xref: /openbmc/linux/arch/x86/kernel/setup.c (revision 363d7c22)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  * This file contains the setup_arch() code, which handles the architecture-dependent
6  * parts of early kernel initialization.
7  */
8 #include <linux/acpi.h>
9 #include <linux/console.h>
10 #include <linux/crash_dump.h>
11 #include <linux/dma-map-ops.h>
12 #include <linux/dmi.h>
13 #include <linux/efi.h>
14 #include <linux/ima.h>
15 #include <linux/init_ohci1394_dma.h>
16 #include <linux/initrd.h>
17 #include <linux/iscsi_ibft.h>
18 #include <linux/memblock.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/pci.h>
21 #include <linux/root_dev.h>
22 #include <linux/hugetlb.h>
23 #include <linux/tboot.h>
24 #include <linux/usb/xhci-dbgp.h>
25 #include <linux/static_call.h>
26 #include <linux/swiotlb.h>
27 #include <linux/random.h>
28 
29 #include <uapi/linux/mount.h>
30 
31 #include <xen/xen.h>
32 
33 #include <asm/apic.h>
34 #include <asm/efi.h>
35 #include <asm/numa.h>
36 #include <asm/bios_ebda.h>
37 #include <asm/bugs.h>
38 #include <asm/cacheinfo.h>
39 #include <asm/cpu.h>
40 #include <asm/efi.h>
41 #include <asm/gart.h>
42 #include <asm/hypervisor.h>
43 #include <asm/io_apic.h>
44 #include <asm/kasan.h>
45 #include <asm/kaslr.h>
46 #include <asm/mce.h>
47 #include <asm/memtype.h>
48 #include <asm/mtrr.h>
49 #include <asm/realmode.h>
50 #include <asm/olpc_ofw.h>
51 #include <asm/pci-direct.h>
52 #include <asm/prom.h>
53 #include <asm/proto.h>
54 #include <asm/thermal.h>
55 #include <asm/unwind.h>
56 #include <asm/vsyscall.h>
57 #include <linux/vmalloc.h>
58 
59 /*
60  * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
61  * max_pfn_mapped:     highest directly mapped pfn > 4 GB
62  *
63  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
64  * represented by pfn_mapped[].
65  */
66 unsigned long max_low_pfn_mapped;
67 unsigned long max_pfn_mapped;
68 
69 #ifdef CONFIG_DMI
70 RESERVE_BRK(dmi_alloc, 65536);
71 #endif
72 
73 
74 unsigned long _brk_start = (unsigned long)__brk_base;
75 unsigned long _brk_end   = (unsigned long)__brk_base;
76 
77 struct boot_params boot_params;
78 
79 /*
80  * These are the four main kernel memory regions, we put them into
81  * the resource tree so that kdump tools and other debugging tools
82  * recover it:
83  */
84 
85 static struct resource rodata_resource = {
86 	.name	= "Kernel rodata",
87 	.start	= 0,
88 	.end	= 0,
89 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
90 };
91 
92 static struct resource data_resource = {
93 	.name	= "Kernel data",
94 	.start	= 0,
95 	.end	= 0,
96 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
97 };
98 
99 static struct resource code_resource = {
100 	.name	= "Kernel code",
101 	.start	= 0,
102 	.end	= 0,
103 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
104 };
105 
106 static struct resource bss_resource = {
107 	.name	= "Kernel bss",
108 	.start	= 0,
109 	.end	= 0,
110 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
111 };
112 
113 
114 #ifdef CONFIG_X86_32
115 /* CPU data as detected by the assembly code in head_32.S */
116 struct cpuinfo_x86 new_cpu_data;
117 
118 /* Common CPU data for all CPUs */
119 struct cpuinfo_x86 boot_cpu_data __read_mostly;
120 EXPORT_SYMBOL(boot_cpu_data);
121 
122 unsigned int def_to_bigsmp;
123 
124 struct apm_info apm_info;
125 EXPORT_SYMBOL(apm_info);
126 
127 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
128 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
129 struct ist_info ist_info;
130 EXPORT_SYMBOL(ist_info);
131 #else
132 struct ist_info ist_info;
133 #endif
134 
135 #else
136 struct cpuinfo_x86 boot_cpu_data __read_mostly;
137 EXPORT_SYMBOL(boot_cpu_data);
138 #endif
139 
140 
141 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
142 __visible unsigned long mmu_cr4_features __ro_after_init;
143 #else
144 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
145 #endif
146 
147 #ifdef CONFIG_IMA
148 static phys_addr_t ima_kexec_buffer_phys;
149 static size_t ima_kexec_buffer_size;
150 #endif
151 
152 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
153 int bootloader_type, bootloader_version;
154 
155 /*
156  * Setup options
157  */
158 struct screen_info screen_info;
159 EXPORT_SYMBOL(screen_info);
160 struct edid_info edid_info;
161 EXPORT_SYMBOL_GPL(edid_info);
162 
163 extern int root_mountflags;
164 
165 unsigned long saved_video_mode;
166 
167 #define RAMDISK_IMAGE_START_MASK	0x07FF
168 #define RAMDISK_PROMPT_FLAG		0x8000
169 #define RAMDISK_LOAD_FLAG		0x4000
170 
171 static char __initdata command_line[COMMAND_LINE_SIZE];
172 #ifdef CONFIG_CMDLINE_BOOL
173 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
174 #endif
175 
176 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
177 struct edd edd;
178 #ifdef CONFIG_EDD_MODULE
179 EXPORT_SYMBOL(edd);
180 #endif
181 /**
182  * copy_edd() - Copy the BIOS EDD information
183  *              from boot_params into a safe place.
