1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * This file contains the setup_arch() code, which handles the architecture-dependent 6 * parts of early kernel initialization. 7 */ 8 #include <linux/acpi.h> 9 #include <linux/console.h> 10 #include <linux/crash_dump.h> 11 #include <linux/dma-map-ops.h> 12 #include <linux/dmi.h> 13 #include <linux/efi.h> 14 #include <linux/ima.h> 15 #include <linux/init_ohci1394_dma.h> 16 #include <linux/initrd.h> 17 #include <linux/iscsi_ibft.h> 18 #include <linux/memblock.h> 19 #include <linux/panic_notifier.h> 20 #include <linux/pci.h> 21 #include <linux/root_dev.h> 22 #include <linux/hugetlb.h> 23 #include <linux/tboot.h> 24 #include <linux/usb/xhci-dbgp.h> 25 #include <linux/static_call.h> 26 #include <linux/swiotlb.h> 27 #include <linux/random.h> 28 29 #include <uapi/linux/mount.h> 30 31 #include <xen/xen.h> 32 33 #include <asm/apic.h> 34 #include <asm/efi.h> 35 #include <asm/numa.h> 36 #include <asm/bios_ebda.h> 37 #include <asm/bugs.h> 38 #include <asm/cacheinfo.h> 39 #include <asm/cpu.h> 40 #include <asm/efi.h> 41 #include <asm/gart.h> 42 #include <asm/hypervisor.h> 43 #include <asm/io_apic.h> 44 #include <asm/kasan.h> 45 #include <asm/kaslr.h> 46 #include <asm/mce.h> 47 #include <asm/memtype.h> 48 #include <asm/mtrr.h> 49 #include <asm/realmode.h> 50 #include <asm/olpc_ofw.h> 51 #include <asm/pci-direct.h> 52 #include <asm/prom.h> 53 #include <asm/proto.h> 54 #include <asm/thermal.h> 55 #include <asm/unwind.h> 56 #include <asm/vsyscall.h> 57 #include <linux/vmalloc.h> 58 59 /* 60 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB 61 * max_pfn_mapped: highest directly mapped pfn > 4 GB 62 * 63 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are 64 * represented by pfn_mapped[]. 65 */ 66 unsigned long max_low_pfn_mapped; 67 unsigned long max_pfn_mapped; 68 69 #ifdef CONFIG_DMI 70 RESERVE_BRK(dmi_alloc, 65536); 71 #endif 72 73 74 unsigned long _brk_start = (unsigned long)__brk_base; 75 unsigned long _brk_end = (unsigned long)__brk_base; 76 77 struct boot_params boot_params; 78 79 /* 80 * These are the four main kernel memory regions, we put them into 81 * the resource tree so that kdump tools and other debugging tools 82 * recover it: 83 */ 84 85 static struct resource rodata_resource = { 86 .name = "Kernel rodata", 87 .start = 0, 88 .end = 0, 89 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 90 }; 91 92 static struct resource data_resource = { 93 .name = "Kernel data", 94 .start = 0, 95 .end = 0, 96 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 97 }; 98 99 static struct resource code_resource = { 100 .name = "Kernel code", 101 .start = 0, 102 .end = 0, 103 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 104 }; 105 106 static struct resource bss_resource = { 107 .name = "Kernel bss", 108 .start = 0, 109 .end = 0, 110 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 111 }; 112 113 114 #ifdef CONFIG_X86_32 115 /* CPU data as detected by the assembly code in head_32.S */ 116 struct cpuinfo_x86 new_cpu_data; 117 118 struct apm_info apm_info; 119 EXPORT_SYMBOL(apm_info); 120 121 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \ 122 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE) 123 struct ist_info ist_info; 124 EXPORT_SYMBOL(ist_info); 125 #else 126 struct ist_info ist_info; 127 #endif 128 129 #endif 130 131 struct cpuinfo_x86 boot_cpu_data __read_mostly; 132 EXPORT_SYMBOL(boot_cpu_data); 133 134 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64) 135 __visible unsigned long mmu_cr4_features __ro_after_init; 136 #else 137 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE; 138 #endif 139 140 #ifdef CONFIG_IMA 141 static phys_addr_t ima_kexec_buffer_phys; 142 static size_t ima_kexec_buffer_size; 143 #endif 144 145 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */ 146 int bootloader_type, bootloader_version; 147 148 /* 149 * Setup options 150 */ 151 struct screen_info screen_info; 152 EXPORT_SYMBOL(screen_info); 153 struct edid_info edid_info; 154 EXPORT_SYMBOL_GPL(edid_info); 155 156 extern int root_mountflags; 157 158 unsigned long saved_video_mode; 159 160 #define RAMDISK_IMAGE_START_MASK 0x07FF 161 #define RAMDISK_PROMPT_FLAG 0x8000 162 #define RAMDISK_LOAD_FLAG 0x4000 163 164 static char __initdata command_line[COMMAND_LINE_SIZE]; 165 #ifdef CONFIG_CMDLINE_BOOL 166 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE; 167 #endif 168 169 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) 170 struct edd edd; 171 #ifdef CONFIG_EDD_MODULE 172 EXPORT_SYMBOL(edd); 173 #endif 174 /** 175 * copy_edd() - Copy the BIOS EDD information 176 * from boot_params into a safe place. 