xref: /openbmc/linux/arch/x86/kernel/process_64.c (revision e53134fe)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  *
7  *  X86-64 port
8  *	Andi Kleen.
9  *
10  *	CPU hotplug support - ashok.raj@intel.com
11  */
12 
13 /*
14  * This file handles the architecture-dependent parts of process handling..
15  */
16 
17 #include <linux/cpu.h>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/fs.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/elfcore.h>
26 #include <linux/smp.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/export.h>
32 #include <linux/ptrace.h>
33 #include <linux/notifier.h>
34 #include <linux/kprobes.h>
35 #include <linux/kdebug.h>
36 #include <linux/prctl.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/ftrace.h>
40 #include <linux/syscalls.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/processor.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/mmu_context.h>
46 #include <asm/prctl.h>
47 #include <asm/desc.h>
48 #include <asm/proto.h>
49 #include <asm/ia32.h>
50 #include <asm/syscalls.h>
51 #include <asm/debugreg.h>
52 #include <asm/switch_to.h>
53 #include <asm/xen/hypervisor.h>
54 #include <asm/vdso.h>
55 #include <asm/intel_rdt_sched.h>
56 #include <asm/unistd.h>
57 #ifdef CONFIG_IA32_EMULATION
58 /* Not included via unistd.h */
59 #include <asm/unistd_32_ia32.h>
60 #endif
61 
62 __visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
63 
64 /* Prints also some state that isn't saved in the pt_regs */
65 void __show_regs(struct pt_regs *regs, int all)
66 {
67 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
68 	unsigned long d0, d1, d2, d3, d6, d7;
69 	unsigned int fsindex, gsindex;
70 	unsigned int ds, cs, es;
71 
72 	show_iret_regs(regs);
73 
74 	if (regs->orig_ax != -1)
75 		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
76 	else
77 		pr_cont("\n");
78 
79 	printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
80 	       regs->ax, regs->bx, regs->cx);
81 	printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
82 	       regs->dx, regs->si, regs->di);
83 	printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
84 	       regs->bp, regs->r8, regs->r9);
85 	printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
86 	       regs->r10, regs->r11, regs->r12);
87 	printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
88 	       regs->r13, regs->r14, regs->r15);
89 
90 	if (!all)
91 		return;
92 
93 	asm("movl %%ds,%0" : "=r" (ds));
94 	asm("movl %%cs,%0" : "=r" (cs));
95 	asm("movl %%es,%0" : "=r" (es));
96 	asm("movl %%fs,%0" : "=r" (fsindex));
97 	asm("movl %%gs,%0" : "=r" (gsindex));
98 
99 	rdmsrl(MSR_FS_BASE, fs);
100 	rdmsrl(MSR_GS_BASE, gs);
101 	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
102 
103 	cr0 = read_cr0();
104 	cr2 = read_cr2();
105 	cr3 = __read_cr3();
106 	cr4 = __read_cr4();
107 
108 	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
109 	       fs, fsindex, gs, gsindex, shadowgs);
110 	printk(KERN_DEFAULT "CS:  %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
111 			es, cr0);
112 	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
113 			cr4);
114 
115 	get_debugreg(d0, 0);
116 	get_debugreg(d1, 1);
117 	get_debugreg(d2, 2);
118 	get_debugreg(d3, 3);
119 	get_debugreg(d6, 6);
120 	get_debugreg(d7, 7);
121 
122 	/* Only print out debug registers if they are in their non-default state. */
123 	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
124 	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
125 		printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
126 		       d0, d1, d2);
127 		printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
128 		       d3, d6, d7);
129 	}
130 
131 	if (boot_cpu_has(X86_FEATURE_OSPKE))
132 		printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
133 }
134 
135 void release_thread(struct task_struct *dead_task)
136 {
137 	if (dead_task->mm) {
138 #ifdef CONFIG_MODIFY_LDT_SYSCALL
139 		if (dead_task->mm->context.ldt) {
140 			pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
141 				dead_task->comm,
142 				dead_task->mm->context.ldt->entries,
143 				dead_task->mm->context.ldt->nr_entries);
144 			BUG();
145 		}
146 #endif
147 	}
148 }
149 
150 enum which_selector {
151 	FS,
152 	GS
153 };
154 
155 /*
156  * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
157  * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
158  * It's forcibly inlined because it'll generate better code and this function
159  * is hot.
