOS owned area, not kernel ram, but generally
732 	 * not listed as such in the E820 table.
733 	 *
734 	 * This typically reserves additional memory (64KiB by default)
735 	 * since some BIOSes are known to corrupt low memory.  See the
736 	 * Kconfig help text for X86_RESERVE_LOW.
737 	 */
738 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
739 
740 	/*
741 	 * special case: Some BIOSes report the PC BIOS
742 	 * area (640Kb -> 1Mb) as RAM even though it is not.
743 	 * take them out.
744 	 */
745 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
746 
747 	e820__update_table(e820_table);
748 }
749 
750 /* called before trim_bios_range() to spare extra sanitize */
751 static void __init e820_add_kernel_range(void)
752 {
753 	u64 start = __pa_symbol(_text);
754 	u64 size = __pa_symbol(_end) - start;
755 
756 	/*
757 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
758 	 * attempt to fix it by adding the range. We may have a confused BIOS,
759 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
760 	 * exclude kernel range. If we really are running on top non-RAM,
761 	 * we will crash later anyways.
762 	 */
763 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
764 		return;
765 
766 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
767 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
768 	e820__range_add(start, size, E820_TYPE_RAM);
769 }
770 
771 static void __init early_reserve_memory(void)
772 {
773 	/*
774 	 * Reserve the memory occupied by the kernel between _text and
775 	 * __end_of_kernel_reserve symbols. Any kernel sections after the
776 	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
777 	 * separate memblock_reserve() or they will be discarded.
778 	 */
779 	memblock_reserve(__pa_symbol(_text),
780 			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
781 
782 	/*
783 	 * The first 4Kb of memory is a BIOS owned area, but generally it is
784 	 * not listed as such in the E820 table.
785 	 *
786 	 * Reserve the first 64K of memory since some BIOSes are known to
787 	 * corrupt low memory. After the real mode trampoline is allocated the
788 	 * rest of the memory below 640k is reserved.
789 	 *
790 	 * In addition, make sure page 0 is always reserved because on
791 	 * systems with L1TF its contents can be leaked to user processes.
792 	 */
793 	memblock_reserve(0, SZ_64K);
794 
795 	early_reserve_initrd();
796 
797 	memblock_x86_reserve_range_setup_data();
798 
799 	reserve_bios_regions();
800 	trim_snb_memory();
801 }
802 
803 /*
804  * Dump out kernel offset information on panic.
805  */
806 static int
807 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
808 {
809 	if (kaslr_enabled()) {
810 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
811 			 kaslr_offset(),
812 			 __START_KERNEL,
813 			 __START_KERNEL_map,
814 			 MODULES_VADDR-1);
815 	} else {
816 		pr_emerg("Kernel Offset: disabled\n");
817 	}
818 
819 	return 0;
820 }
821 
822 void x86_configure_nx(void)
823 {
824 	if (boot_cpu_has(X86_FEATURE_NX))
825 		__supported_pte_mask |= _PAGE_NX;
826 	else
827 		__supported_pte_mask &= ~_PAGE_NX;
828 }
829 
830 static void __init x86_report_nx(void)
831 {
832 	if (!boot_cpu_has(X86_FEATURE_NX)) {
833 		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
834 		       "missing in CPU!\n");
835 	} else {
836 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
837 		printk(KERN_INFO "NX (Execute Disable) protection: active\n");
838 #else
839 		/* 32bit non-PAE kernel, NX cannot be used */
840 		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
841 		       "cannot be enabled: non-PAE kernel!\n");
842 #endif
843 	}
844 }
845 
846 /*
847  * Determine if we were loaded by an EFI loader.  If so, then we have also been
848  * passed the efi memmap, systab, etc., so we should use these data structures
849  * for initialization.  Note, the efi init code path is determined by the
850  * global efi_enabled. This allows the same kernel image to be used on existing
851  * systems (with a traditional BIOS) as well as on EFI systems.
852  */
853 /*
854  * setup_arch - architecture-specific boot-time initializations
855  *
856  * Note: On x86_64, fixmaps are ready for use even before this is called.