177 * 178 */ 179 static inline void __init copy_edd(void) 180 { 181 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer, 182 sizeof(edd.mbr_signature)); 183 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info)); 184 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries; 185 edd.edd_info_nr = boot_params.eddbuf_entries; 186 } 187 #else 188 static inline void __init copy_edd(void) 189 { 190 } 191 #endif 192 193 void * __init extend_brk(size_t size, size_t align) 194 { 195 size_t mask = align - 1; 196 void *ret; 197 198 BUG_ON(_brk_start == 0); 199 BUG_ON(align & mask); 200 201 _brk_end = (_brk_end + mask) & ~mask; 202 BUG_ON((char *)(_brk_end + size) > __brk_limit); 203 204 ret = (void *)_brk_end; 205 _brk_end += size; 206 207 memset(ret, 0, size); 208 209 return ret; 210 } 211 212 #ifdef CONFIG_X86_32 213 static void __init cleanup_highmap(void) 214 { 215 } 216 #endif 217 218 static void __init reserve_brk(void) 219 { 220 if (_brk_end > _brk_start) 221 memblock_reserve(__pa_symbol(_brk_start), 222 _brk_end - _brk_start); 223 224 /* Mark brk area as locked down and no longer taking any 225 new allocations */ 226 _brk_start = 0; 227 } 228 229 u64 relocated_ramdisk; 230 231 #ifdef CONFIG_BLK_DEV_INITRD 232 233 static u64 __init get_ramdisk_image(void) 234 { 235 u64 ramdisk_image = boot_params.hdr.ramdisk_image; 236 237 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32; 238 239 if (ramdisk_image == 0) 240 ramdisk_image = phys_initrd_start; 241 242 return ramdisk_image; 243 } 244 static u64 __init get_ramdisk_size(void) 245 { 246 u64 ramdisk_size = boot_params.hdr.ramdisk_size; 247 248 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32; 249 250 if (ramdisk_size == 0) 251 ramdisk_size = phys_initrd_size; 252 253 return ramdisk_size; 254 } 255 256 static void __init relocate_initrd(void) 257 { 258 /* Assume only end is not page aligned */ 259 u64 ramdisk_image = get_ramdisk_image(); 260 u64 ramdisk_size = get_ramdisk_size(); 261 u64 area_size = PAGE_ALIGN(ramdisk_size); 262 263 /* We need to move the initrd down into directly mapped mem */ 264 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0, 265 PFN_PHYS(max_pfn_mapped)); 266 if (!relocated_ramdisk) 267 panic("Cannot find place for new RAMDISK of size %lld\n", 268 ramdisk_size); 269 270 initrd_start = relocated_ramdisk + PAGE_OFFSET; 271 initrd_end = initrd_start + ramdisk_size; 272 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n", 273 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 274 275 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size); 276 277 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to" 278 " [mem %#010llx-%#010llx]\n", 279 ramdisk_image, ramdisk_image + ramdisk_size - 1, 280 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1); 281 } 282 283 static void __init early_reserve_initrd(void) 284 { 285 /* Assume only end is not page aligned */ 286 u64 ramdisk_image = get_ramdisk_image(); 287 u64 ramdisk_size = get_ramdisk_size(); 288 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 289 290 if (!boot_params.hdr.type_of_loader || 291 !ramdisk_image || !ramdisk_size) 292 return; /* No initrd provided by bootloader */ 293 294 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image); 295 } 296 297 static void __init reserve_initrd(void) 298 { 299 /* Assume only end is not page aligned */ 300 u64 ramdisk_image = get_ramdisk_image(); 301 u64 ramdisk_size = get_ramdisk_size(); 302 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size); 303 304 if (!boot_params.hdr.type_of_loader || 305 !ramdisk_image || !ramdisk_size) 306 return; /* No initrd provided by bootloader */ 307 308 initrd_start = 0; 309 310 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image, 311 ramdisk_end - 1); 312 313 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image), 314 PFN_DOWN(ramdisk_end))) { 315 /* All are mapped, easy case */ 316 initrd_start = ramdisk_image + PAGE_OFFSET; 317 initrd_end = initrd_start + ramdisk_size; 318 return; 319 } 320 321 relocate_initrd(); 322 323 memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image); 324 } 325 326 #else 327 static void __init early_reserve_initrd(void) 328 { 329 } 330 static void __init reserve_initrd(void) 331 { 332 } 333 #endif /* CONFIG_BLK_DEV_INITRD */ 334 335 static void __init add_early_ima_buffer(u64 phys_addr) 336 { 337 #ifdef CONFIG_IMA 338 struct ima_setup_data *data; 339 340 data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data)); 341 if (!data) { 342 pr_warn("setup: failed to memremap ima_setup_data entry\n"); 343 return; 344 } 345 346 if (data->size) { 347 memblock_reserve(data->addr, data->size); 348 ima_kexec_buffer_phys = data->addr; 349 ima_kexec_buffer_size = data->size; 350 } 351 352 early_memunmap(data, sizeof(*data)); 353 #else 354 pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n"); 355 #endif 356 } 357 358 #if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE) 359 int __init ima_free_kexec_buffer(void) 360 { 361 int rc; 362 363 if (!ima_kexec_buffer_size) 364 return -ENOENT; 365 366 rc = memblock_phys_free(ima_kexec_buffer_phys, 367 ima_kexec_buffer_size); 368 if (rc) 369 return rc; 370 371 ima_kexec_buffer_phys = 0; 372 ima_kexec_buffer_size = 0; 373 374 return 0; 375 } 376 377 int __init ima_get_kexec_buffer(void **addr, size_t *size) 378 { 379 if (!ima_kexec_buffer_size) 380 return -ENOENT; 381 382 *addr = __va(ima_kexec_buffer_phys); 383 *size = ima_kexec_buffer_size; 384 385 return 0; 386 } 387 #endif 388 389 static void __init parse_setup_data(void) 390 { 391 struct setup_data *data; 392 u64 pa_data, pa_next; 393 394 pa_data = boot_params.hdr.setup_data; 395 while (pa_data) { 396 u32 data_len, data_type; 397 398 data = early_memremap(pa_data, sizeof(*data)); 399 data_len = data->len + sizeof(struct setup_data); 400 data_type = data->type; 401 pa_next = data->next; 402 early_memunmap(data, sizeof(*data)); 403 404 switch (data_type) { 405 case SETUP_E820_EXT: 406 e820__memory_setup_extended(pa_data, data_len); 407 break; 408 case SETUP_DTB: 409 add_dtb(pa_data); 410 break; 411 case SETUP_EFI: 412 parse_efi_setup(pa_data, data_len); 413 break; 414 case SETUP_IMA: 415 add_early_ima_buffer(pa_data); 416 break; 417 case SETUP_RNG_SEED: 418 data = early_memremap(pa_data, data_len); 419 add_bootloader_randomness(data->data, data->len); 420 /* Zero seed for forward secrecy. */ 421 memzero_explicit(data->data, data->len); 422 /* Zero length in case we find ourselves back here by accident. */ 423 memzero_explicit(&data->len, sizeof(data->len)); 424 early_memunmap(data, data_len); 425 break; 426 default: 427 break; 428 } 429 pa_data = pa_next; 430 } 431 } 432 433 static void __init memblock_x86_reserve_range_setup_data(void) 434 { 435 struct setup_indirect *indirect; 436 struct setup_data *data; 437 u64 pa_data, pa_next; 438 u32 len; 439 440 pa_data = boot_params.hdr.setup_data; 441 while (pa_data) { 442 data = early_memremap(pa_data, sizeof(*data)); 443 if (!data) { 444 pr_warn("setup: failed to memremap setup_data entry\n"); 445 return; 446 } 447 448 len = sizeof(*data); 449 pa_next = data->next; 450 451 memblock_reserve(pa_data, sizeof(*data) + data->len); 452 453 if (data->type == SETUP_INDIRECT) { 454 len += data->len; 455 early_memunmap(data, sizeof(*data)); 456 data = early_memremap(pa_data, len); 457 if (!data) { 458 pr_warn("setup: failed to memremap indirect setup_data\n"); 459 return; 460 } 461 462 indirect = (struct setup_indirect *)data->data; 463 464 if (indirect->type != SETUP_INDIRECT) 465 memblock_reserve(indirect->addr, indirect->len); 466 } 467 468 pa_data = pa_next; 469 early_memunmap(data, len); 470 } 471 } 472 473 /* 474 * --------- Crashkernel reservation ------------------------------ 475 */ 476 477 /* 16M alignment for crash kernel regions */ 478 #define CRASH_ALIGN SZ_16M 479 480 /* 481 * Keep the crash kernel below this limit. 482 * 483 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range 484 * due to mapping restrictions. 485 * 486 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is 487 * the upper limit of system RAM in 4-level paging mode. Since the kdump 488 * jump could be from 5-level paging to 4-level paging, the jump will fail if 489 * the kernel is put above 64 TB, and during the 1st kernel bootup there's 490 * no good way to detect the paging mode of the target kernel which will be 491 * loaded for dumping. 492 */ 493 #ifdef CONFIG_X86_32 494 # define CRASH_ADDR_LOW_MAX SZ_512M 495 # define CRASH_ADDR_HIGH_MAX SZ_512M 496 #else 497 # define CRASH_ADDR_LOW_MAX SZ_4G 498 # define CRASH_ADDR_HIGH_MAX SZ_64T 499 #endif 500 501 static int __init reserve_crashkernel_low(void) 502 { 503 #ifdef CONFIG_X86_64 504 unsigned long long base, low_base = 0, low_size = 0; 505 unsigned long low_mem_limit; 506 int ret; 507 508 low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX); 509 510 /* crashkernel=Y,low */ 511 ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base); 512 if (ret) { 513 /* 514 * two parts from kernel/dma/swiotlb.c: 515 * -swiotlb size: user-specified with swiotlb= or default. 516 * 517 * -swiotlb overflow buffer: now hardcoded to 32k. We round it 518 * to 8M for other buffers that may need to stay low too. Also 519 * make sure we allocate enough extra low memory so that we 520 * don't run out of DMA buffers for 32-bit devices. 