160  */
161 static __always_inline void save_base_legacy(struct task_struct *prev_p,
162 					     unsigned short selector,
163 					     enum which_selector which)
164 {
165 	if (likely(selector == 0)) {
166 		/*
167 		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
168 		 * be the pre-existing saved base or it could be zero.  On AMD
169 		 * (with X86_BUG_NULL_SEG), the segment base could be almost
170 		 * anything.
171 		 *
172 		 * This branch is very hot (it's hit twice on almost every
173 		 * context switch between 64-bit programs), and avoiding
174 		 * the RDMSR helps a lot, so we just assume that whatever
175 		 * value is already saved is correct.  This matches historical
176 		 * Linux behavior, so it won't break existing applications.
177 		 *
178 		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
179 		 * report that the base is zero, it needs to actually be zero:
180 		 * see the corresponding logic in load_seg_legacy.
181 		 */
182 	} else {
183 		/*
184 		 * If the selector is 1, 2, or 3, then the base is zero on
185 		 * !X86_BUG_NULL_SEG CPUs and could be anything on
186 		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
187 		 * has never attempted to preserve the base across context
188 		 * switches.
189 		 *
190 		 * If selector > 3, then it refers to a real segment, and
191 		 * saving the base isn't necessary.
192 		 */
193 		if (which == FS)
194 			prev_p->thread.fsbase = 0;
195 		else
196 			prev_p->thread.gsbase = 0;
197 	}
198 }
199 
200 static __always_inline void save_fsgs(struct task_struct *task)
201 {
202 	savesegment(fs, task->thread.fsindex);
203 	savesegment(gs, task->thread.gsindex);
204 	save_base_legacy(task, task->thread.fsindex, FS);
205 	save_base_legacy(task, task->thread.gsindex, GS);
206 }
207 
208 #if IS_ENABLED(CONFIG_KVM)
209 /*
210  * While a process is running,current->thread.fsbase and current->thread.gsbase
211  * may not match the corresponding CPU registers (see save_base_legacy()). KVM
212  * wants an efficient way to save and restore FSBASE and GSBASE.
213  * When FSGSBASE extensions are enabled, this will have to use RD{FS,GS}BASE.
214  */
215 void save_fsgs_for_kvm(void)
216 {
217 	save_fsgs(current);
218 }
219 EXPORT_SYMBOL_GPL(save_fsgs_for_kvm);
220 #endif
221 
222 static __always_inline void loadseg(enum which_selector which,
223 				    unsigned short sel)
224 {
225 	if (which == FS)
226 		loadsegment(fs, sel);
227 	else
228 		load_gs_index(sel);
229 }
230 
231 static __always_inline void load_seg_legacy(unsigned short prev_index,
232 					    unsigned long prev_base,
233 					    unsigned short next_index,
234 					    unsigned long next_base,
235 					    enum which_selector which)
236 {
237 	if (likely(next_index <= 3)) {
238 		/*
239 		 * The next task is using 64-bit TLS, is not using this
240 		 * segment at all, or is having fun with arcane CPU features.
241 		 */
242 		if (next_base == 0) {
243 			/*
244 			 * Nasty case: on AMD CPUs, we need to forcibly zero
245 			 * the base.
246 			 */
247 			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
248 				loadseg(which, __USER_DS);
249 				loadseg(which, next_index);
250 			} else {
251 				/*
252 				 * We could try to exhaustively detect cases
253 				 * under which we can skip the segment load,
254 				 * but there's really only one case that matters
255 				 * for performance: if both the previous and
256 				 * next states are fully zeroed, we can skip
257 				 * the load.
