1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * This file contains the setup_arch() code, which handles the architecture-dependent 6 * parts of early kernel initialization. 7 */ 8 #include <linux/console.h> 9 #include <linux/crash_dump.h> 10 #include <linux/dmi.h> 11 #include <linux/efi.h> 12 #include <linux/init_ohci1394_dma.h> 13 #include <linux/initrd.h> 14 #include <linux/iscsi_ibft.h> 15 #include <linux/memblock.h> 16 #include <linux/pci.h> 17 #include <linux/root_dev.h> 18 #include <linux/sfi.h> 19 #include <linux/hugetlb.h> 20 #include <linux/tboot.h> 21 #include <linux/usb/xhci-dbgp.h> 22 23 #include <uapi/linux/mount.h> 24 25 #include <xen/xen.h> 26 27 #include <asm/apic.h> 28 #include <asm/numa.h> 29 #include <asm/bios_ebda.h> 30 #include <asm/bugs.h> 31 #include <asm/cpu.h> 32 #include <asm/efi.h> 33 #include <asm/gart.h> 34 #include <asm/hypervisor.h> 35 #include <asm/io_apic.h> 36 #include <asm/kasan.h> 37 #include <asm/kaslr.h> 38 #include <asm/mce.h> 39 #include <asm/mtrr.h> 40 #include <asm/realmode.h> 41 #include <asm/olpc_ofw.h> 42 #include <asm/pci-direct.h> 43 #include <asm/prom.h> 44 #include <asm/proto.h> 45 #include <asm/unwind.h> 46 #include <asm/vsyscall.h> 47 #include <linux/vmalloc.h> 48 49 /* 50 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB 51 * max_pfn_mapped: highest directly mapped pfn > 4 GB 52 * 53 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are 54 * represented by pfn_mapped[]. 55 */ 56 unsigned long max_low_pfn_mapped; 57 unsigned long max_pfn_mapped; 58 59 #ifdef CONFIG_DMI 60 RESERVE_BRK(dmi_alloc, 65536); 61 #endif 62 63 64 /* 65 * Range of the BSS area. The size of the BSS area is determined 66 * at link time, with RESERVE_BRK*() facility reserving additional 67 * chunks. 68 */ 69 unsigned long _brk_start = (unsigned long)__brk_base; 70 unsigned long _brk_end = (unsigned long)__brk_base; 71 72 struct boot_params boot_params; 73 74 /* 75 * These are the four main kernel memory regions, we put them into 76 * the resource tree so that kdump tools and other debugging tools 77 * recover it: 78 */ 79 80 static struct resource rodata_resource = { 81 .name = "Kernel rodata", 82 .start = 0, 83 .end = 0, 84 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 85 }; 86 87 static struct resource data_resource = { 88 .name = "Kernel data", 89 .start = 0, 90 .end = 0, 91 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 92 }; 93 94 static struct resource code_resource = { 95 .name = "Kernel code", 96 .start = 0, 97 .end = 0, 98 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 99 }; 100 101 static struct resource bss_resource = { 102 .name = "Kernel bss", 103 .start = 0, 104 .end = 0, 105 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 106 }; 107 108 109 #ifdef CONFIG_X86_32 110 /* CPU data as detected by the assembly code in head_32.S */ 111 struct cpuinfo_x86 new_cpu_data; 112 113 /* Common CPU data for all CPUs */ 114 struct cpuinfo_x86 boot_cpu_data __read_mostly; 115 EXPORT_SYMBOL(boot_cpu_data); 116 117 unsigned int def_to_bigsmp; 118 119 /* For MCA, but anyone else can use it if they want */ 120 unsigned int machine_id; 121 unsigned int machine_submodel_id; 122 unsigned int BIOS_revision; 123 124 struct apm_info apm_info; 125 EXPORT_SYMBOL(apm_info); 126 127 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ 128 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) 129 struct ist_info ist_info; 130 EXPORT_SYMBOL(ist_info); 131 #else 132 struct ist_info ist_info; 133 #endif 134 135 #else 136 struct cpuinfo_x86 boot_cpu_data __read_mostly; 137 EXPORT_SYMBOL(boot_cpu_data); 138 #endif 139 140 141 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) 142 __visible unsigned long mmu_cr4_features __ro_after_init; 143 #else 144 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; 145 #endif 146 147 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ 148 int bootloader_type, bootloader_version; 149 150 /* 151 * Setup options 152 */ 153 struct screen_info screen_info; 154 EXPORT_SYMBOL(screen_info); 155 struct edid_info edid_info; 156 EXPORT_SYMBOL_GPL(edid_info); 157 158 extern int root_mountflags; 159 160 unsigned long saved_video_mode; 161 162 #define RAMDISK_IMAGE_START_MASK 0x07FF 163 #define RAMDISK_PROMPT_FLAG 0x8000 164 #define RAMDISK_LOAD_FLAG 0x4000 165 166 static char __initdata command_line[COMMAND_LINE_SIZE]; 167 #ifdef CONFIG_CMDLINE_BOOL 168 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 169 #endif 170 171 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) 172 struct edd edd; 173 #ifdef CONFIG_EDD_MODULE 174 EXPORT_SYMBOL(edd); 175 #endif 176 /** 177 * copy_edd() - Copy the BIOS EDD information 178 * from boot_params into a safe place. 