xref: /openbmc/linux/arch/x86/kernel/process_64.c (revision caf83e49)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  *
8  *  X86-64 port
9  *	Andi Kleen.
10  *
11  *	CPU hotplug support - ashok.raj@intel.com
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of process handling..
16  */
17 
18 #include <linux/cpu.h>
19 #include <linux/errno.h>
20 #include <linux/sched.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/fs.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/elfcore.h>
27 #include <linux/smp.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/export.h>
33 #include <linux/ptrace.h>
34 #include <linux/notifier.h>
35 #include <linux/kprobes.h>
36 #include <linux/kdebug.h>
37 #include <linux/prctl.h>
38 #include <linux/uaccess.h>
39 #include <linux/io.h>
40 #include <linux/ftrace.h>
41 #include <linux/syscalls.h>
42 
43 #include <asm/processor.h>
44 #include <asm/pkru.h>
45 #include <asm/fpu/sched.h>
46 #include <asm/mmu_context.h>
47 #include <asm/prctl.h>
48 #include <asm/desc.h>
49 #include <asm/proto.h>
50 #include <asm/ia32.h>
51 #include <asm/debugreg.h>
52 #include <asm/switch_to.h>
53 #include <asm/xen/hypervisor.h>
54 #include <asm/vdso.h>
55 #include <asm/resctrl.h>
56 #include <asm/unistd.h>
57 #include <asm/fsgsbase.h>
58 #ifdef CONFIG_IA32_EMULATION
59 /* Not included via unistd.h */
60 #include <asm/unistd_32_ia32.h>
61 #endif
62 
63 #include "process.h"
64 
65 /* Prints also some state that isn't saved in the pt_regs */
66 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
67 		 const char *log_lvl)
68 {
69 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
70 	unsigned long d0, d1, d2, d3, d6, d7;
71 	unsigned int fsindex, gsindex;
72 	unsigned int ds, es;
73 
74 	show_iret_regs(regs, log_lvl);
75 
76 	if (regs->orig_ax != -1)
77 		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
78 	else
79 		pr_cont("\n");
80 
81 	printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
82 	       log_lvl, regs->ax, regs->bx, regs->cx);
83 	printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
84 	       log_lvl, regs->dx, regs->si, regs->di);
85 	printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
86 	       log_lvl, regs->bp, regs->r8, regs->r9);
87 	printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
88 	       log_lvl, regs->r10, regs->r11, regs->r12);
89 	printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
90 	       log_lvl, regs->r13, regs->r14, regs->r15);
91 
92 	if (mode == SHOW_REGS_SHORT)
93 		return;
94 
95 	if (mode == SHOW_REGS_USER) {
96 		rdmsrl(MSR_FS_BASE, fs);
97 		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
98 		printk("%sFS:  %016lx GS:  %016lx\n",
99 		       log_lvl, fs, shadowgs);
100 		return;
101 	}
102 
103 	asm("movl %%ds,%0" : "=r" (ds));
104 	asm("movl %%es,%0" : "=r" (es));
105 	asm("movl %%fs,%0" : "=r" (fsindex));
106 	asm("movl %%gs,%0" : "=r" (gsindex));
107 
108 	rdmsrl(MSR_FS_BASE, fs);
109 	rdmsrl(MSR_GS_BASE, gs);
110 	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
111 
112 	cr0 = read_cr0();
113 	cr2 = read_cr2();
114 	cr3 = __read_cr3();
115 	cr4 = __read_cr4();
116 
117 	printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
118 	       log_lvl, fs, fsindex, gs, gsindex, shadowgs);
119 	printk("%sCS:  %04lx DS: %04x ES: %04x CR0: %016lx\n",
120 		log_lvl, regs->cs, ds, es, cr0);
121 	printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
122 		log_lvl, cr2, cr3, cr4);
123 
124 	get_debugreg(d0, 0);
125 	get_debugreg(d1, 1);
126 	get_debugreg(d2, 2);
127 	get_debugreg(d3, 3);
128 	get_debugreg(d6, 6);
129 	get_debugreg(d7, 7);
130 
131 	/* Only print out debug registers if they are in their non-default state. */
132 	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
133 	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
134 		printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
135 		       log_lvl, d0, d1, d2);
136 		printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
137 		       log_lvl, d3, d6, d7);
138 	}
139 
140 	if (cpu_feature_enabled(X86_FEATURE_OSPKE))
141 		printk("%sPKRU: %08x\n", log_lvl, read_pkru());
142 }
143 
144 void release_thread(struct task_struct *dead_task)
145 {
146 	WARN_ON(dead_task->mm);
147 }
148 
149 enum which_selector {
150 	FS,
151 	GS
152 };
153 
154 /*
155  * Out of line to be protected from kprobes and tracing. If this would be
156  * traced or probed than any access to a per CPU variable happens with
157  * the wrong GS.
