1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 * 8 * X86-64 port 9 * Andi Kleen. 10 * 11 * CPU hotplug support - ashok.raj@intel.com 12 */ 13 14 /* 15 * This file handles the architecture-dependent parts of process handling.. 16 */ 17 18 #include <linux/cpu.h> 19 #include <linux/errno.h> 20 #include <linux/sched.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/task_stack.h> 23 #include <linux/fs.h> 24 #include <linux/kernel.h> 25 #include <linux/mm.h> 26 #include <linux/elfcore.h> 27 #include <linux/smp.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/interrupt.h> 31 #include <linux/delay.h> 32 #include <linux/export.h> 33 #include <linux/ptrace.h> 34 #include <linux/notifier.h> 35 #include <linux/kprobes.h> 36 #include <linux/kdebug.h> 37 #include <linux/prctl.h> 38 #include <linux/uaccess.h> 39 #include <linux/io.h> 40 #include <linux/ftrace.h> 41 #include <linux/syscalls.h> 42 43 #include <asm/pgtable.h> 44 #include <asm/processor.h> 45 #include <asm/fpu/internal.h> 46 #include <asm/mmu_context.h> 47 #include <asm/prctl.h> 48 #include <asm/desc.h> 49 #include <asm/proto.h> 50 #include <asm/ia32.h> 51 #include <asm/syscalls.h> 52 #include <asm/debugreg.h> 53 #include <asm/switch_to.h> 54 #include <asm/xen/hypervisor.h> 55 #include <asm/vdso.h> 56 #include <asm/resctrl_sched.h> 57 #include <asm/unistd.h> 58 #include <asm/fsgsbase.h> 59 #ifdef CONFIG_IA32_EMULATION 60 /* Not included via unistd.h */ 61 #include <asm/unistd_32_ia32.h> 62 #endif 63 64 #include "process.h" 65 66 /* Prints also some state that isn't saved in the pt_regs */ 67 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode) 68 { 69 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs; 70 unsigned long d0, d1, d2, d3, d6, d7; 71 unsigned int fsindex, gsindex; 72 unsigned int ds, es; 73 74 show_iret_regs(regs); 75 76 if (regs->orig_ax != -1) 77 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax); 78 else 79 pr_cont("\n"); 80 81 printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n", 82 regs->ax, regs->bx, regs->cx); 83 printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n", 84 regs->dx, regs->si, regs->di); 85 printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n", 86 regs->bp, regs->r8, regs->r9); 87 printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n", 88 regs->r10, regs->r11, regs->r12); 89 printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n", 90 regs->r13, regs->r14, regs->r15); 91 92 if (mode == SHOW_REGS_SHORT) 93 return; 94 95 if (mode == SHOW_REGS_USER) { 96 rdmsrl(MSR_FS_BASE, fs); 97 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); 98 printk(KERN_DEFAULT "FS: %016lx GS: %016lx\n", 99 fs, shadowgs); 100 return; 101 } 102 103 asm("movl %%ds,%0" : "=r" (ds)); 104 asm("movl %%es,%0" : "=r" (es)); 105 asm("movl %%fs,%0" : "=r" (fsindex)); 106 asm("movl %%gs,%0" : "=r" (gsindex)); 107 108 rdmsrl(MSR_FS_BASE, fs); 109 rdmsrl(MSR_GS_BASE, gs); 110 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); 111 112 cr0 = read_cr0(); 113 cr2 = read_cr2(); 114 cr3 = __read_cr3(); 115 cr4 = __read_cr4(); 116 117 printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n", 118 fs, fsindex, gs, gsindex, shadowgs); 119 printk(KERN_DEFAULT "CS: %04lx DS: %04x ES: %04x CR0: %016lx\n", regs->cs, ds, 120 es, cr0); 121 printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3, 122 cr4); 123 124 get_debugreg(d0, 0); 125 get_debugreg(d1, 1); 126 get_debugreg(d2, 2); 127 get_debugreg(d3, 3); 128 get_debugreg(d6, 6); 129 get_debugreg(d7, 7); 130 131 /* Only print out debug registers if they are in their non-default state. */ 132 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) && 133 (d6 == DR6_RESERVED) && (d7 == 0x400))) { 134 printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", 135 d0, d1, d2); 136 printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", 137 d3, d6, d7); 138 } 139 140 if (boot_cpu_has(X86_FEATURE_OSPKE)) 141 printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru()); 142 } 143 144 void release_thread(struct task_struct *dead_task) 145 { 146 WARN_ON(dead_task->mm); 147 } 148 149 enum which_selector { 150 FS, 151 GS 152 }; 153 154 /* 155 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are 156 * not available. The goal is to be reasonably fast on non-FSGSBASE systems. 