258 				 *
259 				 * (This assumes that prev_base == 0 has no
260 				 * false positives.  This is the case on
261 				 * Intel-style CPUs.)
262 				 */
263 				if (likely(prev_index | next_index | prev_base))
264 					loadseg(which, next_index);
265 			}
266 		} else {
267 			if (prev_index != next_index)
268 				loadseg(which, next_index);
269 			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
270 			       next_base);
271 		}
272 	} else {
273 		/*
274 		 * The next task is using a real segment.  Loading the selector
275 		 * is sufficient.
276 		 */
277 		loadseg(which, next_index);
278 	}
279 }
280 
281 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
282 		unsigned long arg, struct task_struct *p, unsigned long tls)
283 {
284 	int err;
285 	struct pt_regs *childregs;
286 	struct fork_frame *fork_frame;
287 	struct inactive_task_frame *frame;
288 	struct task_struct *me = current;
289 
290 	childregs = task_pt_regs(p);
291 	fork_frame = container_of(childregs, struct fork_frame, regs);
292 	frame = &fork_frame->frame;
293 	frame->bp = 0;
294 	frame->ret_addr = (unsigned long) ret_from_fork;
295 	p->thread.sp = (unsigned long) fork_frame;
296 	p->thread.io_bitmap_ptr = NULL;
297 
298 	savesegment(gs, p->thread.gsindex);
299 	p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
300 	savesegment(fs, p->thread.fsindex);
301 	p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
302 	savesegment(es, p->thread.es);
303 	savesegment(ds, p->thread.ds);
304 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
305 
306 	if (unlikely(p->flags & PF_KTHREAD)) {
307 		/* kernel thread */
308 		memset(childregs, 0, sizeof(struct pt_regs));
309 		frame->bx = sp;		/* function */
310 		frame->r12 = arg;
311 		return 0;
312 	}
313 	frame->bx = 0;
314 	*childregs = *current_pt_regs();
315 
316 	childregs->ax = 0;
317 	if (sp)
318 		childregs->sp = sp;
319 
320 	err = -ENOMEM;
321 	if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
322 		p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
323 						  IO_BITMAP_BYTES, GFP_KERNEL);
324 		if (!p->thread.io_bitmap_ptr) {
325 			p->thread.io_bitmap_max = 0;
326 			return -ENOMEM;
327 		}
328 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
329 	}
330 
331 	/*
332 	 * Set a new TLS for the child thread?
333 	 */
334 	if (clone_flags & CLONE_SETTLS) {
335 #ifdef CONFIG_IA32_EMULATION
336 		if (in_ia32_syscall())
337 			err = do_set_thread_area(p, -1,
338 				(struct user_desc __user *)tls, 0);
339 		else
340 #endif
341 			err = do_arch_prctl_64(p, ARCH_SET_FS, tls);
342 		if (err)
343 			goto out;
344 	}
345 	err = 0;
346 out:
347 	if (err && p->thread.io_bitmap_ptr) {
348 		kfree(p->thread.io_bitmap_ptr);
349 		p->thread.io_bitmap_max = 0;
350 	}
351 
352 	return err;
353 }
354 
355 static void
356 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
357 		    unsigned long new_sp,
358 		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
359 {
360 	WARN_ON_ONCE(regs != current_pt_regs());
361 
362 	if (static_cpu_has(X86_BUG_NULL_SEG)) {
363 		/* Loading zero below won't clear the base. */
364 		loadsegment(fs, __USER_DS);
365 		load_gs_index(__USER_DS);
366 	}
367 
368 	loadsegment(fs, 0);
369 	loadsegment(es, _ds);
370 	loadsegment(ds, _ds);
371 	load_gs_index(0);
372 
373 	regs->ip		= new_ip;
374 	regs->sp		= new_sp;
375 	regs->cs		= _cs;
376 	regs->ss		= _ss;
377 	regs->flags		= X86_EFLAGS_IF;
378 	force_iret();
379 }
380 
381 void
382 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
383 {
384 	start_thread_common(regs, new_ip, new_sp,
385 			    __USER_CS, __USER_DS, 0);
386 }
387 EXPORT_SYMBOL_GPL(start_thread);
388 
389 #ifdef CONFIG_COMPAT
390 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
391 {
392 	start_thread_common(regs, new_ip, new_sp,
393 			    test_thread_flag(TIF_X32)
394 			    ? __USER_CS : __USER32_CS,
395 			    __USER_DS, __USER_DS);
396 }
397 #endif
398 
399 /*
400  *	switch_to(x,y) should switch tasks from x to y.