158  *
159  * It is not used on Xen paravirt. When paravirt support is needed, it
160  * needs to be renamed with native_ prefix.
161  */
162 static noinstr unsigned long __rdgsbase_inactive(void)
163 {
164 	unsigned long gsbase;
165 
166 	lockdep_assert_irqs_disabled();
167 
168 	if (!static_cpu_has(X86_FEATURE_XENPV)) {
169 		native_swapgs();
170 		gsbase = rdgsbase();
171 		native_swapgs();
172 	} else {
173 		instrumentation_begin();
174 		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
175 		instrumentation_end();
176 	}
177 
178 	return gsbase;
179 }
180 
181 /*
182  * Out of line to be protected from kprobes and tracing. If this would be
183  * traced or probed than any access to a per CPU variable happens with
184  * the wrong GS.
185  *
186  * It is not used on Xen paravirt. When paravirt support is needed, it
187  * needs to be renamed with native_ prefix.
188  */
189 static noinstr void __wrgsbase_inactive(unsigned long gsbase)
190 {
191 	lockdep_assert_irqs_disabled();
192 
193 	if (!static_cpu_has(X86_FEATURE_XENPV)) {
194 		native_swapgs();
195 		wrgsbase(gsbase);
196 		native_swapgs();
197 	} else {
198 		instrumentation_begin();
199 		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
200 		instrumentation_end();
201 	}
202 }
203 
204 /*
205  * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
206  * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
207  * It's forcibly inlined because it'll generate better code and this function
208  * is hot.
209  */
210 static __always_inline void save_base_legacy(struct task_struct *prev_p,
211 					     unsigned short selector,
212 					     enum which_selector which)
213 {
214 	if (likely(selector == 0)) {
215 		/*
216 		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
217 		 * be the pre-existing saved base or it could be zero.  On AMD
218 		 * (with X86_BUG_NULL_SEG), the segment base could be almost
219 		 * anything.
220 		 *
221 		 * This branch is very hot (it's hit twice on almost every
222 		 * context switch between 64-bit programs), and avoiding
223 		 * the RDMSR helps a lot, so we just assume that whatever
224 		 * value is already saved is correct.  This matches historical
225 		 * Linux behavior, so it won't break existing applications.
226 		 *
227 		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
228 		 * report that the base is zero, it needs to actually be zero:
229 		 * see the corresponding logic in load_seg_legacy.
230 		 */
231 	} else {
232 		/*
233 		 * If the selector is 1, 2, or 3, then the base is zero on
234 		 * !X86_BUG_NULL_SEG CPUs and could be anything on
235 		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
236 		 * has never attempted to preserve the base across context
237 		 * switches.
238 		 *
239 		 * If selector > 3, then it refers to a real segment, and
240 		 * saving the base isn't necessary.