179 * 180 */ 181 static inline void __init copy_edd(void) 182 { 183 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, 184 sizeof(edd.mbr_signature)); 185 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); 186 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; 187 edd.edd_info_nr = boot_params.eddbuf_entries; 188 } 189 #else 190 static inline void __init copy_edd(void) 191 { 192 } 193 #endif 194 195 void * __init extend_brk(size_t size, size_t align) 196 { 197 size_t mask = align - 1; 198 void *ret; 199 200 BUG_ON(_brk_start == 0); 201 BUG_ON(align & mask); 202 203 _brk_end = (_brk_end + mask) & ~mask; 204 BUG_ON((char *)(_brk_end + size) > __brk_limit); 205 206 ret = (void *)_brk_end; 207 _brk_end += size; 208 209 memset(ret, 0, size); 210 211 return ret; 212 } 213 214 #ifdef CONFIG_X86_32 215 static void __init cleanup_highmap(void) 216 { 217 } 218 #endif 219 220 static void __init reserve_brk(void) 221 { 222 if (_brk_end > _brk_start) 223 memblock_reserve(__pa_symbol(_brk_start), 224 _brk_end - _brk_start); 225 226 /* Mark brk area as locked down and no longer taking any 227 new allocations */ 228 _brk_start = 0; 229 } 230 231 u64 relocated_ramdisk; 232 233 #ifdef CONFIG_BLK_DEV_INITRD 234 235 static u64 __init get_ramdisk_image(void) 236 { 237 u64 ramdisk_image = boot_params.hdr.ramdisk_image; 238 239 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; 240 241 if (ramdisk_image == 0) 242 ramdisk_image = phys_initrd_start; 243 244 return ramdisk_image; 245 } 246 static u64 __init get_ramdisk_size(void) 247 { 248 u64 ramdisk_size = boot_params.hdr.ramdisk_size; 249 250 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; 251 252 if (ramdisk_size == 0) 253 ramdisk_size = phys_initrd_size; 254 255 return ramdisk_size; 256 } 257 258 static void __init relocate_initrd(void) 259 { 260 /* Assume only end is not page aligned */ 261 u64 ramdisk_image = get_ramdisk_image(); 262 u64 ramdisk_size = get_ramdisk_size(); 263 u64 area_size = PAGE_ALIGN(ramdisk_size); 264 265 /* We need to move the initrd down into directly mapped mem */ 266 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), 267 area_size, PAGE_SIZE); 268 269 if (!relocated_ramdisk) 270 panic("Cannot find place for new RAMDISK of size %lld\n", 271 ramdisk_size); 272 273 /* Note: this includes all the mem currently occupied by 274 the initrd, we rely on that fact to keep the data intact. */ 275 memblock_reserve(relocated_ramdisk, area_size); 276 initrd_start = relocated_ramdisk + PAGE_OFFSET; 277 initrd_end = initrd_start + ramdisk_size; 278 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", 279 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 280 281 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size); 282 283 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" 284 " [mem %#010llx-%#010llx]\n", 285 ramdisk_image, ramdisk_image + ramdisk_size - 1, 286 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 287 } 288 289 static void __init early_reserve_initrd(void) 290 { 291 /* Assume only end is not page aligned */ 292 u64 ramdisk_image = get_ramdisk_image(); 293 u64 ramdisk_size = get_ramdisk_size(); 294 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 295 296 if (!boot_params.hdr.type_of_loader || 297 !ramdisk_image || !ramdisk_size) 298 return; /* No initrd provided by bootloader */ 299 300 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image); 301 } 302 static void __init reserve_initrd(void) 303 { 304 /* Assume only end is not page aligned */ 305 u64 ramdisk_image = get_ramdisk_image(); 306 u64 ramdisk_size = get_ramdisk_size(); 307 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 308 u64 mapped_size; 309 310 if (!boot_params.hdr.type_of_loader || 311 !ramdisk_image || !ramdisk_size) 312 return; /* No initrd provided by bootloader */ 313 314 initrd_start = 0; 315 316 mapped_size = memblock_mem_size(max_pfn_mapped); 317 if (ramdisk_size >= (mapped_size>>1)) 318 panic("initrd too large to handle, " 319 "disabling initrd (%lld needed, %lld available)\n", 320 ramdisk_size, mapped_size>>1); 321 322 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, 323 ramdisk_end - 1); 324 325 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), 326 PFN_DOWN(ramdisk_end))) { 327 /* All are mapped, easy case */ 328 initrd_start = ramdisk_image + PAGE_OFFSET; 