401  *
402  * This could still be optimized:
403  * - fold all the options into a flag word and test it with a single test.
404  * - could test fs/gs bitsliced
405  *
406  * Kprobes not supported here. Set the probe on schedule instead.
407  * Function graph tracer not supported too.
408  */
409 __visible __notrace_funcgraph struct task_struct *
410 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
411 {
412 	struct thread_struct *prev = &prev_p->thread;
413 	struct thread_struct *next = &next_p->thread;
414 	struct fpu *prev_fpu = &prev->fpu;
415 	struct fpu *next_fpu = &next->fpu;
416 	int cpu = smp_processor_id();
417 	struct tss_struct *tss = &per_cpu(cpu_tss_rw, cpu);
418 
419 	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
420 		     this_cpu_read(irq_count) != -1);
421 
422 	switch_fpu_prepare(prev_fpu, cpu);
423 
424 	/* We must save %fs and %gs before load_TLS() because
425 	 * %fs and %gs may be cleared by load_TLS().
426 	 *
427 	 * (e.g. xen_load_tls())
428 	 */
429 	save_fsgs(prev_p);
430 
431 	/*
432 	 * Load TLS before restoring any segments so that segment loads
433 	 * reference the correct GDT entries.
434 	 */
435 	load_TLS(next, cpu);
436 
437 	/*
438 	 * Leave lazy mode, flushing any hypercalls made here.  This
439 	 * must be done after loading TLS entries in the GDT but before
440 	 * loading segments that might reference them, and and it must
441 	 * be done before fpu__restore(), so the TS bit is up to
442 	 * date.
443 	 */
444 	arch_end_context_switch(next_p);
445 
446 	/* Switch DS and ES.
447 	 *
448 	 * Reading them only returns the selectors, but writing them (if
449 	 * nonzero) loads the full descriptor from the GDT or LDT.  The
450 	 * LDT for next is loaded in switch_mm, and the GDT is loaded
451 	 * above.
452 	 *
453 	 * We therefore need to write new values to the segment
454 	 * registers on every context switch unless both the new and old
455 	 * values are zero.
456 	 *
457 	 * Note that we don't need to do anything for CS and SS, as
458 	 * those are saved and restored as part of pt_regs.
459 	 */
460 	savesegment(es, prev->es);
461 	if (unlikely(next->es | prev->es))
462 		loadsegment(es, next->es);
463 
464 	savesegment(ds, prev->ds);
465 	if (unlikely(next->ds | prev->ds))
466 		loadsegment(ds, next->ds);
467 
468 	load_seg_legacy(prev->fsindex, prev->fsbase,
469 			next->fsindex, next->fsbase, FS);
470 	load_seg_legacy(prev->gsindex, prev->gsbase,
471 			next->gsindex, next->gsbase, GS);
472 
473 	switch_fpu_finish(next_fpu, cpu);
474 
475 	/*
476 	 * Switch the PDA and FPU contexts.