241 		 */
242 		if (which == FS)
243 			prev_p->thread.fsbase = 0;
244 		else
245 			prev_p->thread.gsbase = 0;
246 	}
247 }
248 
249 static __always_inline void save_fsgs(struct task_struct *task)
250 {
251 	savesegment(fs, task->thread.fsindex);
252 	savesegment(gs, task->thread.gsindex);
253 	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
254 		/*
255 		 * If FSGSBASE is enabled, we can't make any useful guesses
256 		 * about the base, and user code expects us to save the current
257 		 * value.  Fortunately, reading the base directly is efficient.
258 		 */
259 		task->thread.fsbase = rdfsbase();
260 		task->thread.gsbase = __rdgsbase_inactive();
261 	} else {
262 		save_base_legacy(task, task->thread.fsindex, FS);
263 		save_base_legacy(task, task->thread.gsindex, GS);
264 	}
265 }
266 
267 /*
268  * While a process is running,current->thread.fsbase and current->thread.gsbase
269  * may not match the corresponding CPU registers (see save_base_legacy()).
270  */
271 void current_save_fsgs(void)
272 {
273 	unsigned long flags;
274 
275 	/* Interrupts need to be off for FSGSBASE */
276 	local_irq_save(flags);
277 	save_fsgs(current);
278 	local_irq_restore(flags);
279 }
280 #if IS_ENABLED(CONFIG_KVM)
281 EXPORT_SYMBOL_GPL(current_save_fsgs);
282 #endif
283 
284 static __always_inline void loadseg(enum which_selector which,
285 				    unsigned short sel)
286 {
287 	if (which == FS)
288 		loadsegment(fs, sel);
289 	else
290 		load_gs_index(sel);
291 }
292 
293 static __always_inline void load_seg_legacy(unsigned short prev_index,
294 					    unsigned long prev_base,
295 					    unsigned short next_index,
296 					    unsigned long next_base,
297 					    enum which_selector which)
298 {
299 	if (likely(next_index <= 3)) {
300 		/*
301 		 * The next task is using 64-bit TLS, is not using this
302 		 * segment at all, or is having fun with arcane CPU features.
303 		 */
304 		if (next_base == 0) {
305 			/*
306 			 * Nasty case: on AMD CPUs, we need to forcibly zero
307 			 * the base.
308 			 */
309 			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
310 				loadseg(which, __USER_DS);
311 				loadseg(which, next_index);
312 			} else {
313 				/*
314 				 * We could try to exhaustively detect cases
315 				 * under which we can skip the segment load,
316 				 * but there's really only one case that matters
317 				 * for performance: if both the previous and
318 				 * next states are fully zeroed, we can skip
319 				 * the load.
320 				 *
321 				 * (This assumes that prev_base == 0 has no
322 				 * false positives.  This is the case on
323 				 * Intel-style CPUs.)
324 				 */
325 				if (likely(prev_index | next_index | prev_base))
326 					loadseg(which, next_index);
327 			}
328 		} else {
329 			if (prev_index != next_index)
330 				loadseg(which, next_index);
331 			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
332 			       next_base);
333 		}
334 	} else {
335 		/*
336 		 * The next task is using a real segment.  Loading the selector
337 		 * is sufficient.
338 		 */
339 		loadseg(which, next_index);
340 	}
341 }
342 
343 /*
344  * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
345  * is not XSTATE managed on context switch because that would require a
346  * lookup in the task's FPU xsave buffer and require to keep that updated
347  * in various places.