329 initrd_end = initrd_start + ramdisk_size; 330 return; 331 } 332 333 relocate_initrd(); 334 335 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image); 336 } 337 338 #else 339 static void __init early_reserve_initrd(void) 340 { 341 } 342 static void __init reserve_initrd(void) 343 { 344 } 345 #endif /* CONFIG_BLK_DEV_INITRD */ 346 347 static void __init parse_setup_data(void) 348 { 349 struct setup_data *data; 350 u64 pa_data, pa_next; 351 352 pa_data = boot_params.hdr.setup_data; 353 while (pa_data) { 354 u32 data_len, data_type; 355 356 data = early_memremap(pa_data, sizeof(*data)); 357 data_len = data->len + sizeof(struct setup_data); 358 data_type = data->type; 359 pa_next = data->next; 360 early_memunmap(data, sizeof(*data)); 361 362 switch (data_type) { 363 case SETUP_E820_EXT: 364 e820__memory_setup_extended(pa_data, data_len); 365 break; 366 case SETUP_DTB: 367 add_dtb(pa_data); 368 break; 369 case SETUP_EFI: 370 parse_efi_setup(pa_data, data_len); 371 break; 372 default: 373 break; 374 } 375 pa_data = pa_next; 376 } 377 } 378 379 static void __init memblock_x86_reserve_range_setup_data(void) 380 { 381 struct setup_data *data; 382 u64 pa_data; 383 384 pa_data = boot_params.hdr.setup_data; 385 while (pa_data) { 386 data = early_memremap(pa_data, sizeof(*data)); 387 memblock_reserve(pa_data, sizeof(*data) + data->len); 388 389 if (data->type == SETUP_INDIRECT && 390 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) 391 memblock_reserve(((struct setup_indirect *)data->data)->addr, 392 ((struct setup_indirect *)data->data)->len); 393 394 pa_data = data->next; 395 early_memunmap(data, sizeof(*data)); 396 } 397 } 398 399 /* 400 * --------- Crashkernel reservation ------------------------------ 401 */ 402 403 #ifdef CONFIG_KEXEC_CORE 404 405 /* 16M alignment for crash kernel regions */ 406 #define CRASH_ALIGN SZ_16M 407 408 /* 409 * Keep the crash kernel below this limit. 410 * 411 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range 412 * due to mapping restrictions. 413 * 414 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is 415 * the upper limit of system RAM in 4-level paging mode. Since the kdump 416 * jump could be from 5-level paging to 4-level paging, the jump will fail if 417 * the kernel is put above 64 TB, and during the 1st kernel bootup there's 418 * no good way to detect the paging mode of the target kernel which will be 419 * loaded for dumping. 420 */ 421 #ifdef CONFIG_X86_32 422 # define CRASH_ADDR_LOW_MAX SZ_512M 423 # define CRASH_ADDR_HIGH_MAX SZ_512M 424 #else 425 # define CRASH_ADDR_LOW_MAX SZ_4G 426 # define CRASH_ADDR_HIGH_MAX SZ_64T 427 #endif 428 429 static int __init reserve_crashkernel_low(void) 430 { 431 #ifdef CONFIG_X86_64 432 unsigned long long base, low_base = 0, low_size = 0; 433 unsigned long total_low_mem; 434 int ret; 435 436 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT)); 437 438 /* crashkernel=Y,low */ 439 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base); 440 if (ret) { 441 /* 442 * two parts from kernel/dma/swiotlb.c: 443 * -swiotlb size: user-specified with swiotlb= or default. 444 * 445 * -swiotlb overflow buffer: now hardcoded to 32k. We round it 446 * to 8M for other buffers that may need to stay low too. Also 447 * make sure we allocate enough extra low memory so that we 448 * don't run out of DMA buffers for 32-bit devices. 449 */ 450 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20); 451 } else { 452 /* passed with crashkernel=0,low ? */ 453 if (!low_size) 454 return 0; 455 } 456 457 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN); 458 if (!low_base) { 459 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n", 460 (unsigned long)(low_size >> 20)); 461 return -ENOMEM; 462 } 463 464 ret = memblock_reserve(low_base, low_size); 465 if (ret) { 466 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__); 467 return ret; 468 } 469 470 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n", 471 (unsigned long)(low_size >> 20), 472 (unsigned long)(low_base >> 20), 473 (unsigned long)(total_low_mem >> 20)); 474 475 crashk_low_res.start = low_base; 476 crashk_low_res.end = low_base + low_size - 1; 477 insert_resource(&iomem_resource, &crashk_low_res); 478 #endif 479 return 0; 480 } 481 482 static void __init reserve_crashkernel(void) 483 { 484 unsigned long long crash_size, crash_base, total_mem; 485 bool high = false; 486 int ret; 487 488 total_mem = memblock_phys_mem_size(); 489 490 /* crashkernel=XM */ 491 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); 492 if (ret != 0 || crash_size <= 0) { 493 /* crashkernel=X,high */ 494 ret = parse_crashkernel_high(boot_command_line, total_mem, 495 &crash_size, &crash_base); 496 if (ret != 0 || crash_size <= 0) 497 return; 498 high = true; 499 } 500 501 if (xen_pv_domain()) { 502 pr_info("Ignoring crashkernel for a Xen PV domain\n"); 503 return; 504 } 505 506 /* 0 means: find the address automatically */ 507 if (!crash_base) { 508 /* 509 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory, 510 * crashkernel=x,high reserves memory over 4G, also allocates 511 * 256M extra low memory for DMA buffers and swiotlb. 