477 	 */
478 	this_cpu_write(current_task, next_p);
479 	this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
480 
481 	/* Reload sp0. */
482 	update_task_stack(next_p);
483 
484 	/*
485 	 * Now maybe reload the debug registers and handle I/O bitmaps
486 	 */
487 	if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
488 		     task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
489 		__switch_to_xtra(prev_p, next_p, tss);
490 
491 #ifdef CONFIG_XEN_PV
492 	/*
493 	 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
494 	 * current_pt_regs()->flags may not match the current task's
495 	 * intended IOPL.  We need to switch it manually.
496 	 */
497 	if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
498 		     prev->iopl != next->iopl))
499 		xen_set_iopl_mask(next->iopl);
500 #endif
501 
502 	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
503 		/*
504 		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
505 		 * does not update the cached descriptor.  As a result, if we
506 		 * do SYSRET while SS is NULL, we'll end up in user mode with
507 		 * SS apparently equal to __USER_DS but actually unusable.
508 		 *
509 		 * The straightforward workaround would be to fix it up just
510 		 * before SYSRET, but that would slow down the system call
511 		 * fast paths.  Instead, we ensure that SS is never NULL in
512 		 * system call context.  We do this by replacing NULL SS
513 		 * selectors at every context switch.  SYSCALL sets up a valid
514 		 * SS, so the only way to get NULL is to re-enter the kernel
515 		 * from CPL 3 through an interrupt.  Since that can't happen
516 		 * in the same task as a running syscall, we are guaranteed to
517 		 * context switch between every interrupt vector entry and a
518 		 * subsequent SYSRET.
519 		 *
520 		 * We read SS first because SS reads are much faster than
521 		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
522 		 * it previously had a different non-NULL value.
523 		 */
524 		unsigned short ss_sel;
525 		savesegment(ss, ss_sel);
526 		if (ss_sel != __KERNEL_DS)
527 			loadsegment(ss, __KERNEL_DS);
528 	}
529 
530 	/* Load the Intel cache allocation PQR MSR. */
531 	intel_rdt_sched_in();
532 
533 	return prev_p;
534 }
535 
536 void set_personality_64bit(void)
537 {
538 	/* inherit personality from parent */
539 
540 	/* Make sure to be in 64bit mode */
541 	clear_thread_flag(TIF_IA32);
542 	clear_thread_flag(TIF_ADDR32);
543 	clear_thread_flag(TIF_X32);
544 	/* Pretend that this comes from a 64bit execve */
545 	task_pt_regs(current)->orig_ax = __NR_execve;
546 	current_thread_info()->status &= ~TS_COMPAT;
547 
548 	/* Ensure the corresponding mm is not marked. */
549 	if (current->mm)
550 		current->mm->context.ia32_compat = 0;
551 
552 	/* TBD: overwrites user setup. Should have two bits.
553 	   But 64bit processes have always behaved this way,
554 	   so it's not too bad. The main problem is just that
555 	   32bit childs are affected again. */
556 	current->personality &= ~READ_IMPLIES_EXEC;
557 }
558 
559 static void __set_personality_x32(void)
560 {
561 #ifdef CONFIG_X86_X32
562 	clear_thread_flag(TIF_IA32);
563 	set_thread_flag(TIF_X32);
564 	if (current->mm)
565 		current->mm->context.ia32_compat = TIF_X32;
566 	current->personality &= ~READ_IMPLIES_EXEC;
567 	/*
568 	 * in_compat_syscall() uses the presence of the x32 syscall bit
569 	 * flag to determine compat status.  The x86 mmap() code relies on
570 	 * the syscall bitness so set x32 syscall bit right here to make
571 	 * in_compat_syscall() work during exec().
572 	 *
573 	 * Pretend to come from a x32 execve.