348  */
349 static __always_inline void x86_pkru_load(struct thread_struct *prev,
350 					  struct thread_struct *next)
351 {
352 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
353 		return;
354 
355 	/* Stash the prev task's value: */
356 	prev->pkru = rdpkru();
357 
358 	/*
359 	 * PKRU writes are slightly expensive.  Avoid them when not
360 	 * strictly necessary:
361 	 */
362 	if (prev->pkru != next->pkru)
363 		wrpkru(next->pkru);
364 }
365 
366 static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
367 					      struct thread_struct *next)
368 {
369 	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
370 		/* Update the FS and GS selectors if they could have changed. */
371 		if (unlikely(prev->fsindex || next->fsindex))
372 			loadseg(FS, next->fsindex);
373 		if (unlikely(prev->gsindex || next->gsindex))
374 			loadseg(GS, next->gsindex);
375 
376 		/* Update the bases. */
377 		wrfsbase(next->fsbase);
378 		__wrgsbase_inactive(next->gsbase);
379 	} else {
380 		load_seg_legacy(prev->fsindex, prev->fsbase,
381 				next->fsindex, next->fsbase, FS);
382 		load_seg_legacy(prev->gsindex, prev->gsbase,
383 				next->gsindex, next->gsbase, GS);
384 	}
385 }
386 
387 unsigned long x86_fsgsbase_read_task(struct task_struct *task,
388 				     unsigned short selector)
389 {
390 	unsigned short idx = selector >> 3;
391 	unsigned long base;
392 
393 	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
394 		if (unlikely(idx >= GDT_ENTRIES))
395 			return 0;
396 
397 		/*
398 		 * There are no user segments in the GDT with nonzero bases
399 		 * other than the TLS segments.
400 		 */
401 		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
402 			return 0;
403 
404 		idx -= GDT_ENTRY_TLS_MIN;
405 		base = get_desc_base(&task->thread.tls_array[idx]);
406 	} else {
407 #ifdef CONFIG_MODIFY_LDT_SYSCALL
408 		struct ldt_struct *ldt;
409 
410 		/*
411 		 * If performance here mattered, we could protect the LDT
412 		 * with RCU.  This is a slow path, though, so we can just
413 		 * take the mutex.
414 		 */
415 		mutex_lock(&task->mm->context.lock);
416 		ldt = task->mm->context.ldt;
417 		if (unlikely(!ldt || idx >= ldt->nr_entries))
418 			base = 0;
419 		else
420 			base = get_desc_base(ldt->entries + idx);
421 		mutex_unlock(&task->mm->context.lock);
422 #else
423 		base = 0;
424 #endif
425 	}
426 
427 	return base;
428 }
429 
430 unsigned long x86_gsbase_read_cpu_inactive(void)
431 {
432 	unsigned long gsbase;
433 
434 	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
435 		unsigned long flags;
436 
437 		local_irq_save(flags);
438 		gsbase = __rdgsbase_inactive();
439 		local_irq_restore(flags);
440 	} else {
441 		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
442 	}
443 
444 	return gsbase;
445 }
446 
447 void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
448 {
449 	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
450 		unsigned long flags;
451 
452 		local_irq_save(flags);
453 		__wrgsbase_inactive(gsbase);
454 		local_irq_restore(flags);
455 	} else {
456 		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
457 	}
458 }
459 
460 unsigned long x86_fsbase_read_task(struct task_struct *task)
461 {
462 	unsigned long fsbase;
463 
464 	if (task == current)
465 		fsbase = x86_fsbase_read_cpu();
466 	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
467 		 (task->thread.fsindex == 0))
468 		fsbase = task->thread.fsbase;
469 	else
470 		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
471 
472 	return fsbase;
473 }
474 
475 unsigned long x86_gsbase_read_task(struct task_struct *task)
476 {
477 	unsigned long gsbase;
478 
479 	if (task == current)
480 		gsbase = x86_gsbase_read_cpu_inactive();
481 	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
482 		 (task->thread.gsindex == 0))
483 		gsbase = task->thread.gsbase;
484 	else
