xref: /openbmc/linux/arch/x86/kernel/rtc.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * RTC related functions
3  */
4 #include <linux/platform_device.h>
5 #include <linux/mc146818rtc.h>
6 #include <linux/acpi.h>
7 #include <linux/bcd.h>
8 #include <linux/pnp.h>
9 
10 #include <asm/vsyscall.h>
11 #include <asm/x86_init.h>
12 #include <asm/time.h>
13 
14 #ifdef CONFIG_X86_32
15 /*
16  * This is a special lock that is owned by the CPU and holds the index
17  * register we are working with.  It is required for NMI access to the
18  * CMOS/RTC registers.  See include/asm-i386/mc146818rtc.h for details.
19  */
20 volatile unsigned long cmos_lock;
21 EXPORT_SYMBOL(cmos_lock);
22 #endif /* CONFIG_X86_32 */
23 
24 /* For two digit years assume time is always after that */
25 #define CMOS_YEARS_OFFS 2000
26 
27 DEFINE_SPINLOCK(rtc_lock);
28 EXPORT_SYMBOL(rtc_lock);
29 
30 /*
31  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
32  * called 500 ms after the second nowtime has started, because when
33  * nowtime is written into the registers of the CMOS clock, it will
34  * jump to the next second precisely 500 ms later. Check the Motorola
35  * MC146818A or Dallas DS12887 data sheet for details.
36  *
37  * BUG: This routine does not handle hour overflow properly; it just
38  *      sets the minutes. Usually you'll only notice that after reboot!
39  */
40 int mach_set_rtc_mmss(unsigned long nowtime)
41 {
42 	int real_seconds, real_minutes, cmos_minutes;
43 	unsigned char save_control, save_freq_select;
44 	int retval = 0;
45 
46 	 /* tell the clock it's being set */
47 	save_control = CMOS_READ(RTC_CONTROL);
48 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
49 
50 	/* stop and reset prescaler */
51 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
52 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
53 
54 	cmos_minutes = CMOS_READ(RTC_MINUTES);
55 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
56 		cmos_minutes = bcd2bin(cmos_minutes);
57 
58 	/*
59 	 * since we're only adjusting minutes and seconds,
60 	 * don't interfere with hour overflow. This avoids
61 	 * messing with unknown time zones but requires your
62 	 * RTC not to be off by more than 15 minutes
63 	 */
64 	real_seconds = nowtime % 60;
65 	real_minutes = nowtime / 60;
66 	/* correct for half hour time zone */
67 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
68 		real_minutes += 30;
69 	real_minutes %= 60;
70 
71 	if (abs(real_minutes - cmos_minutes) < 30) {
72 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
73 			real_seconds = bin2bcd(real_seconds);
74 			real_minutes = bin2bcd(real_minutes);
75 		}
76 		CMOS_WRITE(real_seconds, RTC_SECONDS);
77 		CMOS_WRITE(real_minutes, RTC_MINUTES);
78 	} else {
79 		printk_once(KERN_NOTICE
80 		       "set_rtc_mmss: can't update from %d to %d\n",
81 		       cmos_minutes, real_minutes);
82 		retval = -1;
83 	}
84 
85 	/* The following flags have to be released exactly in this order,
86 	 * otherwise the DS12887 (popular MC146818A clone with integrated
87 	 * battery and quartz) will not reset the oscillator and will not
88 	 * update precisely 500 ms later. You won't find this mentioned in
89 	 * the Dallas Semiconductor data sheets, but who believes data
90 	 * sheets anyway ...                           -- Markus Kuhn
91 	 */
92 	CMOS_WRITE(save_control, RTC_CONTROL);
93 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
94 
95 	return retval;
96 }
97 
98 unsigned long mach_get_cmos_time(void)
99 {
100 	unsigned int status, year, mon, day, hour, min, sec, century = 0;
101 
102 	/*
103 	 * If UIP is clear, then we have >= 244 microseconds before
104 	 * RTC registers will be updated.  Spec sheet says that this
105 	 * is the reliable way to read RTC - registers. If UIP is set
106 	 * then the register access might be invalid.
