xref: /openbmc/linux/arch/x86/kernel/setup.c (revision 2359ccdd)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *
6  *  Memory region support
7  *	David Parsons <orc@pell.chi.il.us>, July-August 1999
8  *
9  *  Added E820 sanitization routine (removes overlapping memory regions);
10  *  Brian Moyle <bmoyle@mvista.com>, February 2001
11  *
12  * Moved CPU detection code to cpu/${cpu}.c
13  *    Patrick Mochel <mochel@osdl.org>, March 2002
14  *
15  *  Provisions for empty E820 memory regions (reported by certain BIOSes).
16  *  Alex Achenbach <xela@slit.de>, December 2002.
17  *
18  */
19 
20 /*
21  * This file handles the architecture-dependent parts of initialization
22  */
23 
24 #include <linux/sched.h>
25 #include <linux/mm.h>
26 #include <linux/mmzone.h>
27 #include <linux/screen_info.h>
28 #include <linux/ioport.h>
29 #include <linux/acpi.h>
30 #include <linux/sfi.h>
31 #include <linux/apm_bios.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/seq_file.h>
36 #include <linux/console.h>
37 #include <linux/root_dev.h>
38 #include <linux/highmem.h>
39 #include <linux/export.h>
40 #include <linux/efi.h>
41 #include <linux/init.h>
42 #include <linux/edd.h>
43 #include <linux/iscsi_ibft.h>
44 #include <linux/nodemask.h>
45 #include <linux/kexec.h>
46 #include <linux/dmi.h>
47 #include <linux/pfn.h>
48 #include <linux/pci.h>
49 #include <asm/pci-direct.h>
50 #include <linux/init_ohci1394_dma.h>
51 #include <linux/kvm_para.h>
52 #include <linux/dma-contiguous.h>
53 
54 #include <linux/errno.h>
55 #include <linux/kernel.h>
56 #include <linux/stddef.h>
57 #include <linux/unistd.h>
58 #include <linux/ptrace.h>
59 #include <linux/user.h>
60 #include <linux/delay.h>
61 
62 #include <linux/kallsyms.h>
63 #include <linux/cpufreq.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/ctype.h>
66 #include <linux/uaccess.h>
67 
68 #include <linux/percpu.h>
69 #include <linux/crash_dump.h>
70 #include <linux/tboot.h>
71 #include <linux/jiffies.h>
72 #include <linux/mem_encrypt.h>
73 
74 #include <linux/usb/xhci-dbgp.h>
75 #include <video/edid.h>
76 
77 #include <asm/mtrr.h>
78 #include <asm/apic.h>
79 #include <asm/realmode.h>
80 #include <asm/e820/api.h>
81 #include <asm/mpspec.h>
82 #include <asm/setup.h>
83 #include <asm/efi.h>
84 #include <asm/timer.h>
85 #include <asm/i8259.h>
86 #include <asm/sections.h>
87 #include <asm/io_apic.h>
88 #include <asm/ist.h>
89 #include <asm/setup_arch.h>
90 #include <asm/bios_ebda.h>
91 #include <asm/cacheflush.h>
92 #include <asm/processor.h>
93 #include <asm/bugs.h>
94 #include <asm/kasan.h>
95 
96 #include <asm/vsyscall.h>
97 #include <asm/cpu.h>
98 #include <asm/desc.h>
99 #include <asm/dma.h>
100 #include <asm/iommu.h>
101 #include <asm/gart.h>
102 #include <asm/mmu_context.h>
103 #include <asm/proto.h>
104 
105 #include <asm/paravirt.h>
106 #include <asm/hypervisor.h>
107 #include <asm/olpc_ofw.h>
108 
109 #include <asm/percpu.h>
110 #include <asm/topology.h>
111 #include <asm/apicdef.h>
112 #include <asm/amd_nb.h>
113 #include <asm/mce.h>
114 #include <asm/alternative.h>
115 #include <asm/prom.h>
116 #include <asm/microcode.h>
117 #include <asm/kaslr.h>
118 #include <asm/unwind.h>
119 
120 /*
121  * max_low_pfn_mapped: highest direct mapped pfn under 4GB
122  * max_pfn_mapped:     highest direct mapped pfn over 4GB
123  *
124  * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
125  * represented by pfn_mapped
126  */
127 unsigned long max_low_pfn_mapped;
128 unsigned long max_pfn_mapped;
129 
130 #ifdef CONFIG_DMI
131 RESERVE_BRK(dmi_alloc, 65536);
132 #endif
133 
134 
135 static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
136 unsigned long _brk_end = (unsigned long)__brk_base;
137 
138 struct boot_params boot_params;
139 
140 /*
141  * Machine setup..
