xref: /openbmc/linux/arch/x86/kernel/rtc.c (revision 565d76cb)
1 /*
2  * RTC related functions
3  */
4 #include <linux/platform_device.h>
5 #include <linux/mc146818rtc.h>
6 #include <linux/acpi.h>
7 #include <linux/bcd.h>
8 #include <linux/pnp.h>
9 #include <linux/of.h>
10 
11 #include <asm/vsyscall.h>
12 #include <asm/x86_init.h>
13 #include <asm/time.h>
14 
15 #ifdef CONFIG_X86_32
16 /*
17  * This is a special lock that is owned by the CPU and holds the index
18  * register we are working with.  It is required for NMI access to the
19  * CMOS/RTC registers.  See include/asm-i386/mc146818rtc.h for details.
20  */
21 volatile unsigned long cmos_lock;
22 EXPORT_SYMBOL(cmos_lock);
23 #endif /* CONFIG_X86_32 */
24 
25 /* For two digit years assume time is always after that */
26 #define CMOS_YEARS_OFFS 2000
27 
28 DEFINE_SPINLOCK(rtc_lock);
29 EXPORT_SYMBOL(rtc_lock);
30 
31 /*
32  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
33  * called 500 ms after the second nowtime has started, because when
34  * nowtime is written into the registers of the CMOS clock, it will
35  * jump to the next second precisely 500 ms later. Check the Motorola
36  * MC146818A or Dallas DS12887 data sheet for details.
37  *
38  * BUG: This routine does not handle hour overflow properly; it just
39  *      sets the minutes. Usually you'll only notice that after reboot!
40  */
41 int mach_set_rtc_mmss(unsigned long nowtime)
42 {
43 	int real_seconds, real_minutes, cmos_minutes;
44 	unsigned char save_control, save_freq_select;
45 	int retval = 0;
46 
47 	 /* tell the clock it's being set */
48 	save_control = CMOS_READ(RTC_CONTROL);
49 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
50 
51 	/* stop and reset prescaler */
52 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
53 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
54 
55 	cmos_minutes = CMOS_READ(RTC_MINUTES);
56 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
57 		cmos_minutes = bcd2bin(cmos_minutes);
58 
59 	/*
60 	 * since we're only adjusting minutes and seconds,
61 	 * don't interfere with hour overflow. This avoids
62 	 * messing with unknown time zones but requires your
63 	 * RTC not to be off by more than 15 minutes
64 	 */
65 	real_seconds = nowtime % 60;
66 	real_minutes = nowtime / 60;
67 	/* correct for half hour time zone */
68 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
69 		real_minutes += 30;
70 	real_minutes %= 60;
71 
72 	if (abs(real_minutes - cmos_minutes) < 30) {
73 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
74 			real_seconds = bin2bcd(real_seconds);
75 			real_minutes = bin2bcd(real_minutes);
76 		}
77 		CMOS_WRITE(real_seconds, RTC_SECONDS);
78 		CMOS_WRITE(real_minutes, RTC_MINUTES);
79 	} else {
80 		printk_once(KERN_NOTICE
81 		       "set_rtc_mmss: can't update from %d to %d\n",
82 		       cmos_minutes, real_minutes);
83 		retval = -1;
84 	}
85 
86 	/* The following flags have to be released exactly in this order,
87 	 * otherwise the DS12887 (popular MC146818A clone with integrated
88 	 * battery and quartz) will not reset the oscillator and will not
89 	 * update precisely 500 ms later. You won't find this mentioned in
90 	 * the Dallas Semiconductor data sheets, but who believes data
91 	 * sheets anyway ...                           -- Markus Kuhn
92 	 */
93 	CMOS_WRITE(save_control, RTC_CONTROL);
94 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
95 
96 	return retval;
97 }
98 
99 unsigned long mach_get_cmos_time(void)
100 {
101 	unsigned int status, year, mon, day, hour, min, sec, century = 0;
102 
103 	/*
104 	 * If UIP is clear, then we have >= 244 microseconds before
105 	 * RTC registers will be updated.  Spec sheet says that this
106 	 * is the reliable way to read RTC - registers. If UIP is set
107 	 * then the register access might be invalid.