107 	 */
108 	while ((CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
109 		cpu_relax();
110 
111 	sec = CMOS_READ(RTC_SECONDS);
112 	min = CMOS_READ(RTC_MINUTES);
113 	hour = CMOS_READ(RTC_HOURS);
114 	day = CMOS_READ(RTC_DAY_OF_MONTH);
115 	mon = CMOS_READ(RTC_MONTH);
116 	year = CMOS_READ(RTC_YEAR);
117 
118 #ifdef CONFIG_ACPI
119 	if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
120 	    acpi_gbl_FADT.century)
121 		century = CMOS_READ(acpi_gbl_FADT.century);
122 #endif
123 
124 	status = CMOS_READ(RTC_CONTROL);
125 	WARN_ON_ONCE(RTC_ALWAYS_BCD && (status & RTC_DM_BINARY));
126 
127 	if (RTC_ALWAYS_BCD || !(status & RTC_DM_BINARY)) {
128 		sec = bcd2bin(sec);
129 		min = bcd2bin(min);
130 		hour = bcd2bin(hour);
131 		day = bcd2bin(day);
132 		mon = bcd2bin(mon);
133 		year = bcd2bin(year);
134 	}
135 
136 	if (century) {
137 		century = bcd2bin(century);
138 		year += century * 100;
139 		printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
140 	} else
141 		year += CMOS_YEARS_OFFS;
142 
143 	return mktime(year, mon, day, hour, min, sec);
144 }
145 
146 /* Routines for accessing the CMOS RAM/RTC. */
147 unsigned char rtc_cmos_read(unsigned char addr)
148 {
149 	unsigned char val;
150 
151 	lock_cmos_prefix(addr);
152 	outb(addr, RTC_PORT(0));
153 	val = inb(RTC_PORT(1));
154 	lock_cmos_suffix(addr);
155 
156 	return val;
157 }
158 EXPORT_SYMBOL(rtc_cmos_read);
159 
160 void rtc_cmos_write(unsigned char val, unsigned char addr)
161 {
162 	lock_cmos_prefix(addr);
163 	outb(addr, RTC_PORT(0));
164 	outb(val, RTC_PORT(1));
165 	lock_cmos_suffix(addr);
166 }
167 EXPORT_SYMBOL(rtc_cmos_write);
168 
169 int update_persistent_clock(struct timespec now)
170 {
171 	unsigned long flags;
172 	int retval;
173 
174 	spin_lock_irqsave(&rtc_lock, flags);
175 	retval = x86_platform.set_wallclock(now.tv_sec);
176 	spin_unlock_irqrestore(&rtc_lock, flags);
177 
178 	return retval;
179 }
180 
181 /* not static: needed by APM */
182 void read_persistent_clock(struct timespec *ts)
183 {
184 	unsigned long retval, flags;
185 
186 	spin_lock_irqsave(&rtc_lock, flags);
187 	retval = x86_platform.get_wallclock();
188 	spin_unlock_irqrestore(&rtc_lock, flags);
189 
190 	ts->tv_sec = retval;
191 	ts->tv_nsec = 0;
192 }
193 
194 unsigned long long native_read_tsc(void)
195 {
196 	return __native_read_tsc();
197 }
198 EXPORT_SYMBOL(native_read_tsc);
199 
200 
201 static struct resource rtc_resources[] = {
202 	[0] = {
203 		.start	= RTC_PORT(0),
204 		.end	= RTC_PORT(1),
205 		.flags	= IORESOURCE_IO,
206 	},
207 	[1] = {
208 		.start	= RTC_IRQ,
209 		.end	= RTC_IRQ,
210 		.flags	= IORESOURCE_IRQ,
211 	}
212 };
213 
214 static struct platform_device rtc_device = {
215 	.name		= "rtc_cmos",
216 	.id		= -1,
217 	.resource	= rtc_resources,
218 	.num_resources	= ARRAY_SIZE(rtc_resources),
219 };
220 
221 static __init int add_rtc_cmos(void)
222 {
223 #ifdef CONFIG_PNP
224 	static const char *ids[] __initconst =
225 	    { "PNP0b00", "PNP0b01", "PNP0b02", };
226 	struct pnp_dev *dev;
227 	struct pnp_id *id;
228 	int i;
229 
230 	pnp_for_each_dev(dev) {
231 		for (id = dev->id; id; id = id->next) {
232 			for (i = 0; i < ARRAY_SIZE(ids); i++) {
233 				if (compare_pnp_id(id, ids[i]) != 0)
234 					return 0;
235 			}
236 		}
237 	}
238 #endif
239 
240 	platform_device_register(&rtc_device);
241 	dev_info(&rtc_device.dev,
242 		 "registered platform RTC device (no PNP device found)\n");
243 
244 	return 0;
245 }
246 device_initcall(add_rtc_cmos);
247