184  *
185  */
186 static inline void __init copy_edd(void)
187 {
188      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
189 	    sizeof(edd.mbr_signature));
190      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
191      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
192      edd.edd_info_nr = boot_params.eddbuf_entries;
193 }
194 #else
195 static inline void __init copy_edd(void)
196 {
197 }
198 #endif
199 
200 void * __init extend_brk(size_t size, size_t align)
201 {
202 	size_t mask = align - 1;
203 	void *ret;
204 
205 	BUG_ON(_brk_start == 0);
206 	BUG_ON(align & mask);
207 
208 	_brk_end = (_brk_end + mask) & ~mask;
209 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
210 
211 	ret = (void *)_brk_end;
212 	_brk_end += size;
213 
214 	memset(ret, 0, size);
215 
216 	return ret;
217 }
218 
219 #ifdef CONFIG_X86_32
220 static void __init cleanup_highmap(void)
221 {
222 }
223 #endif
224 
225 static void __init reserve_brk(void)
226 {
227 	if (_brk_end > _brk_start)
228 		memblock_reserve(__pa_symbol(_brk_start),
229 				 _brk_end - _brk_start);
230 
231 	/* Mark brk area as locked down and no longer taking any
232 	   new allocations */
233 	_brk_start = 0;
234 }
235 
236 u64 relocated_ramdisk;
237 
238 #ifdef CONFIG_BLK_DEV_INITRD
239 
240 static u64 __init get_ramdisk_image(void)
241 {
242 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
243 
244 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
245 
246 	if (ramdisk_image == 0)
247 		ramdisk_image = phys_initrd_start;
248 
249 	return ramdisk_image;
250 }
251 static u64 __init get_ramdisk_size(void)
252 {
253 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
254 
255 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
256 
257 	if (ramdisk_size == 0)
258 		ramdisk_size = phys_initrd_size;
259 
260 	return ramdisk_size;
261 }
262 
263 static void __init relocate_initrd(void)
264 {
265 	/* Assume only end is not page aligned */
266 	u64 ramdisk_image = get_ramdisk_image();
267 	u64 ramdisk_size  = get_ramdisk_size();
268 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
269 
270 	/* We need to move the initrd down into directly mapped mem */
271 	relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
272 						      PFN_PHYS(max_pfn_mapped));
273 	if (!relocated_ramdisk)
274 		panic("Cannot find place for new RAMDISK of size %lld\n",
275 		      ramdisk_size);
276 
277 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
278 	initrd_end   = initrd_start + ramdisk_size;
279 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
280 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
281 
282 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
283 
284 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
285 		" [mem %#010llx-%#010llx]\n",
286 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
287 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
288 }
289 
290 static void __init early_reserve_initrd(void)
291 {
292 	/* Assume only end is not page aligned */
293 	u64 ramdisk_image = get_ramdisk_image();
294 	u64 ramdisk_size  = get_ramdisk_size();
295 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
296 
297 	if (!boot_params.hdr.type_of_loader ||
298 	    !ramdisk_image || !ramdisk_size)
299 		return;		/* No initrd provided by bootloader */
300 
301 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
302 }
303 
304 static void __init reserve_initrd(void)
305 {
306 	/* Assume only end is not page aligned */
307 	u64 ramdisk_image = get_ramdisk_image();
308 	u64 ramdisk_size  = get_ramdisk_size();
309 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
310 
311 	if (!boot_params.hdr.type_of_loader ||
312 	    !ramdisk_image || !ramdisk_size)
313 		return;		/* No initrd provided by bootloader */
314 
315 	initrd_start = 0;
316 
317 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
318 			ramdisk_end - 1);
319 
320 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
321 				PFN_DOWN(ramdisk_end))) {
322 		/* All are mapped, easy case */
323 		initrd_start = ramdisk_image + PAGE_OFFSET;
324 		initrd_end = initrd_start + ramdisk_size;
325 		return;
326 	}
327 
328 	relocate_initrd();
329 
330 	memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
331 }
332 
333 #else
334 static void __init early_reserve_initrd(void)
335 {
336 }
337 static void __init reserve_initrd(void)
338 {
339 }
340 #endif /* CONFIG_BLK_DEV_INITRD */
341 
342 static void __init add_early_ima_buffer(u64 phys_addr)
343 {
344 #ifdef CONFIG_IMA
345 	struct ima_setup_data *data;
346 
347 	data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
348 	if (!data) {
349 		pr_warn("setup: failed to memremap ima_setup_data entry\n");
350 		return;
351 	}
352 
353 	if (data->size) {
354 		memblock_reserve(data->addr, data->size);
355 		ima_kexec_buffer_phys = data->addr;