512 * But the extra memory is not required for all machines. 513 * So try low memory first and fall back to high memory 514 * unless "crashkernel=size[KMG],high" is specified. 515 */ 516 if (!high) 517 crash_base = memblock_find_in_range(CRASH_ALIGN, 518 CRASH_ADDR_LOW_MAX, 519 crash_size, CRASH_ALIGN); 520 if (!crash_base) 521 crash_base = memblock_find_in_range(CRASH_ALIGN, 522 CRASH_ADDR_HIGH_MAX, 523 crash_size, CRASH_ALIGN); 524 if (!crash_base) { 525 pr_info("crashkernel reservation failed - No suitable area found.\n"); 526 return; 527 } 528 } else { 529 unsigned long long start; 530 531 start = memblock_find_in_range(crash_base, 532 crash_base + crash_size, 533 crash_size, 1 << 20); 534 if (start != crash_base) { 535 pr_info("crashkernel reservation failed - memory is in use.\n"); 536 return; 537 } 538 } 539 ret = memblock_reserve(crash_base, crash_size); 540 if (ret) { 541 pr_err("%s: Error reserving crashkernel memblock.\n", __func__); 542 return; 543 } 544 545 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) { 546 memblock_free(crash_base, crash_size); 547 return; 548 } 549 550 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", 551 (unsigned long)(crash_size >> 20), 552 (unsigned long)(crash_base >> 20), 553 (unsigned long)(total_mem >> 20)); 554 555 crashk_res.start = crash_base; 556 crashk_res.end = crash_base + crash_size - 1; 557 insert_resource(&iomem_resource, &crashk_res); 558 } 559 #else 560 static void __init reserve_crashkernel(void) 561 { 562 } 563 #endif 564 565 static struct resource standard_io_resources[] = { 566 { .name = "dma1", .start = 0x00, .end = 0x1f, 567 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 568 { .name = "pic1", .start = 0x20, .end = 0x21, 569 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 570 { .name = "timer0", .start = 0x40, .end = 0x43, 571 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 572 { .name = "timer1", .start = 0x50, .end = 0x53, 573 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 574 { .name = "keyboard", .start = 0x60, .end = 0x60, 575 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 576 { .name = "keyboard", .start = 0x64, .end = 0x64, 577 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 578 { .name = "dma page reg", .start = 0x80, .end = 0x8f, 579 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 580 { .name = "pic2", .start = 0xa0, .end = 0xa1, 581 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 582 { .name = "dma2", .start = 0xc0, .end = 0xdf, 583 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 584 { .name = "fpu", .start = 0xf0, .end = 0xff, 585 .flags = IORESOURCE_BUSY | IORESOURCE_IO } 586 }; 587 588 void __init reserve_standard_io_resources(void) 589 { 590 int i; 591 592 /* request I/O space for devices used on all i[345]86 PCs */ 593 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) 594 request_resource(&ioport_resource, &standard_io_resources[i]); 595 596 } 597 598 static __init void reserve_ibft_region(void) 599 { 600 unsigned long addr, size = 0; 601 602 addr = find_ibft_region(&size); 603 604 if (size) 605 memblock_reserve(addr, size); 606 } 607 608 static bool __init snb_gfx_workaround_needed(void) 609 { 610 #ifdef CONFIG_PCI 611 int i; 612 u16 vendor, devid; 613 static const __initconst u16 snb_ids[] = { 614 0x0102, 615 0x0112, 616 0x0122, 617 0x0106, 618 0x0116, 619 0x0126, 620 0x010a, 621 }; 622 623 /* Assume no if something weird is going on with PCI */ 624 if (!early_pci_allowed()) 625 return false; 626 627 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); 628 if (vendor != 0x8086) 629 return false; 630 631 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); 632 for (i = 0; i < ARRAY_SIZE(snb_ids); i++) 633 if (devid == snb_ids[i]) 634 return true; 635 #endif 636 637 return false; 638 } 639 640 /* 641 * Sandy Bridge graphics has trouble with certain ranges, exclude 642 * them from allocation. 