521 */ 522 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20); 523 } else { 524 /* passed with crashkernel=0,low ? */ 525 if (!low_size) 526 return 0; 527 } 528 529 low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX); 530 if (!low_base) { 531 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n", 532 (unsigned long)(low_size >> 20)); 533 return -ENOMEM; 534 } 535 536 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n", 537 (unsigned long)(low_size >> 20), 538 (unsigned long)(low_base >> 20), 539 (unsigned long)(low_mem_limit >> 20)); 540 541 crashk_low_res.start = low_base; 542 crashk_low_res.end = low_base + low_size - 1; 543 insert_resource(&iomem_resource, &crashk_low_res); 544 #endif 545 return 0; 546 } 547 548 static void __init reserve_crashkernel(void) 549 { 550 unsigned long long crash_size, crash_base, total_mem; 551 bool high = false; 552 int ret; 553 554 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 555 return; 556 557 total_mem = memblock_phys_mem_size(); 558 559 /* crashkernel=XM */ 560 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); 561 if (ret != 0 || crash_size <= 0) { 562 /* crashkernel=X,high */ 563 ret = parse_crashkernel_high(boot_command_line, total_mem, 564 &crash_size, &crash_base); 565 if (ret != 0 || crash_size <= 0) 566 return; 567 high = true; 568 } 569 570 if (xen_pv_domain()) { 571 pr_info("Ignoring crashkernel for a Xen PV domain\n"); 572 return; 573 } 574 575 /* 0 means: find the address automatically */ 576 if (!crash_base) { 577 /* 578 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory, 579 * crashkernel=x,high reserves memory over 4G, also allocates 580 * 256M extra low memory for DMA buffers and swiotlb. 581 * But the extra memory is not required for all machines. 582 * So try low memory first and fall back to high memory 583 * unless "crashkernel=size[KMG],high" is specified. 584 */ 585 if (!high) 586 crash_base = memblock_phys_alloc_range(crash_size, 587 CRASH_ALIGN, CRASH_ALIGN, 588 CRASH_ADDR_LOW_MAX); 589 if (!crash_base) 590 crash_base = memblock_phys_alloc_range(crash_size, 591 CRASH_ALIGN, CRASH_ALIGN, 592 CRASH_ADDR_HIGH_MAX); 593 if (!crash_base) { 594 pr_info("crashkernel reservation failed - No suitable area found.\n"); 595 return; 596 } 597 } else { 598 unsigned long long start; 599 600 start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base, 601 crash_base + crash_size); 602 if (start != crash_base) { 603 pr_info("crashkernel reservation failed - memory is in use.\n"); 604 return; 605 } 606 } 607 608 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) { 609 memblock_phys_free(crash_base, crash_size); 610 return; 611 } 612 613 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", 614 (unsigned long)(crash_size >> 20), 615 (unsigned long)(crash_base >> 20), 616 (unsigned long)(total_mem >> 20)); 617 618 crashk_res.start = crash_base; 619 crashk_res.end = crash_base + crash_size - 1; 620 insert_resource(&iomem_resource, &crashk_res); 621 } 622 623 static struct resource standard_io_resources[] = { 624 { .name = "dma1", .start = 0x00, .end = 0x1f, 625 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 626 { .name = "pic1", .start = 0x20, .end = 0x21, 627 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 628 { .name = "timer0", .start = 0x40, .end = 0x43, 629 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 630 { .name = "timer1", .start = 0x50, .end = 0x53, 631 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 632 { .name = "keyboard", .start = 0x60, .end = 0x60, 633 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 634 { .name = "keyboard", .start = 0x64, .end = 0x64, 635 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 636 { .name = "dma page reg", .start = 0x80, .end = 0x8f, 637 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 638 { .name = "pic2", .start = 0xa0, .end = 0xa1, 639 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 640 { .name = "dma2", .start = 0xc0, .end = 0xdf, 641 .flags = IORESOURCE_BUSY | IORESOURCE_IO }, 642 { .name = "fpu", .start = 0xf0, .end = 0xff, 643 .flags = IORESOURCE_BUSY | IORESOURCE_IO } 644 }; 645 646 void __init reserve_standard_io_resources(void) 647 { 648 int i; 649 650 /* request I/O space for devices used on all i[345]86 PCs */ 651 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) 652 request_resource(&ioport_resource, &standard_io_resources[i]); 653 654 } 655 656 static bool __init snb_gfx_workaround_needed(void) 657 { 658 #ifdef CONFIG_PCI 659 int i; 660 u16 vendor, devid; 661 static const __initconst u16 snb_ids[] = { 662 0x0102, 663 0x0112, 664 0x0122, 665 0x0106, 666 0x0116, 667 0x0126, 668 0x010a, 669 }; 670 671 /* Assume no if something weird is going on with PCI */ 672 if (!early_pci_allowed()) 673 return false; 674 675 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID); 676 if (vendor != 0x8086) 677 return false; 678 679 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID); 680 for (i = 0; i < ARRAY_SIZE(snb_ids); i++) 681 if (devid == snb_ids[i]) 682 return true; 683 #endif 684 685 return false; 686 } 687 688 /* 689 * Sandy Bridge graphics has trouble with certain ranges, exclude 690 * them from allocation. 691 */ 692 static void __init trim_snb_memory(void) 693 { 694 static const __initconst unsigned long bad_pages[] = { 695 0x20050000, 696 0x20110000, 697 0x20130000, 698 0x20138000, 699 0x40004000, 700 }; 701 int i; 702 703 if (!snb_gfx_workaround_needed()) 704 return; 705 706 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n"); 707 708 /* 709 * SandyBridge integrated graphics devices have a bug that prevents 710 * them from accessing certain memory ranges, namely anything below 711 * 1M and in the pages listed in bad_pages[] above. 