857  */
858 
859 void __init setup_arch(char **cmdline_p)
860 {
861 #ifdef CONFIG_X86_32
862 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
863 
864 	/*
865 	 * copy kernel address range established so far and switch
866 	 * to the proper swapper page table
867 	 */
868 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
869 			initial_page_table + KERNEL_PGD_BOUNDARY,
870 			KERNEL_PGD_PTRS);
871 
872 	load_cr3(swapper_pg_dir);
873 	/*
874 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
875 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
876 	 * will not flush anything because the CPU quirk which clears
877 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
878 	 * load_cr3() above the TLB has been flushed already. The
879 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
880 	 * so proper operation is guaranteed.
881 	 */
882 	__flush_tlb_all();
883 #else
884 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
885 	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
886 #endif
887 
888 	/*
889 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
890 	 * reserve_top(), so do this before touching the ioremap area.
891 	 */
892 	olpc_ofw_detect();
893 
894 	idt_setup_early_traps();
895 	early_cpu_init();
896 	jump_label_init();
897 	static_call_init();
898 	early_ioremap_init();
899 
900 	setup_olpc_ofw_pgd();
901 
902 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
903 	screen_info = boot_params.screen_info;
904 	edid_info = boot_params.edid_info;
905 #ifdef CONFIG_X86_32
906 	apm_info.bios = boot_params.apm_bios_info;
907 	ist_info = boot_params.ist_info;
908 #endif
909 	saved_video_mode = boot_params.hdr.vid_mode;
910 	bootloader_type = boot_params.hdr.type_of_loader;
911 	if ((bootloader_type >> 4) == 0xe) {
912 		bootloader_type &= 0xf;
913 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
914 	}
915 	bootloader_version  = bootloader_type & 0xf;
916 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
917 
918 #ifdef CONFIG_BLK_DEV_RAM
919 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
920 #endif
921 #ifdef CONFIG_EFI
922 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
923 		     EFI32_LOADER_SIGNATURE, 4)) {
924 		set_bit(EFI_BOOT, &efi.flags);
925 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
926 		     EFI64_LOADER_SIGNATURE, 4)) {
927 		set_bit(EFI_BOOT, &efi.flags);
928 		set_bit(EFI_64BIT, &efi.flags);
929 	}
930 #endif
931 
932 	x86_init.oem.arch_setup();
933 
934 	/*
935 	 * Do some memory reservations *before* memory is added to memblock, so
936 	 * memblock allocations won't overwrite it.
937 	 *
938 	 * After this point, everything still needed from the boot loader or
939 	 * firmware or kernel text should be early reserved or marked not RAM in
940 	 * e820. All other memory is free game.
941 	 *
942 	 * This call needs to happen before e820__memory_setup() which calls the
943 	 * xen_memory_setup() on Xen dom0 which relies on the fact that those
944 	 * early reservations have happened already.
945 	 */
946 	early_reserve_memory();
947 
948 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
949 	e820__memory_setup();
950 	parse_setup_data();
951 
952 	copy_edd();
953 
954 	if (!boot_params.hdr.root_flags)
955 		root_mountflags &= ~MS_RDONLY;
956 	setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
957 
958 	code_resource.start = __pa_symbol(_text);
959 	code_resource.end = __pa_symbol(_etext)-1;
960 	rodata_resource.start = __pa_symbol(__start_rodata);
961 	rodata_resource.end = __pa_symbol(__end_rodata)-1;
962 	data_resource.start = __pa_symbol(_sdata);
963 	data_resource.end = __pa_symbol(_edata)-1;
964 	bss_resource.start = __pa_symbol(__bss_start);
965 	bss_resource.end = __pa_symbol(__bss_stop)-1;
966 
967 #ifdef CONFIG_CMDLINE_BOOL
968 #ifdef CONFIG_CMDLINE_OVERRIDE
969 	strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
970 #else
971 	if (builtin_cmdline[0]) {
972 		/* append boot loader cmdline to builtin */
973 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
974 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
975 		strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
976 	}
977 #endif
978 #endif
979 
980 	strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
981 	*cmdline_p = command_line;
982 
983 	/*
984 	 * x86_configure_nx() is called before parse_early_param() to detect
985 	 * whether hardware doesn't support NX (so that the early EHCI debug
986 	 * console setup can safely call set_fixmap()).