142  */
143 static struct resource data_resource = {
144 	.name	= "Kernel data",
145 	.start	= 0,
146 	.end	= 0,
147 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
148 };
149 
150 static struct resource code_resource = {
151 	.name	= "Kernel code",
152 	.start	= 0,
153 	.end	= 0,
154 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
155 };
156 
157 static struct resource bss_resource = {
158 	.name	= "Kernel bss",
159 	.start	= 0,
160 	.end	= 0,
161 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
162 };
163 
164 
165 #ifdef CONFIG_X86_32
166 /* cpu data as detected by the assembly code in head_32.S */
167 struct cpuinfo_x86 new_cpu_data;
168 
169 /* common cpu data for all cpus */
170 struct cpuinfo_x86 boot_cpu_data __read_mostly;
171 EXPORT_SYMBOL(boot_cpu_data);
172 
173 unsigned int def_to_bigsmp;
174 
175 /* for MCA, but anyone else can use it if they want */
176 unsigned int machine_id;
177 unsigned int machine_submodel_id;
178 unsigned int BIOS_revision;
179 
180 struct apm_info apm_info;
181 EXPORT_SYMBOL(apm_info);
182 
183 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
184 	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
185 struct ist_info ist_info;
186 EXPORT_SYMBOL(ist_info);
187 #else
188 struct ist_info ist_info;
189 #endif
190 
191 #else
192 struct cpuinfo_x86 boot_cpu_data __read_mostly;
193 EXPORT_SYMBOL(boot_cpu_data);
194 #endif
195 
196 
197 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
198 __visible unsigned long mmu_cr4_features __ro_after_init;
199 #else
200 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
201 #endif
202 
203 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
204 int bootloader_type, bootloader_version;
205 
206 /*
207  * Setup options
208  */
209 struct screen_info screen_info;
210 EXPORT_SYMBOL(screen_info);
211 struct edid_info edid_info;
212 EXPORT_SYMBOL_GPL(edid_info);
213 
214 extern int root_mountflags;
215 
216 unsigned long saved_video_mode;
217 
218 #define RAMDISK_IMAGE_START_MASK	0x07FF
219 #define RAMDISK_PROMPT_FLAG		0x8000
220 #define RAMDISK_LOAD_FLAG		0x4000
221 
222 static char __initdata command_line[COMMAND_LINE_SIZE];
223 #ifdef CONFIG_CMDLINE_BOOL
224 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
225 #endif
226 
227 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
228 struct edd edd;
229 #ifdef CONFIG_EDD_MODULE
230 EXPORT_SYMBOL(edd);
231 #endif
232 /**
233  * copy_edd() - Copy the BIOS EDD information
234  *              from boot_params into a safe place.
235  *
236  */
237 static inline void __init copy_edd(void)
238 {
239      memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
240 	    sizeof(edd.mbr_signature));
241      memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
242      edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
243      edd.edd_info_nr = boot_params.eddbuf_entries;
244 }
245 #else
246 static inline void __init copy_edd(void)
247 {
248 }
249 #endif
250 
251 void * __init extend_brk(size_t size, size_t align)
252 {
253 	size_t mask = align - 1;
254 	void *ret;
255 
256 	BUG_ON(_brk_start == 0);
257 	BUG_ON(align & mask);
258 
259 	_brk_end = (_brk_end + mask) & ~mask;
260 	BUG_ON((char *)(_brk_end + size) > __brk_limit);
261 
262 	ret = (void *)_brk_end;
263 	_brk_end += size;
264 
265 	memset(ret, 0, size);
266 
267 	return ret;
268 }
269 
270 #ifdef CONFIG_X86_32
271 static void __init cleanup_highmap(void)
272 {
273 }
274 #endif
275 
276 static void __init reserve_brk(void)
277 {
278 	if (_brk_end > _brk_start)
279 		memblock_reserve(__pa_symbol(_brk_start),
280 				 _brk_end - _brk_start);
281 
282 	/* Mark brk area as locked down and no longer taking any
283 	   new allocations */
284 	_brk_start = 0;
285 }
286 
287 u64 relocated_ramdisk;
288 
289 #ifdef CONFIG_BLK_DEV_INITRD
290 
291 static u64 __init get_ramdisk_image(void)
292 {
293 	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
294 
295 	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
296 
297 	return ramdisk_image;
298 }
299 static u64 __init get_ramdisk_size(void)
300 {
301 	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
302 
303 	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
304 
305 	return ramdisk_size;
306 }
307 
308 static void __init relocate_initrd(void)
309 {
310 	/* Assume only end is not page aligned */
311 	u64 ramdisk_image = get_ramdisk_image();
312 	u64 ramdisk_size  = get_ramdisk_size();
313 	u64 area_size     = PAGE_ALIGN(ramdisk_size);
314 
315 	/* We need to move the initrd down into directly mapped mem */
316 	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
317 						   area_size, PAGE_SIZE);
318 
319 	if (!relocated_ramdisk)
320 		panic("Cannot find place for new RAMDISK of size %lld\n",
321 		      ramdisk_size);
322 
323 	/* Note: this includes all the mem currently occupied by
324 	   the initrd, we rely on that fact to keep the data intact. */