712 * 713 * To avoid these pages being ever accessed by SNB gfx devices reserve 714 * bad_pages that have not already been reserved at boot time. 715 * All memory below the 1 MB mark is anyway reserved later during 716 * setup_arch(), so there is no need to reserve it here. 717 */ 718 719 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) { 720 if (memblock_reserve(bad_pages[i], PAGE_SIZE)) 721 printk(KERN_WARNING "failed to reserve 0x%08lx\n", 722 bad_pages[i]); 723 } 724 } 725 726 static void __init trim_bios_range(void) 727 { 728 /* 729 * A special case is the first 4Kb of memory; 730 * This is a BIOS owned area, not kernel ram, but generally 731 * not listed as such in the E820 table. 732 * 733 * This typically reserves additional memory (64KiB by default) 734 * since some BIOSes are known to corrupt low memory. See the 735 * Kconfig help text for X86_RESERVE_LOW. 736 */ 737 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED); 738 739 /* 740 * special case: Some BIOSes report the PC BIOS 741 * area (640Kb -> 1Mb) as RAM even though it is not. 742 * take them out. 743 */ 744 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1); 745 746 e820__update_table(e820_table); 747 } 748 749 /* called before trim_bios_range() to spare extra sanitize */ 750 static void __init e820_add_kernel_range(void) 751 { 752 u64 start = __pa_symbol(_text); 753 u64 size = __pa_symbol(_end) - start; 754 755 /* 756 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and 757 * attempt to fix it by adding the range. We may have a confused BIOS, 758 * or the user may have used memmap=exactmap or memmap=xxM$yyM to 759 * exclude kernel range. If we really are running on top non-RAM, 760 * we will crash later anyways. 761 */ 762 if (e820__mapped_all(start, start + size, E820_TYPE_RAM)) 763 return; 764 765 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n"); 766 e820__range_remove(start, size, E820_TYPE_RAM, 0); 767 e820__range_add(start, size, E820_TYPE_RAM); 768 } 769 770 static void __init early_reserve_memory(void) 771 { 772 /* 773 * Reserve the memory occupied by the kernel between _text and 774 * __end_of_kernel_reserve symbols. Any kernel sections after the 775 * __end_of_kernel_reserve symbol must be explicitly reserved with a 776 * separate memblock_reserve() or they will be discarded. 777 */ 778 memblock_reserve(__pa_symbol(_text), 779 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text); 780 781 /* 782 * The first 4Kb of memory is a BIOS owned area, but generally it is 783 * not listed as such in the E820 table. 784 * 785 * Reserve the first 64K of memory since some BIOSes are known to 786 * corrupt low memory. After the real mode trampoline is allocated the 787 * rest of the memory below 640k is reserved. 788 * 789 * In addition, make sure page 0 is always reserved because on 790 * systems with L1TF its contents can be leaked to user processes. 791 */ 792 memblock_reserve(0, SZ_64K); 793 794 early_reserve_initrd(); 795 796 memblock_x86_reserve_range_setup_data(); 797 798 reserve_bios_regions(); 799 trim_snb_memory(); 800 } 801 802 /* 803 * Dump out kernel offset information on panic. 804 */ 805 static int 806 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p) 807 { 808 if (kaslr_enabled()) { 809 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n", 810 kaslr_offset(), 811 __START_KERNEL, 812 __START_KERNEL_map, 813 MODULES_VADDR-1); 814 } else { 815 pr_emerg("Kernel Offset: disabled\n"); 816 } 817 818 return 0; 819 } 820 821 void x86_configure_nx(void) 822 { 823 if (boot_cpu_has(X86_FEATURE_NX)) 824 __supported_pte_mask |= _PAGE_NX; 825 else 826 __supported_pte_mask &= ~_PAGE_NX; 827 } 828 829 static void __init x86_report_nx(void) 830 { 831 if (!boot_cpu_has(X86_FEATURE_NX)) { 832 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " 833 "missing in CPU!\n"); 834 } else { 835 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) 836 printk(KERN_INFO "NX (Execute Disable) protection: active\n"); 837 #else 838 /* 32bit non-PAE kernel, NX cannot be used */ 839 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection " 840 "cannot be enabled: non-PAE kernel!\n"); 841 #endif 842 } 843 } 844 845 /* 846 * Determine if we were loaded by an EFI loader. If so, then we have also been 847 * passed the efi memmap, systab, etc., so we should use these data structures 848 * for initialization. Note, the efi init code path is determined by the 849 * global efi_enabled. This allows the same kernel image to be used on existing 850 * systems (with a traditional BIOS) as well as on EFI systems. 