356 		ima_kexec_buffer_size = data->size;
357 	}
358 
359 	early_memunmap(data, sizeof(*data));
360 #else
361 	pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
362 #endif
363 }
364 
365 #if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
366 int __init ima_free_kexec_buffer(void)
367 {
368 	int rc;
369 
370 	if (!ima_kexec_buffer_size)
371 		return -ENOENT;
372 
373 	rc = memblock_phys_free(ima_kexec_buffer_phys,
374 				ima_kexec_buffer_size);
375 	if (rc)
376 		return rc;
377 
378 	ima_kexec_buffer_phys = 0;
379 	ima_kexec_buffer_size = 0;
380 
381 	return 0;
382 }
383 
384 int __init ima_get_kexec_buffer(void **addr, size_t *size)
385 {
386 	if (!ima_kexec_buffer_size)
387 		return -ENOENT;
388 
389 	*addr = __va(ima_kexec_buffer_phys);
390 	*size = ima_kexec_buffer_size;
391 
392 	return 0;
393 }
394 #endif
395 
396 static void __init parse_setup_data(void)
397 {
398 	struct setup_data *data;
399 	u64 pa_data, pa_next;
400 
401 	pa_data = boot_params.hdr.setup_data;
402 	while (pa_data) {
403 		u32 data_len, data_type;
404 
405 		data = early_memremap(pa_data, sizeof(*data));
406 		data_len = data->len + sizeof(struct setup_data);
407 		data_type = data->type;
408 		pa_next = data->next;
409 		early_memunmap(data, sizeof(*data));
410 
411 		switch (data_type) {
412 		case SETUP_E820_EXT:
413 			e820__memory_setup_extended(pa_data, data_len);
414 			break;
415 		case SETUP_DTB:
416 			add_dtb(pa_data);
417 			break;
418 		case SETUP_EFI:
419 			parse_efi_setup(pa_data, data_len);
420 			break;
421 		case SETUP_IMA:
422 			add_early_ima_buffer(pa_data);
423 			break;
424 		case SETUP_RNG_SEED:
425 			data = early_memremap(pa_data, data_len);
426 			add_bootloader_randomness(data->data, data->len);
427 			/* Zero seed for forward secrecy. */
428 			memzero_explicit(data->data, data->len);
429 			/* Zero length in case we find ourselves back here by accident. */
430 			memzero_explicit(&data->len, sizeof(data->len));
431 			early_memunmap(data, data_len);
432 			break;
433 		default:
434 			break;
435 		}
436 		pa_data = pa_next;
437 	}
438 }
439 
440 static void __init memblock_x86_reserve_range_setup_data(void)
441 {
442 	struct setup_indirect *indirect;
443 	struct setup_data *data;
444 	u64 pa_data, pa_next;
445 	u32 len;
446 
447 	pa_data = boot_params.hdr.setup_data;
448 	while (pa_data) {
449 		data = early_memremap(pa_data, sizeof(*data));
450 		if (!data) {
451 			pr_warn("setup: failed to memremap setup_data entry\n");
452 			return;
453 		}
454 
455 		len = sizeof(*data);
456 		pa_next = data->next;
457 
458 		memblock_reserve(pa_data, sizeof(*data) + data->len);
459 
460 		if (data->type == SETUP_INDIRECT) {
461 			len += data->len;
462 			early_memunmap(data, sizeof(*data));
463 			data = early_memremap(pa_data, len);
464 			if (!data) {
465 				pr_warn("setup: failed to memremap indirect setup_data\n");
466 				return;
467 			}
468 
469 			indirect = (struct setup_indirect *)data->data;
470 
471 			if (indirect->type != SETUP_INDIRECT)
472 				memblock_reserve(indirect->addr, indirect->len);
473 		}
474 
475 		pa_data = pa_next;
476 		early_memunmap(data, len);
477 	}
478 }
479 
480 /*
481  * --------- Crashkernel reservation ------------------------------
482  */
483 
484 /* 16M alignment for crash kernel regions */
485 #define CRASH_ALIGN		SZ_16M
486 
487 /*
488  * Keep the crash kernel below this limit.
489  *
490  * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
491  * due to mapping restrictions.
492  *
493  * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
494  * the upper limit of system RAM in 4-level paging mode. Since the kdump
495  * jump could be from 5-level paging to 4-level paging, the jump will fail if
496  * the kernel is put above 64 TB, and during the 1st kernel bootup there's
497  * no good way to detect the paging mode of the target kernel which will be
498  * loaded for dumping.
499  */
500 #ifdef CONFIG_X86_32
501 # define CRASH_ADDR_LOW_MAX	SZ_512M
502 # define CRASH_ADDR_HIGH_MAX	SZ_512M
503 #else
504 # define CRASH_ADDR_LOW_MAX	SZ_4G
505 # define CRASH_ADDR_HIGH_MAX	SZ_64T
506 #endif
507 
508 static int __init reserve_crashkernel_low(void)
509 {
510 #ifdef CONFIG_X86_64
511 	unsigned long long base, low_base = 0, low_size = 0;
512 	unsigned long low_mem_limit;
513 	int ret;
514 
515 	low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
516 
517 	/* crashkernel=Y,low */
518 	ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
519 	if (ret) {
520 		/*
521 		 * two parts from kernel/dma/swiotlb.c:
522 		 * -swiotlb size: user-specified with swiotlb= or default.
523 		 *
524 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
525 		 * to 8M for other buffers that may need to stay low too. Also
526 		 * make sure we allocate enough extra low memory so that we
527 		 * don't run out of DMA buffers for 32-bit devices.