325 	memblock_reserve(relocated_ramdisk, area_size);
326 	initrd_start = relocated_ramdisk + PAGE_OFFSET;
327 	initrd_end   = initrd_start + ramdisk_size;
328 	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
329 	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
330 
331 	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
332 
333 	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
334 		" [mem %#010llx-%#010llx]\n",
335 		ramdisk_image, ramdisk_image + ramdisk_size - 1,
336 		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
337 }
338 
339 static void __init early_reserve_initrd(void)
340 {
341 	/* Assume only end is not page aligned */
342 	u64 ramdisk_image = get_ramdisk_image();
343 	u64 ramdisk_size  = get_ramdisk_size();
344 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
345 
346 	if (!boot_params.hdr.type_of_loader ||
347 	    !ramdisk_image || !ramdisk_size)
348 		return;		/* No initrd provided by bootloader */
349 
350 	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
351 }
352 static void __init reserve_initrd(void)
353 {
354 	/* Assume only end is not page aligned */
355 	u64 ramdisk_image = get_ramdisk_image();
356 	u64 ramdisk_size  = get_ramdisk_size();
357 	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
358 	u64 mapped_size;
359 
360 	if (!boot_params.hdr.type_of_loader ||
361 	    !ramdisk_image || !ramdisk_size)
362 		return;		/* No initrd provided by bootloader */
363 
364 	initrd_start = 0;
365 
366 	mapped_size = memblock_mem_size(max_pfn_mapped);
367 	if (ramdisk_size >= (mapped_size>>1))
368 		panic("initrd too large to handle, "
369 		       "disabling initrd (%lld needed, %lld available)\n",
370 		       ramdisk_size, mapped_size>>1);
371 
372 	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
373 			ramdisk_end - 1);
374 
375 	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
376 				PFN_DOWN(ramdisk_end))) {
377 		/* All are mapped, easy case */
378 		initrd_start = ramdisk_image + PAGE_OFFSET;
379 		initrd_end = initrd_start + ramdisk_size;
380 		return;
381 	}
382 
383 	relocate_initrd();
384 
385 	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
386 }
387 
388 #else
389 static void __init early_reserve_initrd(void)
390 {
391 }
392 static void __init reserve_initrd(void)
393 {
394 }
395 #endif /* CONFIG_BLK_DEV_INITRD */
396 
397 static void __init parse_setup_data(void)
398 {
399 	struct setup_data *data;
400 	u64 pa_data, pa_next;
401 
402 	pa_data = boot_params.hdr.setup_data;
403 	while (pa_data) {
404 		u32 data_len, data_type;
405 
406 		data = early_memremap(pa_data, sizeof(*data));
407 		data_len = data->len + sizeof(struct setup_data);
408 		data_type = data->type;
409 		pa_next = data->next;
410 		early_memunmap(data, sizeof(*data));
411 
412 		switch (data_type) {
413 		case SETUP_E820_EXT:
414 			e820__memory_setup_extended(pa_data, data_len);
415 			break;
416 		case SETUP_DTB:
417 			add_dtb(pa_data);
418 			break;
419 		case SETUP_EFI:
420 			parse_efi_setup(pa_data, data_len);
421 			break;
422 		default:
423 			break;
424 		}
425 		pa_data = pa_next;
426 	}
427 }
428 
429 static void __init memblock_x86_reserve_range_setup_data(void)
430 {
431 	struct setup_data *data;
432 	u64 pa_data;
433 
434 	pa_data = boot_params.hdr.setup_data;
435 	while (pa_data) {
436 		data = early_memremap(pa_data, sizeof(*data));
437 		memblock_reserve(pa_data, sizeof(*data) + data->len);
438 		pa_data = data->next;
439 		early_memunmap(data, sizeof(*data));
440 	}
441 }
442 
443 /*
444  * --------- Crashkernel reservation ------------------------------
445  */
446 
447 #ifdef CONFIG_KEXEC_CORE
448 
449 /* 16M alignment for crash kernel regions */
450 #define CRASH_ALIGN		(16 << 20)
451 
452 /*
453  * Keep the crash kernel below this limit.  On 32 bits earlier kernels
454  * would limit the kernel to the low 512 MiB due to mapping restrictions.
455  * On 64bit, old kexec-tools need to under 896MiB.
456  */
457 #ifdef CONFIG_X86_32
458 # define CRASH_ADDR_LOW_MAX	(512 << 20)
459 # define CRASH_ADDR_HIGH_MAX	(512 << 20)
460 #else
461 # define CRASH_ADDR_LOW_MAX	(896UL << 20)
462 # define CRASH_ADDR_HIGH_MAX	MAXMEM
463 #endif
464 
465 static int __init reserve_crashkernel_low(void)
466 {
467 #ifdef CONFIG_X86_64
468 	unsigned long long base, low_base = 0, low_size = 0;
469 	unsigned long total_low_mem;
470 	int ret;
471 
472 	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
473 
474 	/* crashkernel=Y,low */
475 	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
476 	if (ret) {
477 		/*
478 		 * two parts from lib/swiotlb.c:
479 		 * -swiotlb size: user-specified with swiotlb= or default.
480 		 *
481 		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
482 		 * to 8M for other buffers that may need to stay low too. Also
483 		 * make sure we allocate enough extra low memory so that we
484 		 * don't run out of DMA buffers for 32-bit devices.