851 */ 852 /* 853 * setup_arch - architecture-specific boot-time initializations 854 * 855 * Note: On x86_64, fixmaps are ready for use even before this is called. 856 */ 857 858 void __init setup_arch(char **cmdline_p) 859 { 860 #ifdef CONFIG_X86_32 861 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data)); 862 863 /* 864 * copy kernel address range established so far and switch 865 * to the proper swapper page table 866 */ 867 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY, 868 initial_page_table + KERNEL_PGD_BOUNDARY, 869 KERNEL_PGD_PTRS); 870 871 load_cr3(swapper_pg_dir); 872 /* 873 * Note: Quark X1000 CPUs advertise PGE incorrectly and require 874 * a cr3 based tlb flush, so the following __flush_tlb_all() 875 * will not flush anything because the CPU quirk which clears 876 * X86_FEATURE_PGE has not been invoked yet. Though due to the 877 * load_cr3() above the TLB has been flushed already. The 878 * quirk is invoked before subsequent calls to __flush_tlb_all() 879 * so proper operation is guaranteed. 880 */ 881 __flush_tlb_all(); 882 #else 883 printk(KERN_INFO "Command line: %s\n", boot_command_line); 884 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS; 885 #endif 886 887 /* 888 * If we have OLPC OFW, we might end up relocating the fixmap due to 889 * reserve_top(), so do this before touching the ioremap area. 890 */ 891 olpc_ofw_detect(); 892 893 idt_setup_early_traps(); 894 early_cpu_init(); 895 jump_label_init(); 896 static_call_init(); 897 early_ioremap_init(); 898 899 setup_olpc_ofw_pgd(); 900 901 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev); 902 screen_info = boot_params.screen_info; 903 edid_info = boot_params.edid_info; 904 #ifdef CONFIG_X86_32 905 apm_info.bios = boot_params.apm_bios_info; 906 ist_info = boot_params.ist_info; 907 #endif 908 saved_video_mode = boot_params.hdr.vid_mode; 909 bootloader_type = boot_params.hdr.type_of_loader; 910 if ((bootloader_type >> 4) == 0xe) { 911 bootloader_type &= 0xf; 912 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4; 913 } 914 bootloader_version = bootloader_type & 0xf; 915 bootloader_version |= boot_params.hdr.ext_loader_ver << 4; 916 917 #ifdef CONFIG_BLK_DEV_RAM 918 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK; 919 #endif 920 #ifdef CONFIG_EFI 921 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 922 EFI32_LOADER_SIGNATURE, 4)) { 923 set_bit(EFI_BOOT, &efi.flags); 924 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature, 925 EFI64_LOADER_SIGNATURE, 4)) { 926 set_bit(EFI_BOOT, &efi.flags); 927 set_bit(EFI_64BIT, &efi.flags); 928 } 929 #endif 930 931 x86_init.oem.arch_setup(); 932 933 /* 934 * Do some memory reservations *before* memory is added to memblock, so 935 * memblock allocations won't overwrite it. 936 * 937 * After this point, everything still needed from the boot loader or 938 * firmware or kernel text should be early reserved or marked not RAM in 939 * e820. All other memory is free game. 940 * 941 * This call needs to happen before e820__memory_setup() which calls the 942 * xen_memory_setup() on Xen dom0 which relies on the fact that those 943 * early reservations have happened already. 944 */ 945 early_reserve_memory(); 946 947 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1; 948 e820__memory_setup(); 949 parse_setup_data(); 950 951 copy_edd(); 952 953 if (!boot_params.hdr.root_flags) 954 root_mountflags &= ~MS_RDONLY; 955 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end); 956 957 code_resource.start = __pa_symbol(_text); 958 code_resource.end = __pa_symbol(_etext)-1; 959 rodata_resource.start = __pa_symbol(__start_rodata); 960 rodata_resource.end = __pa_symbol(__end_rodata)-1; 961 data_resource.start = __pa_symbol(_sdata); 962 data_resource.end = __pa_symbol(_edata)-1; 963 bss_resource.start = __pa_symbol(__bss_start); 964 bss_resource.end = __pa_symbol(__bss_stop)-1; 965 966 #ifdef CONFIG_CMDLINE_BOOL 967 #ifdef CONFIG_CMDLINE_OVERRIDE 968 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 969 #else 970 if (builtin_cmdline[0]) { 971 /* append boot loader cmdline to builtin */ 972 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE); 973 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE); 974 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); 975 } 976 #endif 977 #endif 978 979 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE); 980 *cmdline_p = command_line; 981 982 /* 983 * x86_configure_nx() is called before parse_early_param() to detect 984 * whether hardware doesn't support NX (so that the early EHCI debug 985 * console setup can safely call set_fixmap()). 986 */ 987 x86_configure_nx(); 988 989 parse_early_param(); 990 991 if (efi_enabled(EFI_BOOT)) 992 efi_memblock_x86_reserve_range(); 993 994 #ifdef CONFIG_MEMORY_HOTPLUG 995 /* 996 * Memory used by the kernel cannot be hot-removed because Linux 997 * cannot migrate the kernel pages. When memory hotplug is 998 * enabled, we should prevent memblock from allocating memory 999 * for the kernel. 