528 		 */
529 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
530 	} else {
531 		/* passed with crashkernel=0,low ? */
532 		if (!low_size)
533 			return 0;
534 	}
535 
536 	low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
537 	if (!low_base) {
538 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
539 		       (unsigned long)(low_size >> 20));
540 		return -ENOMEM;
541 	}
542 
543 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
544 		(unsigned long)(low_size >> 20),
545 		(unsigned long)(low_base >> 20),
546 		(unsigned long)(low_mem_limit >> 20));
547 
548 	crashk_low_res.start = low_base;
549 	crashk_low_res.end   = low_base + low_size - 1;
550 	insert_resource(&iomem_resource, &crashk_low_res);
551 #endif
552 	return 0;
553 }
554 
555 static void __init reserve_crashkernel(void)
556 {
557 	unsigned long long crash_size, crash_base, total_mem;
558 	bool high = false;
559 	int ret;
560 
561 	if (!IS_ENABLED(CONFIG_KEXEC_CORE))
562 		return;
563 
564 	total_mem = memblock_phys_mem_size();
565 
566 	/* crashkernel=XM */
567 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
568 	if (ret != 0 || crash_size <= 0) {
569 		/* crashkernel=X,high */
570 		ret = parse_crashkernel_high(boot_command_line, total_mem,
571 					     &crash_size, &crash_base);
572 		if (ret != 0 || crash_size <= 0)
573 			return;
574 		high = true;
575 	}
576 
577 	if (xen_pv_domain()) {
578 		pr_info("Ignoring crashkernel for a Xen PV domain\n");
579 		return;
580 	}
581 
582 	/* 0 means: find the address automatically */
583 	if (!crash_base) {
584 		/*
585 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
586 		 * crashkernel=x,high reserves memory over 4G, also allocates
587 		 * 256M extra low memory for DMA buffers and swiotlb.
588 		 * But the extra memory is not required for all machines.
589 		 * So try low memory first and fall back to high memory
590 		 * unless "crashkernel=size[KMG],high" is specified.
591 		 */
592 		if (!high)
593 			crash_base = memblock_phys_alloc_range(crash_size,
594 						CRASH_ALIGN, CRASH_ALIGN,
595 						CRASH_ADDR_LOW_MAX);
596 		if (!crash_base)
597 			crash_base = memblock_phys_alloc_range(crash_size,
598 						CRASH_ALIGN, CRASH_ALIGN,
599 						CRASH_ADDR_HIGH_MAX);
600 		if (!crash_base) {
601 			pr_info("crashkernel reservation failed - No suitable area found.\n");
602 			return;
603 		}
604 	} else {
605 		unsigned long long start;
606 
607 		start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
608 						  crash_base + crash_size);
609 		if (start != crash_base) {
610 			pr_info("crashkernel reservation failed - memory is in use.\n");
611 			return;
612 		}
613 	}
614 
615 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
616 		memblock_phys_free(crash_base, crash_size);
617 		return;
618 	}
619 
620 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
621 		(unsigned long)(crash_size >> 20),
622 		(unsigned long)(crash_base >> 20),
623 		(unsigned long)(total_mem >> 20));
624 
625 	crashk_res.start = crash_base;
626 	crashk_res.end   = crash_base + crash_size - 1;
627 	insert_resource(&iomem_resource, &crashk_res);
628 }
629 
630 static struct resource standard_io_resources[] = {
631 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
632 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
633 	{ .name = "pic1", .start = 0x20, .end = 0x21,
634 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
635 	{ .name = "timer0", .start = 0x40, .end = 0x43,
636 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
637 	{ .name = "timer1", .start = 0x50, .end = 0x53,
638 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
639 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
640 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
641 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
642 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
643 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
644 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
645 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
646 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
647 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
648 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
649 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
650 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
651 };
652 
653 void __init reserve_standard_io_resources(void)
654 {
655 	int i;
656 
657 	/* request I/O space for devices used on all i[345]86 PCs */
658 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
659 		request_resource(&ioport_resource, &standard_io_resources[i]);
660 
661 }
662 
663 static bool __init snb_gfx_workaround_needed(void)
664 {
665 #ifdef CONFIG_PCI
666 	int i;
667 	u16 vendor, devid;
668 	static const __initconst u16 snb_ids[] = {
669 		0x0102,
670 		0x0112,
671 		0x0122,
672 		0x0106,
673 		0x0116,
674 		0x0126,
675 		0x010a,
676 	};
677 
678 	/* Assume no if something weird is going on with PCI */
679 	if (!early_pci_allowed())
680 		return false;
681 
682 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
683 	if (vendor != 0x8086)
684 		return false;
685 
686 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
687 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
688 		if (devid == snb_ids[i])
689 			return true;
690 #endif
691 
692 	return false;
693 }
694 
695 /*
696  * Sandy Bridge graphics has trouble with certain ranges, exclude
697  * them from allocation.
698  */
699 static void __init trim_snb_memory(void)
700 {
701 	static const __initconst unsigned long bad_pages[] = {
702 		0x20050000,
703 		0x20110000,
704 		0x20130000,
705 		0x20138000,
706 		0x40004000,
707 	};
708 	int i;
709 
710 	if (!snb_gfx_workaround_needed())
711 		return;
712 
713 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
714 
715 	/*
716 	 * SandyBridge integrated graphics devices have a bug that prevents
717 	 * them from accessing certain memory ranges, namely anything below
718 	 * 1M and in the pages listed in bad_pages[] above.