643 */ 644 static void __init trim_snb_memory(void) 645 { 646 static const __initconst unsigned long bad_pages[] = { 647 0x20050000, 648 0x20110000, 649 0x20130000, 650 0x20138000, 651 0x40004000, 652 }; 653 int i; 654 655 if (!snb_gfx_workaround_needed()) 656 return; 657 658 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); 659 660 /* 661 * Reserve all memory below the 1 MB mark that has not 662 * already been reserved. 663 */ 664 memblock_reserve(0, 1<<20); 665 666 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { 667 if (memblock_reserve(bad_pages[i], PAGE_SIZE)) 668 printk(KERN_WARNING "failed to reserve 0x%08lx\n", 669 bad_pages[i]); 670 } 671 } 672 673 /* 674 * Here we put platform-specific memory range workarounds, i.e. 675 * memory known to be corrupt or otherwise in need to be reserved on 676 * specific platforms. 677 * 678 * If this gets used more widely it could use a real dispatch mechanism. 679 */ 680 static void __init trim_platform_memory_ranges(void) 681 { 682 trim_snb_memory(); 683 } 684 685 static void __init trim_bios_range(void) 686 { 687 /* 688 * A special case is the first 4Kb of memory; 689 * This is a BIOS owned area, not kernel ram, but generally 690 * not listed as such in the E820 table. 691 * 692 * This typically reserves additional memory (64KiB by default) 693 * since some BIOSes are known to corrupt low memory. See the 694 * Kconfig help text for X86_RESERVE_LOW. 695 */ 696 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); 697 698 /* 699 * special case: Some BIOSes report the PC BIOS 700 * area (640Kb -> 1Mb) as RAM even though it is not. 701 * take them out. 702 */ 703 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1); 704 705 e820__update_table(e820_table); 706 } 707 708 /* called before trim_bios_range() to spare extra sanitize */ 709 static void __init e820_add_kernel_range(void) 710 { 711 u64 start = __pa_symbol(_text); 712 u64 size = __pa_symbol(_end) - start; 713 714 /* 715 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and 716 * attempt to fix it by adding the range. We may have a confused BIOS, 717 * or the user may have used memmap=exactmap or memmap=xxM$yyM to 718 * exclude kernel range. If we really are running on top non-RAM, 719 * we will crash later anyways. 720 */ 721 if (e820__mapped_all(start, start + size, E820_TYPE_RAM)) 722 return; 723 724 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n"); 725 e820__range_remove(start, size, E820_TYPE_RAM, 0); 726 e820__range_add(start, size, E820_TYPE_RAM); 727 } 728 729 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10; 730 731 static int __init parse_reservelow(char *p) 732 { 733 unsigned long long size; 734 735 if (!p) 736 return -EINVAL; 737 738 size = memparse(p, &p); 739 740 if (size < 4096) 741 size = 4096; 742 743 if (size > 640*1024) 744 size = 640*1024; 745 746 reserve_low = size; 747 748 return 0; 749 } 750 751 early_param("reservelow", parse_reservelow); 752 753 static void __init trim_low_memory_range(void) 754 { 755 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE)); 756 } 757 758 /* 759 * Dump out kernel offset information on panic. 760 */ 761 static int 762 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) 763 { 764 if (kaslr_enabled()) { 765 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n", 766 kaslr_offset(), 767 __START_KERNEL, 768 __START_KERNEL_map, 769 MODULES_VADDR-1); 770 } else { 771 pr_emerg("Kernel Offset: disabled\n"); 772 } 773 774 return 0; 775 } 776 777 /* 778 * Determine if we were loaded by an EFI loader. If so, then we have also been 779 * passed the efi memmap, systab, etc., so we should use these data structures 780 * for initialization. Note, the efi init code path is determined by the 781 * global efi_enabled. This allows the same kernel image to be used on existing 782 * systems (with a traditional BIOS) as well as on EFI systems. 783 */ 784 /* 785 * setup_arch - architecture-specific boot-time initializations 786 * 787 * Note: On x86_64, fixmaps are ready for use even before this is called. 788 */ 789 790 void __init setup_arch(char **cmdline_p) 791 { 792 /* 793 * Reserve the memory occupied by the kernel between _text and 794 * __end_of_kernel_reserve symbols. Any kernel sections after the 795 * __end_of_kernel_reserve symbol must be explicitly reserved with a 796 * separate memblock_reserve() or they will be discarded. 797 */ 798 memblock_reserve(__pa_symbol(_text), 799 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text); 800 801 /* 802 * Make sure page 0 is always reserved because on systems with 803 * L1TF its contents can be leaked to user processes. 