108 	 */
109 	while ((CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
110 		cpu_relax();
111 
112 	sec = CMOS_READ(RTC_SECONDS);
113 	min = CMOS_READ(RTC_MINUTES);
114 	hour = CMOS_READ(RTC_HOURS);
115 	day = CMOS_READ(RTC_DAY_OF_MONTH);
116 	mon = CMOS_READ(RTC_MONTH);
117 	year = CMOS_READ(RTC_YEAR);
118 
119 #ifdef CONFIG_ACPI
120 	if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
121 	    acpi_gbl_FADT.century)
122 		century = CMOS_READ(acpi_gbl_FADT.century);
123 #endif
124 
125 	status = CMOS_READ(RTC_CONTROL);
126 	WARN_ON_ONCE(RTC_ALWAYS_BCD && (status & RTC_DM_BINARY));
127 
128 	if (RTC_ALWAYS_BCD || !(status & RTC_DM_BINARY)) {
129 		sec = bcd2bin(sec);
130 		min = bcd2bin(min);
131 		hour = bcd2bin(hour);
132 		day = bcd2bin(day);
133 		mon = bcd2bin(mon);
134 		year = bcd2bin(year);
135 	}
136 
137 	if (century) {
138 		century = bcd2bin(century);
139 		year += century * 100;
140 		printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
141 	} else
142 		year += CMOS_YEARS_OFFS;
143 
144 	return mktime(year, mon, day, hour, min, sec);
145 }
146 
147 /* Routines for accessing the CMOS RAM/RTC. */
148 unsigned char rtc_cmos_read(unsigned char addr)
149 {
150 	unsigned char val;
151 
152 	lock_cmos_prefix(addr);
153 	outb(addr, RTC_PORT(0));
154 	val = inb(RTC_PORT(1));
155 	lock_cmos_suffix(addr);
156 
157 	return val;
158 }
159 EXPORT_SYMBOL(rtc_cmos_read);
160 
161 void rtc_cmos_write(unsigned char val, unsigned char addr)
162 {
163 	lock_cmos_prefix(addr);
164 	outb(addr, RTC_PORT(0));
165 	outb(val, RTC_PORT(1));
166 	lock_cmos_suffix(addr);
167 }
168 EXPORT_SYMBOL(rtc_cmos_write);
169 
170 int update_persistent_clock(struct timespec now)
171 {
172 	unsigned long flags;
173 	int retval;
174 
175 	spin_lock_irqsave(&rtc_lock, flags);
176 	retval = x86_platform.set_wallclock(now.tv_sec);
177 	spin_unlock_irqrestore(&rtc_lock, flags);
178 
179 	return retval;
180 }
181 
182 /* not static: needed by APM */
183 void read_persistent_clock(struct timespec *ts)
184 {
185 	unsigned long retval, flags;
186 
187 	spin_lock_irqsave(&rtc_lock, flags);
188 	retval = x86_platform.get_wallclock();
189 	spin_unlock_irqrestore(&rtc_lock, flags);
190 
191 	ts->tv_sec = retval;
192 	ts->tv_nsec = 0;
193 }
194 
195 unsigned long long native_read_tsc(void)
196 {
197 	return __native_read_tsc();
198 }
199 EXPORT_SYMBOL(native_read_tsc);
200 
201 
202 static struct resource rtc_resources[] = {
203 	[0] = {
204 		.start	= RTC_PORT(0),
205 		.end	= RTC_PORT(1),
206 		.flags	= IORESOURCE_IO,
207 	},
208 	[1] = {
209 		.start	= RTC_IRQ,
210 		.end	= RTC_IRQ,
211 		.flags	= IORESOURCE_IRQ,
212 	}
213 };
214 
215 static struct platform_device rtc_device = {
216 	.name		= "rtc_cmos",
217 	.id		= -1,
218 	.resource	= rtc_resources,
219 	.num_resources	= ARRAY_SIZE(rtc_resources),
220 };
221 
222 static __init int add_rtc_cmos(void)
223 {
224 #ifdef CONFIG_PNP
225 	static const char *ids[] __initconst =
226 	    { "PNP0b00", "PNP0b01", "PNP0b02", };
227 	struct pnp_dev *dev;
228 	struct pnp_id *id;
229 	int i;
230 
231 	pnp_for_each_dev(dev) {
232 		for (id = dev->id; id; id = id->next) {
233 			for (i = 0; i < ARRAY_SIZE(ids); i++) {
234 				if (compare_pnp_id(id, ids[i]) != 0)
235 					return 0;
236 			}
237 		}
238 	}
239 #endif
240 	if (of_have_populated_dt())
241 		return 0;
242 
243 	platform_device_register(&rtc_device);
244 	dev_info(&rtc_device.dev,
245 		 "registered platform RTC device (no PNP device found)\n");
246 
247 	return 0;
248 }
249 device_initcall(add_rtc_cmos);
250