157 * It's forcibly inlined because it'll generate better code and this function 158 * is hot. 159 */ 160 static __always_inline void save_base_legacy(struct task_struct *prev_p, 161 unsigned short selector, 162 enum which_selector which) 163 { 164 if (likely(selector == 0)) { 165 /* 166 * On Intel (without X86_BUG_NULL_SEG), the segment base could 167 * be the pre-existing saved base or it could be zero. On AMD 168 * (with X86_BUG_NULL_SEG), the segment base could be almost 169 * anything. 170 * 171 * This branch is very hot (it's hit twice on almost every 172 * context switch between 64-bit programs), and avoiding 173 * the RDMSR helps a lot, so we just assume that whatever 174 * value is already saved is correct. This matches historical 175 * Linux behavior, so it won't break existing applications. 176 * 177 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we 178 * report that the base is zero, it needs to actually be zero: 179 * see the corresponding logic in load_seg_legacy. 180 */ 181 } else { 182 /* 183 * If the selector is 1, 2, or 3, then the base is zero on 184 * !X86_BUG_NULL_SEG CPUs and could be anything on 185 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux 186 * has never attempted to preserve the base across context 187 * switches. 188 * 189 * If selector > 3, then it refers to a real segment, and 190 * saving the base isn't necessary. 191 */ 192 if (which == FS) 193 prev_p->thread.fsbase = 0; 194 else 195 prev_p->thread.gsbase = 0; 196 } 197 } 198 199 static __always_inline void save_fsgs(struct task_struct *task) 200 { 201 savesegment(fs, task->thread.fsindex); 202 savesegment(gs, task->thread.gsindex); 203 save_base_legacy(task, task->thread.fsindex, FS); 204 save_base_legacy(task, task->thread.gsindex, GS); 205 } 206 207 #if IS_ENABLED(CONFIG_KVM) 208 /* 209 * While a process is running,current->thread.fsbase and current->thread.gsbase 210 * may not match the corresponding CPU registers (see save_base_legacy()). KVM 211 * wants an efficient way to save and restore FSBASE and GSBASE. 212 * When FSGSBASE extensions are enabled, this will have to use RD{FS,GS}BASE. 213 */ 214 void save_fsgs_for_kvm(void) 215 { 216 save_fsgs(current); 217 } 218 EXPORT_SYMBOL_GPL(save_fsgs_for_kvm); 219 #endif 220 221 static __always_inline void loadseg(enum which_selector which, 222 unsigned short sel) 223 { 224 if (which == FS) 225 loadsegment(fs, sel); 226 else 227 load_gs_index(sel); 228 } 229 230 static __always_inline void load_seg_legacy(unsigned short prev_index, 231 unsigned long prev_base, 232 unsigned short next_index, 233 unsigned long next_base, 234 enum which_selector which) 235 { 236 if (likely(next_index <= 3)) { 237 /* 238 * The next task is using 64-bit TLS, is not using this 239 * segment at all, or is having fun with arcane CPU features. 240 */ 241 if (next_base == 0) { 242 /* 243 * Nasty case: on AMD CPUs, we need to forcibly zero 244 * the base. 245 */ 246 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) { 247 loadseg(which, __USER_DS); 248 loadseg(which, next_index); 249 } else { 250 /* 251 * We could try to exhaustively detect cases 252 * under which we can skip the segment load, 253 * but there's really only one case that matters 254 * for performance: if both the previous and 255 * next states are fully zeroed, we can skip 256 * the load. 257 * 258 * (This assumes that prev_base == 0 has no 259 * false positives. This is the case on 260 * Intel-style CPUs.) 261 */ 262 if (likely(prev_index | next_index | prev_base)) 263 loadseg(which, next_index); 264 } 265 } else { 266 if (prev_index != next_index) 267 loadseg(which, next_index); 268 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE, 269 next_base); 270 } 271 } else { 272 /* 273 * The next task is using a real segment. Loading the selector 274 * is sufficient. 