804 */ 805 memblock_reserve(0, PAGE_SIZE); 806 807 early_reserve_initrd(); 808 809 /* 810 * At this point everything still needed from the boot loader 811 * or BIOS or kernel text should be early reserved or marked not 812 * RAM in e820. All other memory is free game. 813 */ 814 815 #ifdef CONFIG_X86_32 816 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); 817 818 /* 819 * copy kernel address range established so far and switch 820 * to the proper swapper page table 821 */ 822 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, 823 initial_page_table + KERNEL_PGD_BOUNDARY, 824 KERNEL_PGD_PTRS); 825 826 load_cr3(swapper_pg_dir); 827 /* 828 * Note: Quark X1000 CPUs advertise PGE incorrectly and require 829 * a cr3 based tlb flush, so the following __flush_tlb_all() 830 * will not flush anything because the CPU quirk which clears 831 * X86_FEATURE_PGE has not been invoked yet. Though due to the 832 * load_cr3() above the TLB has been flushed already. The 833 * quirk is invoked before subsequent calls to __flush_tlb_all() 834 * so proper operation is guaranteed. 835 */ 836 __flush_tlb_all(); 837 #else 838 printk(KERN_INFO "Command line: %s\n", boot_command_line); 839 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS; 840 #endif 841 842 /* 843 * If we have OLPC OFW, we might end up relocating the fixmap due to 844 * reserve_top(), so do this before touching the ioremap area. 845 */ 846 olpc_ofw_detect(); 847 848 idt_setup_early_traps(); 849 early_cpu_init(); 850 arch_init_ideal_nops(); 851 jump_label_init(); 852 early_ioremap_init(); 853 854 setup_olpc_ofw_pgd(); 855 856 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); 857 screen_info = boot_params.screen_info; 858 edid_info = boot_params.edid_info; 859 #ifdef CONFIG_X86_32 860 apm_info.bios = boot_params.apm_bios_info; 861 ist_info = boot_params.ist_info; 862 #endif 863 saved_video_mode = boot_params.hdr.vid_mode; 864 bootloader_type = boot_params.hdr.type_of_loader; 865 if ((bootloader_type >> 4) == 0xe) { 866 bootloader_type &= 0xf; 867 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; 868 } 869 bootloader_version = bootloader_type & 0xf; 870 bootloader_version |= boot_params.hdr.ext_loader_ver << 4; 871 872 #ifdef CONFIG_BLK_DEV_RAM 873 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; 874 #endif 875 #ifdef CONFIG_EFI 876 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 877 EFI32_LOADER_SIGNATURE, 4)) { 878 set_bit(EFI_BOOT, &efi.flags); 879 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 880 EFI64_LOADER_SIGNATURE, 4)) { 881 set_bit(EFI_BOOT, &efi.flags); 882 set_bit(EFI_64BIT, &efi.flags); 883 } 884 #endif 885 886 x86_init.oem.arch_setup(); 887 888 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; 889 e820__memory_setup(); 890 parse_setup_data(); 891 892 copy_edd(); 893 894 if (!boot_params.hdr.root_flags) 895 root_mountflags &= ~MS_RDONLY; 896 init_mm.start_code = (unsigned long) _text; 897 init_mm.end_code = (unsigned long) _etext; 898 init_mm.end_data = (unsigned long) _edata; 899 init_mm.brk = _brk_end; 900 901 code_resource.start = __pa_symbol(_text); 902 code_resource.end = __pa_symbol(_etext)-1; 903 rodata_resource.start = __pa_symbol(__start_rodata); 904 rodata_resource.end = __pa_symbol(__end_rodata)-1; 905 data_resource.start = __pa_symbol(_sdata); 906 data_resource.end = __pa_symbol(_edata)-1; 907 bss_resource.start = __pa_symbol(__bss_start); 908 bss_resource.end = __pa_symbol(__bss_stop)-1; 909 910 #ifdef CONFIG_CMDLINE_BOOL 911 #ifdef CONFIG_CMDLINE_OVERRIDE 912 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 913 #else 914 if (builtin_cmdline[0]) { 915 /* append boot loader cmdline to builtin */ 916 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); 917 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); 918 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 919 } 920 #endif 921 #endif 922 923 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 924 *cmdline_p = command_line; 925 926 /* 927 * x86_configure_nx() is called before parse_early_param() to detect 928 * whether hardware doesn't support NX (so that the early EHCI debug 929 * console setup can safely call set_fixmap()). It may then be called 930 * again from within noexec_setup() during parsing early parameters 931 * to honor the respective command line option. 