987 	 */
988 	x86_configure_nx();
989 
990 	parse_early_param();
991 
992 	if (efi_enabled(EFI_BOOT))
993 		efi_memblock_x86_reserve_range();
994 
995 #ifdef CONFIG_MEMORY_HOTPLUG
996 	/*
997 	 * Memory used by the kernel cannot be hot-removed because Linux
998 	 * cannot migrate the kernel pages. When memory hotplug is
999 	 * enabled, we should prevent memblock from allocating memory
1000 	 * for the kernel.
1001 	 *
1002 	 * ACPI SRAT records all hotpluggable memory ranges. But before
1003 	 * SRAT is parsed, we don't know about it.
1004 	 *
1005 	 * The kernel image is loaded into memory at very early time. We
1006 	 * cannot prevent this anyway. So on NUMA system, we set any
1007 	 * node the kernel resides in as un-hotpluggable.
1008 	 *
1009 	 * Since on modern servers, one node could have double-digit
1010 	 * gigabytes memory, we can assume the memory around the kernel
1011 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1012 	 * allocate memory near the kernel image to try the best to keep
1013 	 * the kernel away from hotpluggable memory.
1014 	 */
1015 	if (movable_node_is_enabled())
1016 		memblock_set_bottom_up(true);
1017 #endif
1018 
1019 	x86_report_nx();
1020 
1021 	if (acpi_mps_check()) {
1022 #ifdef CONFIG_X86_LOCAL_APIC
1023 		disable_apic = 1;
1024 #endif
1025 		setup_clear_cpu_cap(X86_FEATURE_APIC);
1026 	}
1027 
1028 	e820__reserve_setup_data();
1029 	e820__finish_early_params();
1030 
1031 	if (efi_enabled(EFI_BOOT))
1032 		efi_init();
1033 
1034 	reserve_ibft_region();
1035 	dmi_setup();
1036 
1037 	/*
1038 	 * VMware detection requires dmi to be available, so this
1039 	 * needs to be done after dmi_setup(), for the boot CPU.
1040 	 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be
1041 	 * called before cache_bp_init() for setting up MTRR state.
1042 	 */
1043 	init_hypervisor_platform();
1044 
1045 	tsc_early_init();
1046 	x86_init.resources.probe_roms();
1047 
1048 	/* after parse_early_param, so could debug it */
1049 	insert_resource(&iomem_resource, &code_resource);
1050 	insert_resource(&iomem_resource, &rodata_resource);
1051 	insert_resource(&iomem_resource, &data_resource);
1052 	insert_resource(&iomem_resource, &bss_resource);
1053 
1054 	e820_add_kernel_range();
1055 	trim_bios_range();
1056 #ifdef CONFIG_X86_32
1057 	if (ppro_with_ram_bug()) {
1058 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1059 				  E820_TYPE_RESERVED);
1060 		e820__update_table(e820_table);
1061 		printk(KERN_INFO "fixed physical RAM map:\n");
1062 		e820__print_table("bad_ppro");
1063 	}
1064 #else
1065 	early_gart_iommu_check();
1066 #endif
1067 
1068 	/*
1069 	 * partially used pages are not usable - thus
1070 	 * we are rounding upwards:
1071 	 */
1072 	max_pfn = e820__end_of_ram_pfn();
1073 
1074 	/* update e820 for memory not covered by WB MTRRs */
1075 	cache_bp_init();
1076 	if (mtrr_trim_uncached_memory(max_pfn))
1077 		max_pfn = e820__end_of_ram_pfn();
1078 
1079 	max_possible_pfn = max_pfn;
1080 
1081 	/*
1082 	 * Define random base addresses for memory sections after max_pfn is
1083 	 * defined and before each memory section base is used.