485 		 */
486 		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
487 	} else {
488 		/* passed with crashkernel=0,low ? */
489 		if (!low_size)
490 			return 0;
491 	}
492 
493 	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
494 	if (!low_base) {
495 		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
496 		       (unsigned long)(low_size >> 20));
497 		return -ENOMEM;
498 	}
499 
500 	ret = memblock_reserve(low_base, low_size);
501 	if (ret) {
502 		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
503 		return ret;
504 	}
505 
506 	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
507 		(unsigned long)(low_size >> 20),
508 		(unsigned long)(low_base >> 20),
509 		(unsigned long)(total_low_mem >> 20));
510 
511 	crashk_low_res.start = low_base;
512 	crashk_low_res.end   = low_base + low_size - 1;
513 	insert_resource(&iomem_resource, &crashk_low_res);
514 #endif
515 	return 0;
516 }
517 
518 static void __init reserve_crashkernel(void)
519 {
520 	unsigned long long crash_size, crash_base, total_mem;
521 	bool high = false;
522 	int ret;
523 
524 	total_mem = memblock_phys_mem_size();
525 
526 	/* crashkernel=XM */
527 	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
528 	if (ret != 0 || crash_size <= 0) {
529 		/* crashkernel=X,high */
530 		ret = parse_crashkernel_high(boot_command_line, total_mem,
531 					     &crash_size, &crash_base);
532 		if (ret != 0 || crash_size <= 0)
533 			return;
534 		high = true;
535 	}
536 
537 	/* 0 means: find the address automatically */
538 	if (crash_base <= 0) {
539 		/*
540 		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
541 		 * as old kexec-tools loads bzImage below that, unless
542 		 * "crashkernel=size[KMG],high" is specified.
543 		 */
544 		crash_base = memblock_find_in_range(CRASH_ALIGN,
545 						    high ? CRASH_ADDR_HIGH_MAX
546 							 : CRASH_ADDR_LOW_MAX,
547 						    crash_size, CRASH_ALIGN);
548 		if (!crash_base) {
549 			pr_info("crashkernel reservation failed - No suitable area found.\n");
550 			return;
551 		}
552 
553 	} else {
554 		unsigned long long start;
555 
556 		start = memblock_find_in_range(crash_base,
557 					       crash_base + crash_size,
558 					       crash_size, 1 << 20);
559 		if (start != crash_base) {
560 			pr_info("crashkernel reservation failed - memory is in use.\n");
561 			return;
562 		}
563 	}
564 	ret = memblock_reserve(crash_base, crash_size);
565 	if (ret) {
566 		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
567 		return;
568 	}
569 
570 	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
571 		memblock_free(crash_base, crash_size);
572 		return;
573 	}
574 
575 	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
576 		(unsigned long)(crash_size >> 20),
577 		(unsigned long)(crash_base >> 20),
578 		(unsigned long)(total_mem >> 20));
579 
580 	crashk_res.start = crash_base;
581 	crashk_res.end   = crash_base + crash_size - 1;
582 	insert_resource(&iomem_resource, &crashk_res);
583 }
584 #else
585 static void __init reserve_crashkernel(void)
586 {
587 }
588 #endif
589 
590 static struct resource standard_io_resources[] = {
591 	{ .name = "dma1", .start = 0x00, .end = 0x1f,
592 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
593 	{ .name = "pic1", .start = 0x20, .end = 0x21,
594 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
595 	{ .name = "timer0", .start = 0x40, .end = 0x43,
596 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
597 	{ .name = "timer1", .start = 0x50, .end = 0x53,
598 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
599 	{ .name = "keyboard", .start = 0x60, .end = 0x60,
600 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
601 	{ .name = "keyboard", .start = 0x64, .end = 0x64,
602 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
603 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
604 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
605 	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
606 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
607 	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
608 		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
609 	{ .name = "fpu", .start = 0xf0, .end = 0xff,
610 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
611 };
612 
613 void __init reserve_standard_io_resources(void)
614 {
615 	int i;
616 
617 	/* request I/O space for devices used on all i[345]86 PCs */
618 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
619 		request_resource(&ioport_resource, &standard_io_resources[i]);
620 
621 }
622 
623 static __init void reserve_ibft_region(void)
624 {
625 	unsigned long addr, size = 0;
626 
627 	addr = find_ibft_region(&size);
628 
629 	if (size)
630 		memblock_reserve(addr, size);
631 }
632 
633 static bool __init snb_gfx_workaround_needed(void)
634 {
635 #ifdef CONFIG_PCI
636 	int i;
637 	u16 vendor, devid;
638 	static const __initconst u16 snb_ids[] = {
639 		0x0102,
640 		0x0112,
641 		0x0122,
642 		0x0106,
643 		0x0116,
644 		0x0126,
645 		0x010a,
646 	};
647 
648 	/* Assume no if something weird is going on with PCI */
649 	if (!early_pci_allowed())
650 		return false;
651 
652 	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
653 	if (vendor != 0x8086)
654 		return false;
655 
656 	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
657 	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
658 		if (devid == snb_ids[i])
659 			return true;
660 #endif
661 
662 	return false;
663 }
664 
665 /*
666  * Sandy Bridge graphics has trouble with certain ranges, exclude
667  * them from allocation.