485 		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
486 
487 	return gsbase;
488 }
489 
490 void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
491 {
492 	WARN_ON_ONCE(task == current);
493 
494 	task->thread.fsbase = fsbase;
495 }
496 
497 void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
498 {
499 	WARN_ON_ONCE(task == current);
500 
501 	task->thread.gsbase = gsbase;
502 }
503 
504 static void
505 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
506 		    unsigned long new_sp,
507 		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
508 {
509 	WARN_ON_ONCE(regs != current_pt_regs());
510 
511 	if (static_cpu_has(X86_BUG_NULL_SEG)) {
512 		/* Loading zero below won't clear the base. */
513 		loadsegment(fs, __USER_DS);
514 		load_gs_index(__USER_DS);
515 	}
516 
517 	loadsegment(fs, 0);
518 	loadsegment(es, _ds);
519 	loadsegment(ds, _ds);
520 	load_gs_index(0);
521 
522 	regs->ip		= new_ip;
523 	regs->sp		= new_sp;
524 	regs->cs		= _cs;
525 	regs->ss		= _ss;
526 	regs->flags		= X86_EFLAGS_IF;
527 }
528 
529 void
530 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
531 {
532 	start_thread_common(regs, new_ip, new_sp,
533 			    __USER_CS, __USER_DS, 0);
534 }
535 EXPORT_SYMBOL_GPL(start_thread);
536 
537 #ifdef CONFIG_COMPAT
538 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
539 {
540 	start_thread_common(regs, new_ip, new_sp,
541 			    x32 ? __USER_CS : __USER32_CS,
542 			    __USER_DS, __USER_DS);
543 }
544 #endif
545 
546 /*
547  *	switch_to(x,y) should switch tasks from x to y.
548  *
549  * This could still be optimized:
550  * - fold all the options into a flag word and test it with a single test.
551  * - could test fs/gs bitsliced
552  *
553  * Kprobes not supported here. Set the probe on schedule instead.
554  * Function graph tracer not supported too.
555  */
556 __visible __notrace_funcgraph struct task_struct *
557 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
558 {
559 	struct thread_struct *prev = &prev_p->thread;
560 	struct thread_struct *next = &next_p->thread;
561 	struct fpu *prev_fpu = &prev->fpu;
562 	int cpu = smp_processor_id();
563 
564 	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
565 		     this_cpu_read(hardirq_stack_inuse));
566 
567 	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
568 		switch_fpu_prepare(prev_fpu, cpu);
569 
570 	/* We must save %fs and %gs before load_TLS() because
571 	 * %fs and %gs may be cleared by load_TLS().
572 	 *
573 	 * (e.g. xen_load_tls())
574 	 */
575 	save_fsgs(prev_p);
576 
577 	/*
578 	 * Load TLS before restoring any segments so that segment loads
579 	 * reference the correct GDT entries.
580 	 */
581 	load_TLS(next, cpu);
582 
583 	/*
584 	 * Leave lazy mode, flushing any hypercalls made here.  This
585 	 * must be done after loading TLS entries in the GDT but before
586 	 * loading segments that might reference them.
587 	 */
588 	arch_end_context_switch(next_p);
589 
590 	/* Switch DS and ES.
591 	 *
592 	 * Reading them only returns the selectors, but writing them (if
593 	 * nonzero) loads the full descriptor from the GDT or LDT.  The
594 	 * LDT for next is loaded in switch_mm, and the GDT is loaded
595 	 * above.
596 	 *
597 	 * We therefore need to write new values to the segment
598 	 * registers on every context switch unless both the new and old
599 	 * values are zero.
600 	 *
601 	 * Note that we don't need to do anything for CS and SS, as
602 	 * those are saved and restored as part of pt_regs.
603 	 */
604 	savesegment(es, prev->es);
605 	if (unlikely(next->es | prev->es))
606 		loadsegment(es, next->es);
607 
608 	savesegment(ds, prev->ds);
609 	if (unlikely(next->ds | prev->ds))
610 		loadsegment(ds, next->ds);
611 
612 	x86_fsgsbase_load(prev, next);
613 
614 	x86_pkru_load(prev, next);
615 
616 	/*
617 	 * Switch the PDA and FPU contexts.