719 	 *
720 	 * To avoid these pages being ever accessed by SNB gfx devices reserve
721 	 * bad_pages that have not already been reserved at boot time.
722 	 * All memory below the 1 MB mark is anyway reserved later during
723 	 * setup_arch(), so there is no need to reserve it here.
724 	 */
725 
726 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
727 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
728 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
729 			       bad_pages[i]);
730 	}
731 }
732 
733 static void __init trim_bios_range(void)
734 {
735 	/*
736 	 * A special case is the first 4Kb of memory;
737 	 * This is a BIOS owned area, not kernel ram, but generally
738 	 * not listed as such in the E820 table.
739 	 *
740 	 * This typically reserves additional memory (64KiB by default)
741 	 * since some BIOSes are known to corrupt low memory.  See the
742 	 * Kconfig help text for X86_RESERVE_LOW.
743 	 */
744 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
745 
746 	/*
747 	 * special case: Some BIOSes report the PC BIOS
748 	 * area (640Kb -> 1Mb) as RAM even though it is not.
749 	 * take them out.
750 	 */
751 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
752 
753 	e820__update_table(e820_table);
754 }
755 
756 /* called before trim_bios_range() to spare extra sanitize */
757 static void __init e820_add_kernel_range(void)
758 {
759 	u64 start = __pa_symbol(_text);
760 	u64 size = __pa_symbol(_end) - start;
761 
762 	/*
763 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
764 	 * attempt to fix it by adding the range. We may have a confused BIOS,
765 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
766 	 * exclude kernel range. If we really are running on top non-RAM,
767 	 * we will crash later anyways.
768 	 */
769 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
770 		return;
771 
772 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
773 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
774 	e820__range_add(start, size, E820_TYPE_RAM);
775 }
776 
777 static void __init early_reserve_memory(void)
778 {
779 	/*
780 	 * Reserve the memory occupied by the kernel between _text and
781 	 * __end_of_kernel_reserve symbols. Any kernel sections after the
782 	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
783 	 * separate memblock_reserve() or they will be discarded.
784 	 */
785 	memblock_reserve(__pa_symbol(_text),
786 			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
787 
788 	/*
789 	 * The first 4Kb of memory is a BIOS owned area, but generally it is
790 	 * not listed as such in the E820 table.
791 	 *
792 	 * Reserve the first 64K of memory since some BIOSes are known to
793 	 * corrupt low memory. After the real mode trampoline is allocated the
794 	 * rest of the memory below 640k is reserved.
795 	 *
796 	 * In addition, make sure page 0 is always reserved because on
797 	 * systems with L1TF its contents can be leaked to user processes.
798 	 */
799 	memblock_reserve(0, SZ_64K);
800 
801 	early_reserve_initrd();
802 
803 	memblock_x86_reserve_range_setup_data();
804 
805 	reserve_ibft_region();
806 	reserve_bios_regions();
807 	trim_snb_memory();
808 }
809 
810 /*
811  * Dump out kernel offset information on panic.
812  */
813 static int
814 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
815 {
816 	if (kaslr_enabled()) {
817 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
818 			 kaslr_offset(),
819 			 __START_KERNEL,
820 			 __START_KERNEL_map,
821 			 MODULES_VADDR-1);
822 	} else {
823 		pr_emerg("Kernel Offset: disabled\n");
824 	}
825 
826 	return 0;
827 }
828 
829 void x86_configure_nx(void)
830 {
831 	if (boot_cpu_has(X86_FEATURE_NX))
832 		__supported_pte_mask |= _PAGE_NX;
833 	else
834 		__supported_pte_mask &= ~_PAGE_NX;
835 }
836 
837 static void __init x86_report_nx(void)
838 {
839 	if (!boot_cpu_has(X86_FEATURE_NX)) {
840 		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
841 		       "missing in CPU!\n");
842 	} else {
843 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
844 		printk(KERN_INFO "NX (Execute Disable) protection: active\n");
845 #else
846 		/* 32bit non-PAE kernel, NX cannot be used */
847 		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
848 		       "cannot be enabled: non-PAE kernel!\n");
849 #endif
850 	}
851 }
852 
853 /*
854  * Determine if we were loaded by an EFI loader.  If so, then we have also been
855  * passed the efi memmap, systab, etc., so we should use these data structures
856  * for initialization.  Note, the efi init code path is determined by the
857  * global efi_enabled. This allows the same kernel image to be used on existing
858  * systems (with a traditional BIOS) as well as on EFI systems.
859  */
860 /*
861  * setup_arch - architecture-specific boot-time initializations
862  *
863  * Note: On x86_64, fixmaps are ready for use even before this is called.
864  */
865 
866 void __init setup_arch(char **cmdline_p)
867 {
868 #ifdef CONFIG_X86_32
869 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
870 
871 	/*
872 	 * copy kernel address range established so far and switch
873 	 * to the proper swapper page table
874 	 */
875 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
876 			initial_page_table + KERNEL_PGD_BOUNDARY,
877 			KERNEL_PGD_PTRS);
878 
879 	load_cr3(swapper_pg_dir);
880 	/*
881 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
882 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
883 	 * will not flush anything because the CPU quirk which clears
884 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
885 	 * load_cr3() above the TLB has been flushed already. The
886 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
887 	 * so proper operation is guaranteed.