668  */
669 static void __init trim_snb_memory(void)
670 {
671 	static const __initconst unsigned long bad_pages[] = {
672 		0x20050000,
673 		0x20110000,
674 		0x20130000,
675 		0x20138000,
676 		0x40004000,
677 	};
678 	int i;
679 
680 	if (!snb_gfx_workaround_needed())
681 		return;
682 
683 	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
684 
685 	/*
686 	 * Reserve all memory below the 1 MB mark that has not
687 	 * already been reserved.
688 	 */
689 	memblock_reserve(0, 1<<20);
690 
691 	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
692 		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
693 			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
694 			       bad_pages[i]);
695 	}
696 }
697 
698 /*
699  * Here we put platform-specific memory range workarounds, i.e.
700  * memory known to be corrupt or otherwise in need to be reserved on
701  * specific platforms.
702  *
703  * If this gets used more widely it could use a real dispatch mechanism.
704  */
705 static void __init trim_platform_memory_ranges(void)
706 {
707 	trim_snb_memory();
708 }
709 
710 static void __init trim_bios_range(void)
711 {
712 	/*
713 	 * A special case is the first 4Kb of memory;
714 	 * This is a BIOS owned area, not kernel ram, but generally
715 	 * not listed as such in the E820 table.
716 	 *
717 	 * This typically reserves additional memory (64KiB by default)
718 	 * since some BIOSes are known to corrupt low memory.  See the
719 	 * Kconfig help text for X86_RESERVE_LOW.
720 	 */
721 	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
722 
723 	/*
724 	 * special case: Some BIOSen report the PC BIOS
725 	 * area (640->1Mb) as ram even though it is not.
726 	 * take them out.
727 	 */
728 	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
729 
730 	e820__update_table(e820_table);
731 }
732 
733 /* called before trim_bios_range() to spare extra sanitize */
734 static void __init e820_add_kernel_range(void)
735 {
736 	u64 start = __pa_symbol(_text);
737 	u64 size = __pa_symbol(_end) - start;
738 
739 	/*
740 	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
741 	 * attempt to fix it by adding the range. We may have a confused BIOS,
742 	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
743 	 * exclude kernel range. If we really are running on top non-RAM,
744 	 * we will crash later anyways.
745 	 */
746 	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
747 		return;
748 
749 	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
750 	e820__range_remove(start, size, E820_TYPE_RAM, 0);
751 	e820__range_add(start, size, E820_TYPE_RAM);
752 }
753 
754 static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
755 
756 static int __init parse_reservelow(char *p)
757 {
758 	unsigned long long size;
759 
760 	if (!p)
761 		return -EINVAL;
762 
763 	size = memparse(p, &p);
764 
765 	if (size < 4096)
766 		size = 4096;
767 
768 	if (size > 640*1024)
769 		size = 640*1024;
770 
771 	reserve_low = size;
772 
773 	return 0;
774 }
775 
776 early_param("reservelow", parse_reservelow);
777 
778 static void __init trim_low_memory_range(void)
779 {
780 	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
781 }
782 
783 /*
784  * Dump out kernel offset information on panic.
785  */
786 static int
787 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
788 {
789 	if (kaslr_enabled()) {
790 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
791 			 kaslr_offset(),
792 			 __START_KERNEL,
793 			 __START_KERNEL_map,
794 			 MODULES_VADDR-1);
795 	} else {
796 		pr_emerg("Kernel Offset: disabled\n");
797 	}
798 
799 	return 0;
800 }
801 
802 /*
803  * Determine if we were loaded by an EFI loader.  If so, then we have also been
804  * passed the efi memmap, systab, etc., so we should use these data structures
805  * for initialization.  Note, the efi init code path is determined by the
806  * global efi_enabled. This allows the same kernel image to be used on existing
807  * systems (with a traditional BIOS) as well as on EFI systems.
808  */
809 /*
810  * setup_arch - architecture-specific boot-time initializations
811  *
812  * Note: On x86_64, fixmaps are ready for use even before this is called.
813  */
814 
815 void __init setup_arch(char **cmdline_p)
816 {
817 	memblock_reserve(__pa_symbol(_text),
818 			 (unsigned long)__bss_stop - (unsigned long)_text);
819 
820 	early_reserve_initrd();
821 
822 	/*
823 	 * At this point everything still needed from the boot loader
824 	 * or BIOS or kernel text should be early reserved or marked not
825 	 * RAM in e820. All other memory is free game.
826 	 */
827 
828 #ifdef CONFIG_X86_32
829 	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
830 
831 	/*
832 	 * copy kernel address range established so far and switch
833 	 * to the proper swapper page table
834 	 */
835 	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
836 			initial_page_table + KERNEL_PGD_BOUNDARY,
837 			KERNEL_PGD_PTRS);
838 
839 	load_cr3(swapper_pg_dir);
840 	/*
841 	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
842 	 * a cr3 based tlb flush, so the following __flush_tlb_all()
843 	 * will not flush anything because the cpu quirk which clears
844 	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
845 	 * load_cr3() above the TLB has been flushed already. The
846 	 * quirk is invoked before subsequent calls to __flush_tlb_all()
847 	 * so proper operation is guaranteed.