932 */ 933 x86_configure_nx(); 934 935 parse_early_param(); 936 937 if (efi_enabled(EFI_BOOT)) 938 efi_memblock_x86_reserve_range(); 939 #ifdef CONFIG_MEMORY_HOTPLUG 940 /* 941 * Memory used by the kernel cannot be hot-removed because Linux 942 * cannot migrate the kernel pages. When memory hotplug is 943 * enabled, we should prevent memblock from allocating memory 944 * for the kernel. 945 * 946 * ACPI SRAT records all hotpluggable memory ranges. But before 947 * SRAT is parsed, we don't know about it. 948 * 949 * The kernel image is loaded into memory at very early time. We 950 * cannot prevent this anyway. So on NUMA system, we set any 951 * node the kernel resides in as un-hotpluggable. 952 * 953 * Since on modern servers, one node could have double-digit 954 * gigabytes memory, we can assume the memory around the kernel 955 * image is also un-hotpluggable. So before SRAT is parsed, just 956 * allocate memory near the kernel image to try the best to keep 957 * the kernel away from hotpluggable memory. 958 */ 959 if (movable_node_is_enabled()) 960 memblock_set_bottom_up(true); 961 #endif 962 963 x86_report_nx(); 964 965 /* after early param, so could get panic from serial */ 966 memblock_x86_reserve_range_setup_data(); 967 968 if (acpi_mps_check()) { 969 #ifdef CONFIG_X86_LOCAL_APIC 970 disable_apic = 1; 971 #endif 972 setup_clear_cpu_cap(X86_FEATURE_APIC); 973 } 974 975 e820__reserve_setup_data(); 976 e820__finish_early_params(); 977 978 if (efi_enabled(EFI_BOOT)) 979 efi_init(); 980 981 dmi_setup(); 982 983 /* 984 * VMware detection requires dmi to be available, so this 985 * needs to be done after dmi_setup(), for the boot CPU. 986 */ 987 init_hypervisor_platform(); 988 989 tsc_early_init(); 990 x86_init.resources.probe_roms(); 991 992 /* after parse_early_param, so could debug it */ 993 insert_resource(&iomem_resource, &code_resource); 994 insert_resource(&iomem_resource, &rodata_resource); 995 insert_resource(&iomem_resource, &data_resource); 996 insert_resource(&iomem_resource, &bss_resource); 997 998 e820_add_kernel_range(); 999 trim_bios_range(); 1000 #ifdef CONFIG_X86_32 1001 if (ppro_with_ram_bug()) { 1002 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM, 1003 E820_TYPE_RESERVED); 1004 e820__update_table(e820_table); 1005 printk(KERN_INFO "fixed physical RAM map:\n"); 1006 e820__print_table("bad_ppro"); 1007 } 1008 #else 1009 early_gart_iommu_check(); 1010 #endif 1011 1012 /* 1013 * partially used pages are not usable - thus 1014 * we are rounding upwards: 1015 */ 1016 max_pfn = e820__end_of_ram_pfn(); 1017 1018 /* update e820 for memory not covered by WB MTRRs */ 1019 mtrr_bp_init(); 1020 if (mtrr_trim_uncached_memory(max_pfn)) 1021 max_pfn = e820__end_of_ram_pfn(); 1022 1023 max_possible_pfn = max_pfn; 1024 1025 /* 1026 * This call is required when the CPU does not support PAT. If 1027 * mtrr_bp_init() invoked it already via pat_init() the call has no 1028 * effect. 1029 */ 1030 init_cache_modes(); 1031 1032 /* 1033 * Define random base addresses for memory sections after max_pfn is 1034 * defined and before each memory section base is used. 1035 */ 1036 kernel_randomize_memory(); 1037 1038 #ifdef CONFIG_X86_32 1039 /* max_low_pfn get updated here */ 1040 find_low_pfn_range(); 1041 #else 1042 check_x2apic(); 1043 1044 /* How many end-of-memory variables you have, grandma! */ 1045 /* need this before calling reserve_initrd */ 1046 if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) 1047 max_low_pfn = e820__end_of_low_ram_pfn(); 1048 else 1049 max_low_pfn = max_pfn; 1050 1051 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 1052 #endif 1053 1054 /* 1055 * Find and reserve possible boot-time SMP configuration: 1056 */ 1057 find_smp_config(); 1058 1059 reserve_ibft_region(); 1060 1061 early_alloc_pgt_buf(); 1062 1063 /* 1064 * Need to conclude brk, before e820__memblock_setup() 1065 * it could use memblock_find_in_range, could overlap with 1066 * brk area. 1067 */ 1068 reserve_brk(); 1069 1070 cleanup_highmap(); 1071 1072 memblock_set_current_limit(ISA_END_ADDRESS); 1073 e820__memblock_setup(); 1074 1075 reserve_bios_regions(); 1076 1077 efi_fake_memmap(); 1078 efi_find_mirror(); 1079 efi_esrt_init(); 1080 1081 /* 1082 * The EFI specification says that boot service code won't be 1083 * called after ExitBootServices(). This is, in fact, a lie. 1084 */ 1085 efi_reserve_boot_services(); 1086 1087 /* preallocate 4k for mptable mpc */ 1088 e820__memblock_alloc_reserved_mpc_new(); 1089 1090 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION 1091 setup_bios_corruption_check(); 1092 #endif 1093 1094 #ifdef CONFIG_X86_32 1095 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", 1096 (max_pfn_mapped<<PAGE_SHIFT) - 1); 1097 #endif 1098 1099 reserve_real_mode(); 1100 1101 trim_platform_memory_ranges(); 1102 trim_low_memory_range(); 1103 1104 init_mem_mapping(); 1105 1106 idt_setup_early_pf(); 1107 1108 /* 1109 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features) 1110 * with the current CR4 value. This may not be necessary, but 1111 * auditing all the early-boot CR4 manipulation would be needed to 1112 * rule it out. 1113 * 1114 * Mask off features that don't work outside long mode (just 1115 * PCIDE for now). 