888 	 */
889 	__flush_tlb_all();
890 #else
891 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
892 	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
893 #endif
894 
895 	/*
896 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
897 	 * reserve_top(), so do this before touching the ioremap area.
898 	 */
899 	olpc_ofw_detect();
900 
901 	idt_setup_early_traps();
902 	early_cpu_init();
903 	jump_label_init();
904 	static_call_init();
905 	early_ioremap_init();
906 
907 	setup_olpc_ofw_pgd();
908 
909 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
910 	screen_info = boot_params.screen_info;
911 	edid_info = boot_params.edid_info;
912 #ifdef CONFIG_X86_32
913 	apm_info.bios = boot_params.apm_bios_info;
914 	ist_info = boot_params.ist_info;
915 #endif
916 	saved_video_mode = boot_params.hdr.vid_mode;
917 	bootloader_type = boot_params.hdr.type_of_loader;
918 	if ((bootloader_type >> 4) == 0xe) {
919 		bootloader_type &= 0xf;
920 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
921 	}
922 	bootloader_version  = bootloader_type & 0xf;
923 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
924 
925 #ifdef CONFIG_BLK_DEV_RAM
926 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
927 #endif
928 #ifdef CONFIG_EFI
929 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
930 		     EFI32_LOADER_SIGNATURE, 4)) {
931 		set_bit(EFI_BOOT, &efi.flags);
932 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
933 		     EFI64_LOADER_SIGNATURE, 4)) {
934 		set_bit(EFI_BOOT, &efi.flags);
935 		set_bit(EFI_64BIT, &efi.flags);
936 	}
937 #endif
938 
939 	x86_init.oem.arch_setup();
940 
941 	/*
942 	 * Do some memory reservations *before* memory is added to memblock, so
943 	 * memblock allocations won't overwrite it.
944 	 *
945 	 * After this point, everything still needed from the boot loader or
946 	 * firmware or kernel text should be early reserved or marked not RAM in
947 	 * e820. All other memory is free game.
948 	 *
949 	 * This call needs to happen before e820__memory_setup() which calls the
950 	 * xen_memory_setup() on Xen dom0 which relies on the fact that those
951 	 * early reservations have happened already.
952 	 */
953 	early_reserve_memory();
954 
955 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
956 	e820__memory_setup();
957 	parse_setup_data();
958 
959 	copy_edd();
960 
961 	if (!boot_params.hdr.root_flags)
962 		root_mountflags &= ~MS_RDONLY;
963 	setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
964 
965 	code_resource.start = __pa_symbol(_text);
966 	code_resource.end = __pa_symbol(_etext)-1;
967 	rodata_resource.start = __pa_symbol(__start_rodata);
968 	rodata_resource.end = __pa_symbol(__end_rodata)-1;
969 	data_resource.start = __pa_symbol(_sdata);
970 	data_resource.end = __pa_symbol(_edata)-1;
971 	bss_resource.start = __pa_symbol(__bss_start);
972 	bss_resource.end = __pa_symbol(__bss_stop)-1;
973 
974 #ifdef CONFIG_CMDLINE_BOOL
975 #ifdef CONFIG_CMDLINE_OVERRIDE
976 	strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
977 #else
978 	if (builtin_cmdline[0]) {
979 		/* append boot loader cmdline to builtin */
980 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
981 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
982 		strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
983 	}
984 #endif
985 #endif
986 
987 	strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
988 	*cmdline_p = command_line;
989 
990 	/*
991 	 * x86_configure_nx() is called before parse_early_param() to detect
992 	 * whether hardware doesn't support NX (so that the early EHCI debug
993 	 * console setup can safely call set_fixmap()).
994 	 */
995 	x86_configure_nx();
996 
997 	parse_early_param();
998 
999 	if (efi_enabled(EFI_BOOT))
1000 		efi_memblock_x86_reserve_range();
1001 
1002 #ifdef CONFIG_MEMORY_HOTPLUG
1003 	/*
1004 	 * Memory used by the kernel cannot be hot-removed because Linux
1005 	 * cannot migrate the kernel pages. When memory hotplug is
1006 	 * enabled, we should prevent memblock from allocating memory
1007 	 * for the kernel.
1008 	 *
1009 	 * ACPI SRAT records all hotpluggable memory ranges. But before
1010 	 * SRAT is parsed, we don't know about it.
1011 	 *
1012 	 * The kernel image is loaded into memory at very early time. We
1013 	 * cannot prevent this anyway. So on NUMA system, we set any
1014 	 * node the kernel resides in as un-hotpluggable.
1015 	 *
1016 	 * Since on modern servers, one node could have double-digit
1017 	 * gigabytes memory, we can assume the memory around the kernel
1018 	 * image is also un-hotpluggable. So before SRAT is parsed, just
1019 	 * allocate memory near the kernel image to try the best to keep
1020 	 * the kernel away from hotpluggable memory.