848 	 */
849 	__flush_tlb_all();
850 #else
851 	printk(KERN_INFO "Command line: %s\n", boot_command_line);
852 	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
853 #endif
854 
855 	/*
856 	 * If we have OLPC OFW, we might end up relocating the fixmap due to
857 	 * reserve_top(), so do this before touching the ioremap area.
858 	 */
859 	olpc_ofw_detect();
860 
861 	idt_setup_early_traps();
862 	early_cpu_init();
863 	early_ioremap_init();
864 
865 	setup_olpc_ofw_pgd();
866 
867 	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
868 	screen_info = boot_params.screen_info;
869 	edid_info = boot_params.edid_info;
870 #ifdef CONFIG_X86_32
871 	apm_info.bios = boot_params.apm_bios_info;
872 	ist_info = boot_params.ist_info;
873 #endif
874 	saved_video_mode = boot_params.hdr.vid_mode;
875 	bootloader_type = boot_params.hdr.type_of_loader;
876 	if ((bootloader_type >> 4) == 0xe) {
877 		bootloader_type &= 0xf;
878 		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
879 	}
880 	bootloader_version  = bootloader_type & 0xf;
881 	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
882 
883 #ifdef CONFIG_BLK_DEV_RAM
884 	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
885 	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
886 	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
887 #endif
888 #ifdef CONFIG_EFI
889 	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
890 		     EFI32_LOADER_SIGNATURE, 4)) {
891 		set_bit(EFI_BOOT, &efi.flags);
892 	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
893 		     EFI64_LOADER_SIGNATURE, 4)) {
894 		set_bit(EFI_BOOT, &efi.flags);
895 		set_bit(EFI_64BIT, &efi.flags);
896 	}
897 #endif
898 
899 	x86_init.oem.arch_setup();
900 
901 	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
902 	e820__memory_setup();
903 	parse_setup_data();
904 
905 	copy_edd();
906 
907 	if (!boot_params.hdr.root_flags)
908 		root_mountflags &= ~MS_RDONLY;
909 	init_mm.start_code = (unsigned long) _text;
910 	init_mm.end_code = (unsigned long) _etext;
911 	init_mm.end_data = (unsigned long) _edata;
912 	init_mm.brk = _brk_end;
913 
914 	mpx_mm_init(&init_mm);
915 
916 	code_resource.start = __pa_symbol(_text);
917 	code_resource.end = __pa_symbol(_etext)-1;
918 	data_resource.start = __pa_symbol(_etext);
919 	data_resource.end = __pa_symbol(_edata)-1;
920 	bss_resource.start = __pa_symbol(__bss_start);
921 	bss_resource.end = __pa_symbol(__bss_stop)-1;
922 
923 #ifdef CONFIG_CMDLINE_BOOL
924 #ifdef CONFIG_CMDLINE_OVERRIDE
925 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
926 #else
927 	if (builtin_cmdline[0]) {
928 		/* append boot loader cmdline to builtin */
929 		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
930 		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
931 		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
932 	}
933 #endif
934 #endif
935 
936 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
937 	*cmdline_p = command_line;
938 
939 	/*
940 	 * x86_configure_nx() is called before parse_early_param() to detect
941 	 * whether hardware doesn't support NX (so that the early EHCI debug
942 	 * console setup can safely call set_fixmap()). It may then be called
943 	 * again from within noexec_setup() during parsing early parameters
944 	 * to honor the respective command line option.
945 	 */
946 	x86_configure_nx();
947 
948 	parse_early_param();
949 
950 	if (efi_enabled(EFI_BOOT))
951 		efi_memblock_x86_reserve_range();
952 #ifdef CONFIG_MEMORY_HOTPLUG
953 	/*
954 	 * Memory used by the kernel cannot be hot-removed because Linux
955 	 * cannot migrate the kernel pages. When memory hotplug is
956 	 * enabled, we should prevent memblock from allocating memory
957 	 * for the kernel.
958 	 *
959 	 * ACPI SRAT records all hotpluggable memory ranges. But before
960 	 * SRAT is parsed, we don't know about it.
961 	 *
962 	 * The kernel image is loaded into memory at very early time. We
963 	 * cannot prevent this anyway. So on NUMA system, we set any
964 	 * node the kernel resides in as un-hotpluggable.
965 	 *
966 	 * Since on modern servers, one node could have double-digit
967 	 * gigabytes memory, we can assume the memory around the kernel
968 	 * image is also un-hotpluggable. So before SRAT is parsed, just
969 	 * allocate memory near the kernel image to try the best to keep
970 	 * the kernel away from hotpluggable memory.