1084 	 */
1085 	kernel_randomize_memory();
1086 
1087 #ifdef CONFIG_X86_32
1088 	/* max_low_pfn get updated here */
1089 	find_low_pfn_range();
1090 #else
1091 	check_x2apic();
1092 
1093 	/* How many end-of-memory variables you have, grandma! */
1094 	/* need this before calling reserve_initrd */
1095 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1096 		max_low_pfn = e820__end_of_low_ram_pfn();
1097 	else
1098 		max_low_pfn = max_pfn;
1099 
1100 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1101 #endif
1102 
1103 	/*
1104 	 * Find and reserve possible boot-time SMP configuration:
1105 	 */
1106 	find_smp_config();
1107 
1108 	early_alloc_pgt_buf();
1109 
1110 	/*
1111 	 * Need to conclude brk, before e820__memblock_setup()
1112 	 * it could use memblock_find_in_range, could overlap with
1113 	 * brk area.
1114 	 */
1115 	reserve_brk();
1116 
1117 	cleanup_highmap();
1118 
1119 	memblock_set_current_limit(ISA_END_ADDRESS);
1120 	e820__memblock_setup();
1121 
1122 	/*
1123 	 * Needs to run after memblock setup because it needs the physical
1124 	 * memory size.
1125 	 */
1126 	sev_setup_arch();
1127 
1128 	efi_fake_memmap();
1129 	efi_find_mirror();
1130 	efi_esrt_init();
1131 	efi_mokvar_table_init();
1132 
1133 	/*
1134 	 * The EFI specification says that boot service code won't be
1135 	 * called after ExitBootServices(). This is, in fact, a lie.
1136 	 */
1137 	efi_reserve_boot_services();
1138 
1139 	/* preallocate 4k for mptable mpc */
1140 	e820__memblock_alloc_reserved_mpc_new();
1141 
1142 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1143 	setup_bios_corruption_check();
1144 #endif
1145 
1146 #ifdef CONFIG_X86_32
1147 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1148 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1149 #endif
1150 
1151 	/*
1152 	 * Find free memory for the real mode trampoline and place it there. If
1153 	 * there is not enough free memory under 1M, on EFI-enabled systems
1154 	 * there will be additional attempt to reclaim the memory for the real
1155 	 * mode trampoline at efi_free_boot_services().
1156 	 *
1157 	 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1158 	 * are known to corrupt low memory and several hundred kilobytes are not
1159 	 * worth complex detection what memory gets clobbered. Windows does the
1160 	 * same thing for very similar reasons.
1161 	 *
1162 	 * Moreover, on machines with SandyBridge graphics or in setups that use
1163 	 * crashkernel the entire 1M is reserved anyway.
1164 	 */
1165 	x86_platform.realmode_reserve();
1166 
1167 	init_mem_mapping();
1168 
1169 	idt_setup_early_pf();
1170 
1171 	/*
1172 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1173 	 * with the current CR4 value.  This may not be necessary, but
1174 	 * auditing all the early-boot CR4 manipulation would be needed to
1175 	 * rule it out.
1176 	 *
1177 	 * Mask off features that don't work outside long mode (just
1178 	 * PCIDE for now).
1179 	 */
1180 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1181 
1182 	memblock_set_current_limit(get_max_mapped());
1183 
1184 	/*
1185 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1186 	 */
1187 
1188 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1189 	if (init_ohci1394_dma_early)
1190 		init_ohci1394_dma_on_all_controllers();
1191 #endif
1192 	/* Allocate bigger log buffer */
1193 	setup_log_buf(1);
1194 
1195 	if (efi_enabled(EFI_BOOT)) {
1196 		switch (boot_params.secure_boot) {
1197 		case efi_secureboot_mode_disabled:
1198 			pr_info("Secure boot disabled\n");
1199 			break;
1200 		case efi_secureboot_mode_enabled:
1201 			pr_info("Secure boot enabled\n");
1202 			break;
1203 		default:
1204 			pr_info("Secure boot could not be determined\n");
1205 			break;
1206 		}
1207 	}
1208 
1209 	reserve_initrd();
1210 
1211 	acpi_table_upgrade();
1212 	/* Look for ACPI tables and reserve memory occupied by them. */
1213 	acpi_boot_table_init();
1214 
1215 	vsmp_init();
1216 
1217 	io_delay_init();
1218 
1219 	early_platform_quirks();
1220 
1221 	early_acpi_boot_init();
1222 
1223 	initmem_init();
1224 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1225 
1226 	if (boot_cpu_has(X86_FEATURE_GBPAGES))
1227 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1228 
1229 	/*
1230 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1231 	 * won't consume hotpluggable memory.