1021 	 */
1022 	if (movable_node_is_enabled())
1023 		memblock_set_bottom_up(true);
1024 #endif
1025 
1026 	x86_report_nx();
1027 
1028 	if (acpi_mps_check()) {
1029 #ifdef CONFIG_X86_LOCAL_APIC
1030 		disable_apic = 1;
1031 #endif
1032 		setup_clear_cpu_cap(X86_FEATURE_APIC);
1033 	}
1034 
1035 	e820__reserve_setup_data();
1036 	e820__finish_early_params();
1037 
1038 	if (efi_enabled(EFI_BOOT))
1039 		efi_init();
1040 
1041 	dmi_setup();
1042 
1043 	/*
1044 	 * VMware detection requires dmi to be available, so this
1045 	 * needs to be done after dmi_setup(), for the boot CPU.
1046 	 */
1047 	init_hypervisor_platform();
1048 
1049 	tsc_early_init();
1050 	x86_init.resources.probe_roms();
1051 
1052 	/* after parse_early_param, so could debug it */
1053 	insert_resource(&iomem_resource, &code_resource);
1054 	insert_resource(&iomem_resource, &rodata_resource);
1055 	insert_resource(&iomem_resource, &data_resource);
1056 	insert_resource(&iomem_resource, &bss_resource);
1057 
1058 	e820_add_kernel_range();
1059 	trim_bios_range();
1060 #ifdef CONFIG_X86_32
1061 	if (ppro_with_ram_bug()) {
1062 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1063 				  E820_TYPE_RESERVED);
1064 		e820__update_table(e820_table);
1065 		printk(KERN_INFO "fixed physical RAM map:\n");
1066 		e820__print_table("bad_ppro");
1067 	}
1068 #else
1069 	early_gart_iommu_check();
1070 #endif
1071 
1072 	/*
1073 	 * partially used pages are not usable - thus
1074 	 * we are rounding upwards:
1075 	 */
1076 	max_pfn = e820__end_of_ram_pfn();
1077 
1078 	/* update e820 for memory not covered by WB MTRRs */
1079 	cache_bp_init();
1080 	if (mtrr_trim_uncached_memory(max_pfn))
1081 		max_pfn = e820__end_of_ram_pfn();
1082 
1083 	max_possible_pfn = max_pfn;
1084 
1085 	/*
1086 	 * Define random base addresses for memory sections after max_pfn is
1087 	 * defined and before each memory section base is used.
1088 	 */
1089 	kernel_randomize_memory();
1090 
1091 #ifdef CONFIG_X86_32
1092 	/* max_low_pfn get updated here */
1093 	find_low_pfn_range();
1094 #else
1095 	check_x2apic();
1096 
1097 	/* How many end-of-memory variables you have, grandma! */
1098 	/* need this before calling reserve_initrd */
1099 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1100 		max_low_pfn = e820__end_of_low_ram_pfn();
1101 	else
1102 		max_low_pfn = max_pfn;
1103 
1104 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1105 #endif
1106 
1107 	/*
1108 	 * Find and reserve possible boot-time SMP configuration:
1109 	 */
1110 	find_smp_config();
1111 
1112 	early_alloc_pgt_buf();
1113 
1114 	/*
1115 	 * Need to conclude brk, before e820__memblock_setup()
1116 	 * it could use memblock_find_in_range, could overlap with
1117 	 * brk area.
1118 	 */
1119 	reserve_brk();
1120 
1121 	cleanup_highmap();
1122 
1123 	memblock_set_current_limit(ISA_END_ADDRESS);
1124 	e820__memblock_setup();
1125 
1126 	/*
1127 	 * Needs to run after memblock setup because it needs the physical
1128 	 * memory size.
1129 	 */
1130 	sev_setup_arch();
1131 
1132 	efi_fake_memmap();
1133 	efi_find_mirror();
1134 	efi_esrt_init();
1135 	efi_mokvar_table_init();
1136 
1137 	/*
1138 	 * The EFI specification says that boot service code won't be
1139 	 * called after ExitBootServices(). This is, in fact, a lie.
1140 	 */
1141 	efi_reserve_boot_services();
1142 
1143 	/* preallocate 4k for mptable mpc */
1144 	e820__memblock_alloc_reserved_mpc_new();
1145 
1146 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1147 	setup_bios_corruption_check();
1148 #endif
1149 
1150 #ifdef CONFIG_X86_32
1151 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1152 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1153 #endif
1154 
1155 	/*
1156 	 * Find free memory for the real mode trampoline and place it there. If
1157 	 * there is not enough free memory under 1M, on EFI-enabled systems
1158 	 * there will be additional attempt to reclaim the memory for the real
1159 	 * mode trampoline at efi_free_boot_services().
1160 	 *
1161 	 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1162 	 * are known to corrupt low memory and several hundred kilobytes are not
1163 	 * worth complex detection what memory gets clobbered. Windows does the
1164 	 * same thing for very similar reasons.
1165 	 *
1166 	 * Moreover, on machines with SandyBridge graphics or in setups that use
1167 	 * crashkernel the entire 1M is reserved anyway.
1168 	 */
1169 	x86_platform.realmode_reserve();
1170 
1171 	init_mem_mapping();
1172 
1173 	idt_setup_early_pf();
1174 
1175 	/*
1176 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1177 	 * with the current CR4 value.  This may not be necessary, but
1178 	 * auditing all the early-boot CR4 manipulation would be needed to
1179 	 * rule it out.