971 	 */
972 	if (movable_node_is_enabled())
973 		memblock_set_bottom_up(true);
974 #endif
975 
976 	x86_report_nx();
977 
978 	/* after early param, so could get panic from serial */
979 	memblock_x86_reserve_range_setup_data();
980 
981 	if (acpi_mps_check()) {
982 #ifdef CONFIG_X86_LOCAL_APIC
983 		disable_apic = 1;
984 #endif
985 		setup_clear_cpu_cap(X86_FEATURE_APIC);
986 	}
987 
988 #ifdef CONFIG_PCI
989 	if (pci_early_dump_regs)
990 		early_dump_pci_devices();
991 #endif
992 
993 	e820__reserve_setup_data();
994 	e820__finish_early_params();
995 
996 	if (efi_enabled(EFI_BOOT))
997 		efi_init();
998 
999 	dmi_scan_machine();
1000 	dmi_memdev_walk();
1001 	dmi_set_dump_stack_arch_desc();
1002 
1003 	/*
1004 	 * VMware detection requires dmi to be available, so this
1005 	 * needs to be done after dmi_scan_machine(), for the boot CPU.
1006 	 */
1007 	init_hypervisor_platform();
1008 
1009 	x86_init.resources.probe_roms();
1010 
1011 	/* after parse_early_param, so could debug it */
1012 	insert_resource(&iomem_resource, &code_resource);
1013 	insert_resource(&iomem_resource, &data_resource);
1014 	insert_resource(&iomem_resource, &bss_resource);
1015 
1016 	e820_add_kernel_range();
1017 	trim_bios_range();
1018 #ifdef CONFIG_X86_32
1019 	if (ppro_with_ram_bug()) {
1020 		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1021 				  E820_TYPE_RESERVED);
1022 		e820__update_table(e820_table);
1023 		printk(KERN_INFO "fixed physical RAM map:\n");
1024 		e820__print_table("bad_ppro");
1025 	}
1026 #else
1027 	early_gart_iommu_check();
1028 #endif
1029 
1030 	/*
1031 	 * partially used pages are not usable - thus
1032 	 * we are rounding upwards:
1033 	 */
1034 	max_pfn = e820__end_of_ram_pfn();
1035 
1036 	/* update e820 for memory not covered by WB MTRRs */
1037 	mtrr_bp_init();
1038 	if (mtrr_trim_uncached_memory(max_pfn))
1039 		max_pfn = e820__end_of_ram_pfn();
1040 
1041 	max_possible_pfn = max_pfn;
1042 
1043 	/*
1044 	 * This call is required when the CPU does not support PAT. If
1045 	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1046 	 * effect.
1047 	 */
1048 	init_cache_modes();
1049 
1050 	/*
1051 	 * Define random base addresses for memory sections after max_pfn is
1052 	 * defined and before each memory section base is used.
1053 	 */
1054 	kernel_randomize_memory();
1055 
1056 #ifdef CONFIG_X86_32
1057 	/* max_low_pfn get updated here */
1058 	find_low_pfn_range();
1059 #else
1060 	check_x2apic();
1061 
1062 	/* How many end-of-memory variables you have, grandma! */
1063 	/* need this before calling reserve_initrd */
1064 	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1065 		max_low_pfn = e820__end_of_low_ram_pfn();
1066 	else
1067 		max_low_pfn = max_pfn;
1068 
1069 	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1070 #endif
1071 
1072 	/*
1073 	 * Find and reserve possible boot-time SMP configuration:
1074 	 */
1075 	find_smp_config();
1076 
1077 	reserve_ibft_region();
1078 
1079 	early_alloc_pgt_buf();
1080 
1081 	/*
1082 	 * Need to conclude brk, before e820__memblock_setup()
1083 	 *  it could use memblock_find_in_range, could overlap with
1084 	 *  brk area.
1085 	 */
1086 	reserve_brk();
1087 
1088 	cleanup_highmap();
1089 
1090 	memblock_set_current_limit(ISA_END_ADDRESS);
1091 	e820__memblock_setup();
1092 
1093 	reserve_bios_regions();
1094 
1095 	if (efi_enabled(EFI_MEMMAP)) {
1096 		efi_fake_memmap();
1097 		efi_find_mirror();
1098 		efi_esrt_init();
1099 
1100 		/*
1101 		 * The EFI specification says that boot service code won't be
1102 		 * called after ExitBootServices(). This is, in fact, a lie.
1103 		 */
1104 		efi_reserve_boot_services();
1105 	}
1106 
1107 	/* preallocate 4k for mptable mpc */
1108 	e820__memblock_alloc_reserved_mpc_new();
1109 
1110 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1111 	setup_bios_corruption_check();
1112 #endif
1113 
1114 #ifdef CONFIG_X86_32
1115 	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1116 			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1117 #endif
1118 
1119 	reserve_real_mode();
1120 
1121 	trim_platform_memory_ranges();
1122 	trim_low_memory_range();
1123 
1124 	init_mem_mapping();
1125 
1126 	idt_setup_early_pf();
1127 
1128 	/*
1129 	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1130 	 * with the current CR4 value.  This may not be necessary, but
1131 	 * auditing all the early-boot CR4 manipulation would be needed to
1132 	 * rule it out.
1133 	 *
1134 	 * Mask off features that don't work outside long mode (just
1135 	 * PCIDE for now).