618 	 */
619 	this_cpu_write(current_task, next_p);
620 	this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
621 
622 	switch_fpu_finish();
623 
624 	/* Reload sp0. */
625 	update_task_stack(next_p);
626 
627 	switch_to_extra(prev_p, next_p);
628 
629 	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
630 		/*
631 		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
632 		 * does not update the cached descriptor.  As a result, if we
633 		 * do SYSRET while SS is NULL, we'll end up in user mode with
634 		 * SS apparently equal to __USER_DS but actually unusable.
635 		 *
636 		 * The straightforward workaround would be to fix it up just
637 		 * before SYSRET, but that would slow down the system call
638 		 * fast paths.  Instead, we ensure that SS is never NULL in
639 		 * system call context.  We do this by replacing NULL SS
640 		 * selectors at every context switch.  SYSCALL sets up a valid
641 		 * SS, so the only way to get NULL is to re-enter the kernel
642 		 * from CPL 3 through an interrupt.  Since that can't happen
643 		 * in the same task as a running syscall, we are guaranteed to
644 		 * context switch between every interrupt vector entry and a
645 		 * subsequent SYSRET.
646 		 *
647 		 * We read SS first because SS reads are much faster than
648 		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
649 		 * it previously had a different non-NULL value.
650 		 */
651 		unsigned short ss_sel;
652 		savesegment(ss, ss_sel);
653 		if (ss_sel != __KERNEL_DS)
654 			loadsegment(ss, __KERNEL_DS);
655 	}
656 
657 	/* Load the Intel cache allocation PQR MSR. */
658 	resctrl_sched_in();
659 
660 	return prev_p;
661 }
662 
663 void set_personality_64bit(void)
664 {
665 	/* inherit personality from parent */
666 
667 	/* Make sure to be in 64bit mode */
668 	clear_thread_flag(TIF_ADDR32);
669 	/* Pretend that this comes from a 64bit execve */
670 	task_pt_regs(current)->orig_ax = __NR_execve;
671 	current_thread_info()->status &= ~TS_COMPAT;
672 	if (current->mm)
673 		current->mm->context.flags = MM_CONTEXT_HAS_VSYSCALL;
674 
675 	/* TBD: overwrites user setup. Should have two bits.
676 	   But 64bit processes have always behaved this way,
677 	   so it's not too bad. The main problem is just that
678 	   32bit children are affected again. */
679 	current->personality &= ~READ_IMPLIES_EXEC;
680 }
681 
682 static void __set_personality_x32(void)
683 {
684 #ifdef CONFIG_X86_X32_ABI
685 	if (current->mm)
686 		current->mm->context.flags = 0;
687 
688 	current->personality &= ~READ_IMPLIES_EXEC;
689 	/*
690 	 * in_32bit_syscall() uses the presence of the x32 syscall bit
691 	 * flag to determine compat status.  The x86 mmap() code relies on
692 	 * the syscall bitness so set x32 syscall bit right here to make
693 	 * in_32bit_syscall() work during exec().
694 	 *
695 	 * Pretend to come from a x32 execve.
696 	 */
697 	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
698 	current_thread_info()->status &= ~TS_COMPAT;
699 #endif
700 }
701 
702 static void __set_personality_ia32(void)
703 {
704 #ifdef CONFIG_IA32_EMULATION
705 	if (current->mm) {
706 		/*
707 		 * uprobes applied to this MM need to know this and
708 		 * cannot use user_64bit_mode() at that time.