1232 	 */
1233 	reserve_crashkernel();
1234 
1235 	memblock_find_dma_reserve();
1236 
1237 	if (!early_xdbc_setup_hardware())
1238 		early_xdbc_register_console();
1239 
1240 	x86_init.paging.pagetable_init();
1241 
1242 	kasan_init();
1243 
1244 	/*
1245 	 * Sync back kernel address range.
1246 	 *
1247 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1248 	 * this call?
1249 	 */
1250 	sync_initial_page_table();
1251 
1252 	tboot_probe();
1253 
1254 	map_vsyscall();
1255 
1256 	generic_apic_probe();
1257 
1258 	early_quirks();
1259 
1260 	/*
1261 	 * Read APIC and some other early information from ACPI tables.
1262 	 */
1263 	acpi_boot_init();
1264 	x86_dtb_init();
1265 
1266 	/*
1267 	 * get boot-time SMP configuration:
1268 	 */
1269 	get_smp_config();
1270 
1271 	/*
1272 	 * Systems w/o ACPI and mptables might not have it mapped the local
1273 	 * APIC yet, but prefill_possible_map() might need to access it.
1274 	 */
1275 	init_apic_mappings();
1276 
1277 	prefill_possible_map();
1278 
1279 	init_cpu_to_node();
1280 	init_gi_nodes();
1281 
1282 	io_apic_init_mappings();
1283 
1284 	x86_init.hyper.guest_late_init();
1285 
1286 	e820__reserve_resources();
1287 	e820__register_nosave_regions(max_pfn);
1288 
1289 	x86_init.resources.reserve_resources();
1290 
1291 	e820__setup_pci_gap();
1292 
1293 #ifdef CONFIG_VT
1294 #if defined(CONFIG_VGA_CONSOLE)
1295 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1296 		conswitchp = &vga_con;
1297 #endif
1298 #endif
1299 	x86_init.oem.banner();
1300 
1301 	x86_init.timers.wallclock_init();
1302 
1303 	/*
1304 	 * This needs to run before setup_local_APIC() which soft-disables the
1305 	 * local APIC temporarily and that masks the thermal LVT interrupt,
1306 	 * leading to softlockups on machines which have configured SMI
1307 	 * interrupt delivery.
1308 	 */
1309 	therm_lvt_init();
1310 
1311 	mcheck_init();
1312 
1313 	register_refined_jiffies(CLOCK_TICK_RATE);
1314 
1315 #ifdef CONFIG_EFI
1316 	if (efi_enabled(EFI_BOOT))
1317 		efi_apply_memmap_quirks();
1318 #endif
1319 
1320 	unwind_init();
1321 }
1322 
1323 #ifdef CONFIG_X86_32
1324 
1325 static struct resource video_ram_resource = {
1326 	.name	= "Video RAM area",
1327 	.start	= 0xa0000,
1328 	.end	= 0xbffff,
1329 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1330 };
1331 
1332 void __init i386_reserve_resources(void)
1333 {
1334 	request_resource(&iomem_resource, &video_ram_resource);
1335 	reserve_standard_io_resources();
1336 }
1337 
1338 #endif /* CONFIG_X86_32 */
1339 
1340 static struct notifier_block kernel_offset_notifier = {
1341 	.notifier_call = dump_kernel_offset
1342 };
1343 
1344 static int __init register_kernel_offset_dumper(void)
1345 {
1346 	atomic_notifier_chain_register(&panic_notifier_list,
1347 					&kernel_offset_notifier);
1348 	return 0;
1349 }
1350 __initcall(register_kernel_offset_dumper);
1351