xref: /openbmc/linux/arch/x86/kernel/rtc.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RTC related functions
4  */
5 #include <linux/platform_device.h>
6 #include <linux/mc146818rtc.h>
7 #include <linux/acpi.h>
8 #include <linux/bcd.h>
9 #include <linux/export.h>
10 #include <linux/pnp.h>
11 #include <linux/of.h>
12 
13 #include <asm/vsyscall.h>
14 #include <asm/x86_init.h>
15 #include <asm/time.h>
16 #include <asm/intel-mid.h>
17 #include <asm/setup.h>
18 
19 #ifdef CONFIG_X86_32
20 /*
21  * This is a special lock that is owned by the CPU and holds the index
22  * register we are working with.  It is required for NMI access to the
23  * CMOS/RTC registers.  See include/asm-i386/mc146818rtc.h for details.
24  */
25 volatile unsigned long cmos_lock;
26 EXPORT_SYMBOL(cmos_lock);
27 #endif /* CONFIG_X86_32 */
28 
29 /* For two digit years assume time is always after that */
30 #define CMOS_YEARS_OFFS 2000
31 
32 DEFINE_SPINLOCK(rtc_lock);
33 EXPORT_SYMBOL(rtc_lock);
34 
35 /*
36  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
37  * called 500 ms after the second nowtime has started, because when
38  * nowtime is written into the registers of the CMOS clock, it will
39  * jump to the next second precisely 500 ms later. Check the Motorola
40  * MC146818A or Dallas DS12887 data sheet for details.
41  */
42 int mach_set_rtc_mmss(const struct timespec64 *now)
43 {
44 	unsigned long long nowtime = now->tv_sec;
45 	struct rtc_time tm;
46 	int retval = 0;
47 
48 	rtc_time64_to_tm(nowtime, &tm);
49 	if (!rtc_valid_tm(&tm)) {
50 		retval = mc146818_set_time(&tm);
51 		if (retval)
52 			printk(KERN_ERR "%s: RTC write failed with error %d\n",
53 			       __func__, retval);
54 	} else {
55 		printk(KERN_ERR
56 		       "%s: Invalid RTC value: write of %llx to RTC failed\n",
57 			__func__, nowtime);
58 		retval = -EINVAL;
59 	}
60 	return retval;
61 }
62 
63 void mach_get_cmos_time(struct timespec64 *now)
64 {
65 	unsigned int status, year, mon, day, hour, min, sec, century = 0;
66 	unsigned long flags;
67 
68 	/*
69 	 * If pm_trace abused the RTC as storage, set the timespec to 0,
70 	 * which tells the caller that this RTC value is unusable.
71 	 */
72 	if (!pm_trace_rtc_valid()) {
73 		now->tv_sec = now->tv_nsec = 0;
74 		return;
75 	}
76 
77 	spin_lock_irqsave(&rtc_lock, flags);
78 
79 	/*
80 	 * If UIP is clear, then we have >= 244 microseconds before
81 	 * RTC registers will be updated.  Spec sheet says that this
82 	 * is the reliable way to read RTC - registers. If UIP is set
83 	 * then the register access might be invalid.
84 	 */
85 	while ((CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
86 		cpu_relax();
87 
88 	sec = CMOS_READ(RTC_SECONDS);
89 	min = CMOS_READ(RTC_MINUTES);
90 	hour = CMOS_READ(RTC_HOURS);
91 	day = CMOS_READ(RTC_DAY_OF_MONTH);
92 	mon = CMOS_READ(RTC_MONTH);
93 	year = CMOS_READ(RTC_YEAR);
94 
95 #ifdef CONFIG_ACPI
96 	if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
97 	    acpi_gbl_FADT.century)
98 		century = CMOS_READ(acpi_gbl_FADT.century);
99 #endif
100 
101 	status = CMOS_READ(RTC_CONTROL);
102 	WARN_ON_ONCE(RTC_ALWAYS_BCD && (status & RTC_DM_BINARY));
103 
104 	spin_unlock_irqrestore(&rtc_lock, flags);
105 
106 	if (RTC_ALWAYS_BCD || !(status & RTC_DM_BINARY)) {
107 		sec = bcd2bin(sec);
108 		min = bcd2bin(min);
109 		hour = bcd2bin(hour);
110 		day = bcd2bin(day);
111 		mon = bcd2bin(mon);
112 		year = bcd2bin(year);
113 	}
114 
115 	if (century) {
116 		century = bcd2bin(century);
117 		year += century * 100;
118 	} else
119 		year += CMOS_YEARS_OFFS;
120 
121 	now->tv_sec = mktime64(year, mon, day, hour, min, sec);
122 	now->tv_nsec = 0;
123 }
124 
125 /* Routines for accessing the CMOS RAM/RTC. */
126 unsigned char rtc_cmos_read(unsigned char addr)
127 {
128 	unsigned char val;
129 
130 	lock_cmos_prefix(addr);
131 	outb(addr, RTC_PORT(0));
132 	val = inb(RTC_PORT(1));
133 	lock_cmos_suffix(addr);
134 
135 	return val;
136 }
137 EXPORT_SYMBOL(rtc_cmos_read);
138 
139 void rtc_cmos_write(unsigned char val, unsigned char addr)
140 {
141 	lock_cmos_prefix(addr);
142 	outb(addr, RTC_PORT(0));
143 	outb(val, RTC_PORT(1));
144 	lock_cmos_suffix(addr);
145 }
146 EXPORT_SYMBOL(rtc_cmos_write);
147 
148 int update_persistent_clock64(struct timespec64 now)
149 {
150 	return x86_platform.set_wallclock(&now);
151 }
152 
153 /* not static: needed by APM */
154 void read_persistent_clock64(struct timespec64 *ts)
155 {
156 	x86_platform.get_wallclock(ts);
157 }
158 
159 
160 static struct resource rtc_resources[] = {
161 	[0] = {
162 		.start	= RTC_PORT(0),
163 		.end	= RTC_PORT(1),
164 		.flags	= IORESOURCE_IO,
165 	},
166 	[1] = {
167 		.start	= RTC_IRQ,
168 		.end	= RTC_IRQ,
169 		.flags	= IORESOURCE_IRQ,
170 	}
171 };
172 
173 static struct platform_device rtc_device = {
174 	.name		= "rtc_cmos",
175 	.id		= -1,
176 	.resource	= rtc_resources,
177 	.num_resources	= ARRAY_SIZE(rtc_resources),
178 };
179 
180 static __init int add_rtc_cmos(void)
181 {
182 #ifdef CONFIG_PNP
183 	static const char * const ids[] __initconst =
184 	    { "PNP0b00", "PNP0b01", "PNP0b02", };
185 	struct pnp_dev *dev;
186 	struct pnp_id *id;
187 	int i;
188 
189 	pnp_for_each_dev(dev) {
190 		for (id = dev->id; id; id = id->next) {
191 			for (i = 0; i < ARRAY_SIZE(ids); i++) {
192 				if (compare_pnp_id(id, ids[i]) != 0)
193 					return 0;
194 			}
195 		}
196 	}
197 #endif
198 	if (!x86_platform.legacy.rtc)
199 		return -ENODEV;
200 
201 	platform_device_register(&rtc_device);
202 	dev_info(&rtc_device.dev,
203 		 "registered platform RTC device (no PNP device found)\n");
204 
205 	return 0;
206 }
207 device_initcall(add_rtc_cmos);
208