709 		 */
710 		current->mm->context.flags = MM_CONTEXT_UPROBE_IA32;
711 	}
712 
713 	current->personality |= force_personality32;
714 	/* Prepare the first "return" to user space */
715 	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
716 	current_thread_info()->status |= TS_COMPAT;
717 #endif
718 }
719 
720 void set_personality_ia32(bool x32)
721 {
722 	/* Make sure to be in 32bit mode */
723 	set_thread_flag(TIF_ADDR32);
724 
725 	if (x32)
726 		__set_personality_x32();
727 	else
728 		__set_personality_ia32();
729 }
730 EXPORT_SYMBOL_GPL(set_personality_ia32);
731 
732 #ifdef CONFIG_CHECKPOINT_RESTORE
733 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
734 {
735 	int ret;
736 
737 	ret = map_vdso_once(image, addr);
738 	if (ret)
739 		return ret;
740 
741 	return (long)image->size;
742 }
743 #endif
744 
745 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
746 {
747 	int ret = 0;
748 
749 	switch (option) {
750 	case ARCH_SET_GS: {
751 		if (unlikely(arg2 >= TASK_SIZE_MAX))
752 			return -EPERM;
753 
754 		preempt_disable();
755 		/*
756 		 * ARCH_SET_GS has always overwritten the index
757 		 * and the base. Zero is the most sensible value
758 		 * to put in the index, and is the only value that
759 		 * makes any sense if FSGSBASE is unavailable.
760 		 */
761 		if (task == current) {
762 			loadseg(GS, 0);
763 			x86_gsbase_write_cpu_inactive(arg2);
764 
765 			/*
766 			 * On non-FSGSBASE systems, save_base_legacy() expects
767 			 * that we also fill in thread.gsbase.
768 			 */
769 			task->thread.gsbase = arg2;
770 
771 		} else {
772 			task->thread.gsindex = 0;
773 			x86_gsbase_write_task(task, arg2);
774 		}
775 		preempt_enable();
776 		break;
777 	}
778 	case ARCH_SET_FS: {
779 		/*
780 		 * Not strictly needed for %fs, but do it for symmetry
781 		 * with %gs
782 		 */
783 		if (unlikely(arg2 >= TASK_SIZE_MAX))
784 			return -EPERM;
785 
786 		preempt_disable();
787 		/*
788 		 * Set the selector to 0 for the same reason
789 		 * as %gs above.
790 		 */
791 		if (task == current) {
792 			loadseg(FS, 0);
793 			x86_fsbase_write_cpu(arg2);
794 
795 			/*
796 			 * On non-FSGSBASE systems, save_base_legacy() expects
797 			 * that we also fill in thread.fsbase.
798 			 */
799 			task->thread.fsbase = arg2;
800 		} else {
801 			task->thread.fsindex = 0;
802 			x86_fsbase_write_task(task, arg2);
803 		}
804 		preempt_enable();
805 		break;
806 	}
807 	case ARCH_GET_FS: {
808 		unsigned long base = x86_fsbase_read_task(task);
809 
810 		ret = put_user(base, (unsigned long __user *)arg2);
811 		break;
812 	}
813 	case ARCH_GET_GS: {
814 		unsigned long base = x86_gsbase_read_task(task);
815 
816 		ret = put_user(base, (unsigned long __user *)arg2);
817 		break;
818 	}
819 
820 #ifdef CONFIG_CHECKPOINT_RESTORE
821 # ifdef CONFIG_X86_X32_ABI
822 	case ARCH_MAP_VDSO_X32:
823 		return prctl_map_vdso(&vdso_image_x32, arg2);
824 # endif
825 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
826 	case ARCH_MAP_VDSO_32:
827 		return prctl_map_vdso(&vdso_image_32, arg2);
828 # endif
829 	case ARCH_MAP_VDSO_64:
830 		return prctl_map_vdso(&vdso_image_64, arg2);
831 #endif
832 
833 	default:
834 		ret = -EINVAL;
835 		break;
836 	}
837 
838 	return ret;
839 }
840 
841 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
842 {
843 	long ret;
844 
845 	ret = do_arch_prctl_64(current, option, arg2);
846 	if (ret == -EINVAL)
847 		ret = do_arch_prctl_common(current, option, arg2);
848 
849 	return ret;
850 }
851 
852 #ifdef CONFIG_IA32_EMULATION
853 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
854 {
855 	return do_arch_prctl_common(current, option, arg2);
856 }
857 #endif
858 
859 unsigned long KSTK_ESP(struct task_struct *task)
860 {
861 	return task_pt_regs(task)->sp;
862 }
863