1180 	 *
1181 	 * Mask off features that don't work outside long mode (just
1182 	 * PCIDE for now).
1183 	 */
1184 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1185 
1186 	memblock_set_current_limit(get_max_mapped());
1187 
1188 	/*
1189 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1190 	 */
1191 
1192 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1193 	if (init_ohci1394_dma_early)
1194 		init_ohci1394_dma_on_all_controllers();
1195 #endif
1196 	/* Allocate bigger log buffer */
1197 	setup_log_buf(1);
1198 
1199 	if (efi_enabled(EFI_BOOT)) {
1200 		switch (boot_params.secure_boot) {
1201 		case efi_secureboot_mode_disabled:
1202 			pr_info("Secure boot disabled\n");
1203 			break;
1204 		case efi_secureboot_mode_enabled:
1205 			pr_info("Secure boot enabled\n");
1206 			break;
1207 		default:
1208 			pr_info("Secure boot could not be determined\n");
1209 			break;
1210 		}
1211 	}
1212 
1213 	reserve_initrd();
1214 
1215 	acpi_table_upgrade();
1216 	/* Look for ACPI tables and reserve memory occupied by them. */
1217 	acpi_boot_table_init();
1218 
1219 	vsmp_init();
1220 
1221 	io_delay_init();
1222 
1223 	early_platform_quirks();
1224 
1225 	early_acpi_boot_init();
1226 
1227 	initmem_init();
1228 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1229 
1230 	if (boot_cpu_has(X86_FEATURE_GBPAGES))
1231 		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1232 
1233 	/*
1234 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1235 	 * won't consume hotpluggable memory.
1236 	 */
1237 	reserve_crashkernel();
1238 
1239 	memblock_find_dma_reserve();
1240 
1241 	if (!early_xdbc_setup_hardware())
1242 		early_xdbc_register_console();
1243 
1244 	x86_init.paging.pagetable_init();
1245 
1246 	kasan_init();
1247 
1248 	/*
1249 	 * Sync back kernel address range.
1250 	 *
1251 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1252 	 * this call?
1253 	 */
1254 	sync_initial_page_table();
1255 
1256 	tboot_probe();
1257 
1258 	map_vsyscall();
1259 
1260 	generic_apic_probe();
1261 
1262 	early_quirks();
1263 
1264 	/*
1265 	 * Read APIC and some other early information from ACPI tables.
1266 	 */
1267 	acpi_boot_init();
1268 	x86_dtb_init();
1269 
1270 	/*
1271 	 * get boot-time SMP configuration:
1272 	 */
1273 	get_smp_config();
1274 
1275 	/*
1276 	 * Systems w/o ACPI and mptables might not have it mapped the local
1277 	 * APIC yet, but prefill_possible_map() might need to access it.
1278 	 */
1279 	init_apic_mappings();
1280 
1281 	prefill_possible_map();
1282 
1283 	init_cpu_to_node();
1284 	init_gi_nodes();
1285 
1286 	io_apic_init_mappings();
1287 
1288 	x86_init.hyper.guest_late_init();
1289 
1290 	e820__reserve_resources();
1291 	e820__register_nosave_regions(max_pfn);
1292 
1293 	x86_init.resources.reserve_resources();
1294 
1295 	e820__setup_pci_gap();
1296 
1297 #ifdef CONFIG_VT
1298 #if defined(CONFIG_VGA_CONSOLE)
1299 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1300 		conswitchp = &vga_con;
1301 #endif
1302 #endif
1303 	x86_init.oem.banner();
1304 
1305 	x86_init.timers.wallclock_init();
1306 
1307 	/*
1308 	 * This needs to run before setup_local_APIC() which soft-disables the
1309 	 * local APIC temporarily and that masks the thermal LVT interrupt,
1310 	 * leading to softlockups on machines which have configured SMI
1311 	 * interrupt delivery.
1312 	 */
1313 	therm_lvt_init();
1314 
1315 	mcheck_init();
1316 
1317 	register_refined_jiffies(CLOCK_TICK_RATE);
1318 
1319 #ifdef CONFIG_EFI
1320 	if (efi_enabled(EFI_BOOT))
1321 		efi_apply_memmap_quirks();
1322 #endif
1323 
1324 	unwind_init();
1325 }
1326 
1327 #ifdef CONFIG_X86_32
1328 
1329 static struct resource video_ram_resource = {
1330 	.name	= "Video RAM area",
1331 	.start	= 0xa0000,
1332 	.end	= 0xbffff,
1333 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1334 };
1335 
1336 void __init i386_reserve_resources(void)
1337 {
1338 	request_resource(&iomem_resource, &video_ram_resource);
1339 	reserve_standard_io_resources();
1340 }
1341 
1342 #endif /* CONFIG_X86_32 */
1343 
1344 static struct notifier_block kernel_offset_notifier = {
1345 	.notifier_call = dump_kernel_offset
1346 };
1347 
1348 static int __init register_kernel_offset_dumper(void)
1349 {
1350 	atomic_notifier_chain_register(&panic_notifier_list,
1351 					&kernel_offset_notifier);
1352 	return 0;
1353 }
1354 __initcall(register_kernel_offset_dumper);
1355