1000 * 1001 * ACPI SRAT records all hotpluggable memory ranges. But before 1002 * SRAT is parsed, we don't know about it. 1003 * 1004 * The kernel image is loaded into memory at very early time. We 1005 * cannot prevent this anyway. So on NUMA system, we set any 1006 * node the kernel resides in as un-hotpluggable. 1007 * 1008 * Since on modern servers, one node could have double-digit 1009 * gigabytes memory, we can assume the memory around the kernel 1010 * image is also un-hotpluggable. So before SRAT is parsed, just 1011 * allocate memory near the kernel image to try the best to keep 1012 * the kernel away from hotpluggable memory. 1013 */ 1014 if (movable_node_is_enabled()) 1015 memblock_set_bottom_up(true); 1016 #endif 1017 1018 x86_report_nx(); 1019 1020 if (acpi_mps_check()) { 1021 #ifdef CONFIG_X86_LOCAL_APIC 1022 apic_is_disabled = true; 1023 #endif 1024 setup_clear_cpu_cap(X86_FEATURE_APIC); 1025 } 1026 1027 e820__reserve_setup_data(); 1028 e820__finish_early_params(); 1029 1030 if (efi_enabled(EFI_BOOT)) 1031 efi_init(); 1032 1033 reserve_ibft_region(); 1034 dmi_setup(); 1035 1036 /* 1037 * VMware detection requires dmi to be available, so this 1038 * needs to be done after dmi_setup(), for the boot CPU. 1039 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be 1040 * called before cache_bp_init() for setting up MTRR state. 1041 */ 1042 init_hypervisor_platform(); 1043 1044 tsc_early_init(); 1045 x86_init.resources.probe_roms(); 1046 1047 /* after parse_early_param, so could debug it */ 1048 insert_resource(&iomem_resource, &code_resource); 1049 insert_resource(&iomem_resource, &rodata_resource); 1050 insert_resource(&iomem_resource, &data_resource); 1051 insert_resource(&iomem_resource, &bss_resource); 1052 1053 e820_add_kernel_range(); 1054 trim_bios_range(); 1055 #ifdef CONFIG_X86_32 1056 if (ppro_with_ram_bug()) { 1057 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM, 1058 E820_TYPE_RESERVED); 1059 e820__update_table(e820_table); 1060 printk(KERN_INFO "fixed physical RAM map:\n"); 1061 e820__print_table("bad_ppro"); 1062 } 1063 #else 1064 early_gart_iommu_check(); 1065 #endif 1066 1067 /* 1068 * partially used pages are not usable - thus 1069 * we are rounding upwards: 1070 */ 1071 max_pfn = e820__end_of_ram_pfn(); 1072 1073 /* update e820 for memory not covered by WB MTRRs */ 1074 cache_bp_init(); 1075 if (mtrr_trim_uncached_memory(max_pfn)) 1076 max_pfn = e820__end_of_ram_pfn(); 1077 1078 max_possible_pfn = max_pfn; 1079 1080 /* 1081 * Define random base addresses for memory sections after max_pfn is 1082 * defined and before each memory section base is used. 1083 */ 1084 kernel_randomize_memory(); 1085 1086 #ifdef CONFIG_X86_32 1087 /* max_low_pfn get updated here */ 1088 find_low_pfn_range(); 1089 #else 1090 check_x2apic(); 1091 1092 /* How many end-of-memory variables you have, grandma! */ 1093 /* need this before calling reserve_initrd */ 1094 if (max_pfn > (1UL<<(32 - PAGE_SHIFT))) 1095 max_low_pfn = e820__end_of_low_ram_pfn(); 1096 else 1097 max_low_pfn = max_pfn; 1098 1099 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; 1100 #endif 1101 1102 /* 1103 * Find and reserve possible boot-time SMP configuration: 1104 */ 1105 find_smp_config(); 1106 1107 early_alloc_pgt_buf(); 1108 1109 /* 1110 * Need to conclude brk, before e820__memblock_setup() 1111 * it could use memblock_find_in_range, could overlap with 1112 * brk area. 1113 */ 1114 reserve_brk(); 1115 1116 cleanup_highmap(); 1117 1118 memblock_set_current_limit(ISA_END_ADDRESS); 1119 e820__memblock_setup(); 1120 1121 /* 1122 * Needs to run after memblock setup because it needs the physical 1123 * memory size. 1124 */ 1125 sev_setup_arch(); 1126 1127 efi_fake_memmap(); 1128 efi_find_mirror(); 1129 efi_esrt_init(); 1130 efi_mokvar_table_init(); 1131 1132 /* 1133 * The EFI specification says that boot service code won't be 1134 * called after ExitBootServices(). This is, in fact, a lie. 1135 */ 1136 efi_reserve_boot_services(); 1137 1138 /* preallocate 4k for mptable mpc */ 1139 e820__memblock_alloc_reserved_mpc_new(); 1140 1141 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION 1142 setup_bios_corruption_check(); 1143 #endif 1144 1145 #ifdef CONFIG_X86_32 1146 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n", 1147 (max_pfn_mapped<<PAGE_SHIFT) - 1); 1148 #endif 1149 1150 /* 1151 * Find free memory for the real mode trampoline and place it there. If 1152 * there is not enough free memory under 1M, on EFI-enabled systems 1153 * there will be additional attempt to reclaim the memory for the real 1154 * mode trampoline at efi_free_boot_services(). 1155 * 1156 * Unconditionally reserve the entire first 1M of RAM because BIOSes 1157 * are known to corrupt low memory and several hundred kilobytes are not 1158 * worth complex detection what memory gets clobbered. Windows does the 1159 * same thing for very similar reasons. 