1116 */ 1117 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE; 1118 1119 memblock_set_current_limit(get_max_mapped()); 1120 1121 /* 1122 * NOTE: On x86-32, only from this point on, fixmaps are ready for use. 1123 */ 1124 1125 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT 1126 if (init_ohci1394_dma_early) 1127 init_ohci1394_dma_on_all_controllers(); 1128 #endif 1129 /* Allocate bigger log buffer */ 1130 setup_log_buf(1); 1131 1132 if (efi_enabled(EFI_BOOT)) { 1133 switch (boot_params.secure_boot) { 1134 case efi_secureboot_mode_disabled: 1135 pr_info("Secure boot disabled\n"); 1136 break; 1137 case efi_secureboot_mode_enabled: 1138 pr_info("Secure boot enabled\n"); 1139 break; 1140 default: 1141 pr_info("Secure boot could not be determined\n"); 1142 break; 1143 } 1144 } 1145 1146 reserve_initrd(); 1147 1148 acpi_table_upgrade(); 1149 1150 vsmp_init(); 1151 1152 io_delay_init(); 1153 1154 early_platform_quirks(); 1155 1156 /* 1157 * Parse the ACPI tables for possible boot-time SMP configuration. 1158 */ 1159 acpi_boot_table_init(); 1160 1161 early_acpi_boot_init(); 1162 1163 initmem_init(); 1164 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT); 1165 1166 if (boot_cpu_has(X86_FEATURE_GBPAGES)) 1167 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 1168 1169 /* 1170 * Reserve memory for crash kernel after SRAT is parsed so that it 1171 * won't consume hotpluggable memory. 1172 */ 1173 reserve_crashkernel(); 1174 1175 memblock_find_dma_reserve(); 1176 1177 if (!early_xdbc_setup_hardware()) 1178 early_xdbc_register_console(); 1179 1180 x86_init.paging.pagetable_init(); 1181 1182 kasan_init(); 1183 1184 /* 1185 * Sync back kernel address range. 1186 * 1187 * FIXME: Can the later sync in setup_cpu_entry_areas() replace 1188 * this call? 1189 */ 1190 sync_initial_page_table(); 1191 1192 tboot_probe(); 1193 1194 map_vsyscall(); 1195 1196 generic_apic_probe(); 1197 1198 early_quirks(); 1199 1200 /* 1201 * Read APIC and some other early information from ACPI tables. 1202 */ 1203 acpi_boot_init(); 1204 sfi_init(); 1205 x86_dtb_init(); 1206 1207 /* 1208 * get boot-time SMP configuration: 1209 */ 1210 get_smp_config(); 1211 1212 /* 1213 * Systems w/o ACPI and mptables might not have it mapped the local 1214 * APIC yet, but prefill_possible_map() might need to access it. 1215 */ 1216 init_apic_mappings(); 1217 1218 prefill_possible_map(); 1219 1220 init_cpu_to_node(); 1221 1222 io_apic_init_mappings(); 1223 1224 x86_init.hyper.guest_late_init(); 1225 1226 e820__reserve_resources(); 1227 e820__register_nosave_regions(max_pfn); 1228 1229 x86_init.resources.reserve_resources(); 1230 1231 e820__setup_pci_gap(); 1232 1233 #ifdef CONFIG_VT 1234 #if defined(CONFIG_VGA_CONSOLE) 1235 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) 1236 conswitchp = &vga_con; 1237 #endif 1238 #endif 1239 x86_init.oem.banner(); 1240 1241 x86_init.timers.wallclock_init(); 1242 1243 mcheck_init(); 1244 1245 register_refined_jiffies(CLOCK_TICK_RATE); 1246 1247 #ifdef CONFIG_EFI 1248 if (efi_enabled(EFI_BOOT)) 1249 efi_apply_memmap_quirks(); 1250 #endif 1251 1252 unwind_init(); 1253 } 1254 1255 #ifdef CONFIG_X86_32 1256 1257 static struct resource video_ram_resource = { 1258 .name = "Video RAM area", 1259 .start = 0xa0000, 1260 .end = 0xbffff, 1261 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 1262 }; 1263 1264 void __init i386_reserve_resources(void) 1265 { 1266 request_resource(&iomem_resource, &video_ram_resource); 1267 reserve_standard_io_resources(); 1268 } 1269 1270 #endif /* CONFIG_X86_32 */ 1271 1272 static struct notifier_block kernel_offset_notifier = { 1273 .notifier_call = dump_kernel_offset 1274 }; 1275 1276 static int __init register_kernel_offset_dumper(void) 1277 { 1278 atomic_notifier_chain_register(&panic_notifier_list, 1279 &kernel_offset_notifier); 1280 return 0; 1281 } 1282 __initcall(register_kernel_offset_dumper); 1283