574 	 */
575 	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
576 	current_thread_info()->status &= ~TS_COMPAT;
577 #endif
578 }
579 
580 static void __set_personality_ia32(void)
581 {
582 #ifdef CONFIG_IA32_EMULATION
583 	set_thread_flag(TIF_IA32);
584 	clear_thread_flag(TIF_X32);
585 	if (current->mm)
586 		current->mm->context.ia32_compat = TIF_IA32;
587 	current->personality |= force_personality32;
588 	/* Prepare the first "return" to user space */
589 	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
590 	current_thread_info()->status |= TS_COMPAT;
591 #endif
592 }
593 
594 void set_personality_ia32(bool x32)
595 {
596 	/* Make sure to be in 32bit mode */
597 	set_thread_flag(TIF_ADDR32);
598 
599 	if (x32)
600 		__set_personality_x32();
601 	else
602 		__set_personality_ia32();
603 }
604 EXPORT_SYMBOL_GPL(set_personality_ia32);
605 
606 #ifdef CONFIG_CHECKPOINT_RESTORE
607 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
608 {
609 	int ret;
610 
611 	ret = map_vdso_once(image, addr);
612 	if (ret)
613 		return ret;
614 
615 	return (long)image->size;
616 }
617 #endif
618 
619 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
620 {
621 	int ret = 0;
622 	int doit = task == current;
623 	int cpu;
624 
625 	switch (option) {
626 	case ARCH_SET_GS:
627 		if (arg2 >= TASK_SIZE_MAX)
628 			return -EPERM;
629 		cpu = get_cpu();
630 		task->thread.gsindex = 0;
631 		task->thread.gsbase = arg2;
632 		if (doit) {
633 			load_gs_index(0);
634 			ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, arg2);
635 		}
636 		put_cpu();
637 		break;
638 	case ARCH_SET_FS:
639 		/* Not strictly needed for fs, but do it for symmetry
640 		   with gs */
641 		if (arg2 >= TASK_SIZE_MAX)
642 			return -EPERM;
643 		cpu = get_cpu();
644 		task->thread.fsindex = 0;
645 		task->thread.fsbase = arg2;
646 		if (doit) {
647 			/* set the selector to 0 to not confuse __switch_to */
648 			loadsegment(fs, 0);
649 			ret = wrmsrl_safe(MSR_FS_BASE, arg2);
650 		}
651 		put_cpu();
652 		break;
653 	case ARCH_GET_FS: {
654 		unsigned long base;
655 
656 		if (doit)
657 			rdmsrl(MSR_FS_BASE, base);
658 		else
659 			base = task->thread.fsbase;
660 		ret = put_user(base, (unsigned long __user *)arg2);
661 		break;
662 	}
663 	case ARCH_GET_GS: {
664 		unsigned long base;
665 
666 		if (doit)
667 			rdmsrl(MSR_KERNEL_GS_BASE, base);
668 		else
669 			base = task->thread.gsbase;
670 		ret = put_user(base, (unsigned long __user *)arg2);
671 		break;
672 	}
673 
674 #ifdef CONFIG_CHECKPOINT_RESTORE
675 # ifdef CONFIG_X86_X32_ABI
676 	case ARCH_MAP_VDSO_X32:
677 		return prctl_map_vdso(&vdso_image_x32, arg2);
678 # endif
679 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
680 	case ARCH_MAP_VDSO_32:
681 		return prctl_map_vdso(&vdso_image_32, arg2);
682 # endif
683 	case ARCH_MAP_VDSO_64:
684 		return prctl_map_vdso(&vdso_image_64, arg2);
685 #endif
686 
687 	default:
688 		ret = -EINVAL;
689 		break;
690 	}
691 
692 	return ret;
693 }
694 
695 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
696 {
697 	long ret;
698 
699 	ret = do_arch_prctl_64(current, option, arg2);
700 	if (ret == -EINVAL)
701 		ret = do_arch_prctl_common(current, option, arg2);
702 
703 	return ret;
704 }
705 
706 #ifdef CONFIG_IA32_EMULATION
707 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
708 {
709 	return do_arch_prctl_common(current, option, arg2);
710 }
711 #endif
712 
713 unsigned long KSTK_ESP(struct task_struct *task)
714 {
715 	return task_pt_regs(task)->sp;
716 }
717