1136 	 */
1137 	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1138 
1139 	memblock_set_current_limit(get_max_mapped());
1140 
1141 	/*
1142 	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1143 	 */
1144 
1145 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1146 	if (init_ohci1394_dma_early)
1147 		init_ohci1394_dma_on_all_controllers();
1148 #endif
1149 	/* Allocate bigger log buffer */
1150 	setup_log_buf(1);
1151 
1152 	if (efi_enabled(EFI_BOOT)) {
1153 		switch (boot_params.secure_boot) {
1154 		case efi_secureboot_mode_disabled:
1155 			pr_info("Secure boot disabled\n");
1156 			break;
1157 		case efi_secureboot_mode_enabled:
1158 			pr_info("Secure boot enabled\n");
1159 			break;
1160 		default:
1161 			pr_info("Secure boot could not be determined\n");
1162 			break;
1163 		}
1164 	}
1165 
1166 	reserve_initrd();
1167 
1168 	acpi_table_upgrade();
1169 
1170 	vsmp_init();
1171 
1172 	io_delay_init();
1173 
1174 	early_platform_quirks();
1175 
1176 	/*
1177 	 * Parse the ACPI tables for possible boot-time SMP configuration.
1178 	 */
1179 	acpi_boot_table_init();
1180 
1181 	early_acpi_boot_init();
1182 
1183 	initmem_init();
1184 	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1185 
1186 	/*
1187 	 * Reserve memory for crash kernel after SRAT is parsed so that it
1188 	 * won't consume hotpluggable memory.
1189 	 */
1190 	reserve_crashkernel();
1191 
1192 	memblock_find_dma_reserve();
1193 
1194 #ifdef CONFIG_KVM_GUEST
1195 	kvmclock_init();
1196 #endif
1197 
1198 	tsc_early_delay_calibrate();
1199 	if (!early_xdbc_setup_hardware())
1200 		early_xdbc_register_console();
1201 
1202 	x86_init.paging.pagetable_init();
1203 
1204 	kasan_init();
1205 
1206 	/*
1207 	 * Sync back kernel address range.
1208 	 *
1209 	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1210 	 * this call?
1211 	 */
1212 	sync_initial_page_table();
1213 
1214 	tboot_probe();
1215 
1216 	map_vsyscall();
1217 
1218 	generic_apic_probe();
1219 
1220 	early_quirks();
1221 
1222 	/*
1223 	 * Read APIC and some other early information from ACPI tables.
1224 	 */
1225 	acpi_boot_init();
1226 	sfi_init();
1227 	x86_dtb_init();
1228 
1229 	/*
1230 	 * get boot-time SMP configuration:
1231 	 */
1232 	get_smp_config();
1233 
1234 	/*
1235 	 * Systems w/o ACPI and mptables might not have it mapped the local
1236 	 * APIC yet, but prefill_possible_map() might need to access it.
1237 	 */
1238 	init_apic_mappings();
1239 
1240 	prefill_possible_map();
1241 
1242 	init_cpu_to_node();
1243 
1244 	io_apic_init_mappings();
1245 
1246 	x86_init.hyper.guest_late_init();
1247 
1248 	e820__reserve_resources();
1249 	e820__register_nosave_regions(max_low_pfn);
1250 
1251 	x86_init.resources.reserve_resources();
1252 
1253 	e820__setup_pci_gap();
1254 
1255 #ifdef CONFIG_VT
1256 #if defined(CONFIG_VGA_CONSOLE)
1257 	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1258 		conswitchp = &vga_con;
1259 #elif defined(CONFIG_DUMMY_CONSOLE)
1260 	conswitchp = &dummy_con;
1261 #endif
1262 #endif
1263 	x86_init.oem.banner();
1264 
1265 	x86_init.timers.wallclock_init();
1266 
1267 	mcheck_init();
1268 
1269 	arch_init_ideal_nops();
1270 
1271 	register_refined_jiffies(CLOCK_TICK_RATE);
1272 
1273 #ifdef CONFIG_EFI
1274 	if (efi_enabled(EFI_BOOT))
1275 		efi_apply_memmap_quirks();
1276 #endif
1277 
1278 	unwind_init();
1279 }
1280 
1281 #ifdef CONFIG_X86_32
1282 
1283 static struct resource video_ram_resource = {
1284 	.name	= "Video RAM area",
1285 	.start	= 0xa0000,
1286 	.end	= 0xbffff,
1287 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1288 };
1289 
1290 void __init i386_reserve_resources(void)
1291 {
1292 	request_resource(&iomem_resource, &video_ram_resource);
1293 	reserve_standard_io_resources();
1294 }
1295 
1296 #endif /* CONFIG_X86_32 */
1297 
1298 static struct notifier_block kernel_offset_notifier = {
1299 	.notifier_call = dump_kernel_offset
1300 };
1301 
1302 static int __init register_kernel_offset_dumper(void)
1303 {
1304 	atomic_notifier_chain_register(&panic_notifier_list,
1305 					&kernel_offset_notifier);
1306 	return 0;
1307 }
1308 __initcall(register_kernel_offset_dumper);
1309 
1310 void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1311 {
1312 	if (!boot_cpu_has(X86_FEATURE_OSPKE))
1313 		return;
1314 
1315 	seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1316 }
1317