1160 * 1161 * Moreover, on machines with SandyBridge graphics or in setups that use 1162 * crashkernel the entire 1M is reserved anyway. 1163 */ 1164 x86_platform.realmode_reserve(); 1165 1166 init_mem_mapping(); 1167 1168 idt_setup_early_pf(); 1169 1170 /* 1171 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features) 1172 * with the current CR4 value. This may not be necessary, but 1173 * auditing all the early-boot CR4 manipulation would be needed to 1174 * rule it out. 1175 * 1176 * Mask off features that don't work outside long mode (just 1177 * PCIDE for now). 1178 */ 1179 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE; 1180 1181 memblock_set_current_limit(get_max_mapped()); 1182 1183 /* 1184 * NOTE: On x86-32, only from this point on, fixmaps are ready for use. 1185 */ 1186 1187 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT 1188 if (init_ohci1394_dma_early) 1189 init_ohci1394_dma_on_all_controllers(); 1190 #endif 1191 /* Allocate bigger log buffer */ 1192 setup_log_buf(1); 1193 1194 if (efi_enabled(EFI_BOOT)) { 1195 switch (boot_params.secure_boot) { 1196 case efi_secureboot_mode_disabled: 1197 pr_info("Secure boot disabled\n"); 1198 break; 1199 case efi_secureboot_mode_enabled: 1200 pr_info("Secure boot enabled\n"); 1201 break; 1202 default: 1203 pr_info("Secure boot could not be determined\n"); 1204 break; 1205 } 1206 } 1207 1208 reserve_initrd(); 1209 1210 acpi_table_upgrade(); 1211 /* Look for ACPI tables and reserve memory occupied by them. */ 1212 acpi_boot_table_init(); 1213 1214 vsmp_init(); 1215 1216 io_delay_init(); 1217 1218 early_platform_quirks(); 1219 1220 early_acpi_boot_init(); 1221 1222 initmem_init(); 1223 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT); 1224 1225 if (boot_cpu_has(X86_FEATURE_GBPAGES)) 1226 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 1227 1228 /* 1229 * Reserve memory for crash kernel after SRAT is parsed so that it 1230 * won't consume hotpluggable memory. 1231 */ 1232 reserve_crashkernel(); 1233 1234 memblock_find_dma_reserve(); 1235 1236 if (!early_xdbc_setup_hardware()) 1237 early_xdbc_register_console(); 1238 1239 x86_init.paging.pagetable_init(); 1240 1241 kasan_init(); 1242 1243 /* 1244 * Sync back kernel address range. 1245 * 1246 * FIXME: Can the later sync in setup_cpu_entry_areas() replace 1247 * this call? 1248 */ 1249 sync_initial_page_table(); 1250 1251 tboot_probe(); 1252 1253 map_vsyscall(); 1254 1255 x86_32_probe_apic(); 1256 1257 early_quirks(); 1258 1259 /* 1260 * Read APIC and some other early information from ACPI tables. 1261 */ 1262 acpi_boot_init(); 1263 x86_dtb_init(); 1264 1265 /* 1266 * get boot-time SMP configuration: 1267 */ 1268 get_smp_config(); 1269 1270 /* 1271 * Systems w/o ACPI and mptables might not have it mapped the local 1272 * APIC yet, but prefill_possible_map() might need to access it. 1273 */ 1274 init_apic_mappings(); 1275 1276 prefill_possible_map(); 1277 1278 init_cpu_to_node(); 1279 init_gi_nodes(); 1280 1281 io_apic_init_mappings(); 1282 1283 x86_init.hyper.guest_late_init(); 1284 1285 e820__reserve_resources(); 1286 e820__register_nosave_regions(max_pfn); 1287 1288 x86_init.resources.reserve_resources(); 1289 1290 e820__setup_pci_gap(); 1291 1292 #ifdef CONFIG_VT 1293 #if defined(CONFIG_VGA_CONSOLE) 1294 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY)) 1295 conswitchp = &vga_con; 1296 #endif 1297 #endif 1298 x86_init.oem.banner(); 1299 1300 x86_init.timers.wallclock_init(); 1301 1302 /* 1303 * This needs to run before setup_local_APIC() which soft-disables the 1304 * local APIC temporarily and that masks the thermal LVT interrupt, 1305 * leading to softlockups on machines which have configured SMI 1306 * interrupt delivery. 1307 */ 1308 therm_lvt_init(); 1309 1310 mcheck_init(); 1311 1312 register_refined_jiffies(CLOCK_TICK_RATE); 1313 1314 #ifdef CONFIG_EFI 1315 if (efi_enabled(EFI_BOOT)) 1316 efi_apply_memmap_quirks(); 1317 #endif 1318 1319 unwind_init(); 1320 } 1321 1322 #ifdef CONFIG_X86_32 1323 1324 static struct resource video_ram_resource = { 1325 .name = "Video RAM area", 1326 .start = 0xa0000, 1327 .end = 0xbffff, 1328 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 1329 }; 1330 1331 void __init i386_reserve_resources(void) 1332 { 1333 request_resource(&iomem_resource, &video_ram_resource); 1334 reserve_standard_io_resources(); 1335 } 1336 1337 #endif /* CONFIG_X86_32 */ 1338 1339 static struct notifier_block kernel_offset_notifier = { 1340 .notifier_call = dump_kernel_offset 1341 }; 1342 1343 static int __init register_kernel_offset_dumper(void) 1344 { 1345 atomic_notifier_chain_register(&panic_notifier_list, 1346 &kernel_offset_notifier); 1347 return 0; 1348 } 1349 __initcall(register_kernel_offset_dumper); 1350