275 */ 276 loadseg(which, next_index); 277 } 278 } 279 280 static __always_inline void x86_fsgsbase_load(struct thread_struct *prev, 281 struct thread_struct *next) 282 { 283 load_seg_legacy(prev->fsindex, prev->fsbase, 284 next->fsindex, next->fsbase, FS); 285 load_seg_legacy(prev->gsindex, prev->gsbase, 286 next->gsindex, next->gsbase, GS); 287 } 288 289 static unsigned long x86_fsgsbase_read_task(struct task_struct *task, 290 unsigned short selector) 291 { 292 unsigned short idx = selector >> 3; 293 unsigned long base; 294 295 if (likely((selector & SEGMENT_TI_MASK) == 0)) { 296 if (unlikely(idx >= GDT_ENTRIES)) 297 return 0; 298 299 /* 300 * There are no user segments in the GDT with nonzero bases 301 * other than the TLS segments. 302 */ 303 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) 304 return 0; 305 306 idx -= GDT_ENTRY_TLS_MIN; 307 base = get_desc_base(&task->thread.tls_array[idx]); 308 } else { 309 #ifdef CONFIG_MODIFY_LDT_SYSCALL 310 struct ldt_struct *ldt; 311 312 /* 313 * If performance here mattered, we could protect the LDT 314 * with RCU. This is a slow path, though, so we can just 315 * take the mutex. 316 */ 317 mutex_lock(&task->mm->context.lock); 318 ldt = task->mm->context.ldt; 319 if (unlikely(idx >= ldt->nr_entries)) 320 base = 0; 321 else 322 base = get_desc_base(ldt->entries + idx); 323 mutex_unlock(&task->mm->context.lock); 324 #else 325 base = 0; 326 #endif 327 } 328 329 return base; 330 } 331 332 unsigned long x86_fsbase_read_task(struct task_struct *task) 333 { 334 unsigned long fsbase; 335 336 if (task == current) 337 fsbase = x86_fsbase_read_cpu(); 338 else if (task->thread.fsindex == 0) 339 fsbase = task->thread.fsbase; 340 else 341 fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex); 342 343 return fsbase; 344 } 345 346 unsigned long x86_gsbase_read_task(struct task_struct *task) 347 { 348 unsigned long gsbase; 349 350 if (task == current) 351 gsbase = x86_gsbase_read_cpu_inactive(); 352 else if (task->thread.gsindex == 0) 353 gsbase = task->thread.gsbase; 354 else 355 gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex); 356 357 return gsbase; 358 } 359 360 void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase) 361 { 362 WARN_ON_ONCE(task == current); 363 364 task->thread.fsbase = fsbase; 365 } 366 367 void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase) 368 { 369 WARN_ON_ONCE(task == current); 370 371 task->thread.gsbase = gsbase; 372 } 373 374 static void 375 start_thread_common(struct pt_regs *regs, unsigned long new_ip, 376 unsigned long new_sp, 377 unsigned int _cs, unsigned int _ss, unsigned int _ds) 378 { 379 WARN_ON_ONCE(regs != current_pt_regs()); 380 381 if (static_cpu_has(X86_BUG_NULL_SEG)) { 382 /* Loading zero below won't clear the base. */ 383 loadsegment(fs, __USER_DS); 384 load_gs_index(__USER_DS); 385 } 386 387 loadsegment(fs, 0); 388 loadsegment(es, _ds); 389 loadsegment(ds, _ds); 390 load_gs_index(0); 391 392 regs->ip = new_ip; 393 regs->sp = new_sp; 394 regs->cs = _cs; 395 regs->ss = _ss; 396 regs->flags = X86_EFLAGS_IF; 397 force_iret(); 398 } 399 400 void 401 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) 402 { 403 start_thread_common(regs, new_ip, new_sp, 404 __USER_CS, __USER_DS, 0); 405 } 406 EXPORT_SYMBOL_GPL(start_thread); 407 408 #ifdef CONFIG_COMPAT 409 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp) 410 { 411 start_thread_common(regs, new_ip, new_sp, 412 test_thread_flag(TIF_X32) 413 ? __USER_CS : __USER32_CS, 414 __USER_DS, __USER_DS); 415 } 416 #endif 417 418 /* 419 * switch_to(x,y) should switch tasks from x to y. 420 * 421 * This could still be optimized: 422 * - fold all the options into a flag word and test it with a single test. 423 * - could test fs/gs bitsliced 424 * 425 * Kprobes not supported here. Set the probe on schedule instead. 426 * Function graph tracer not supported too. 427 */ 428 __visible __notrace_funcgraph struct task_struct * 429 __switch_to(struct task_struct *prev_p, struct task_struct *next_p) 430 { 431 struct thread_struct *prev = &prev_p->thread; 432 struct thread_struct *next = &next_p->thread; 433 struct fpu *prev_fpu = &prev->fpu; 434 struct fpu *next_fpu = &next->fpu; 435 int cpu = smp_processor_id(); 436 437 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) && 438 this_cpu_read(irq_count) != -1); 439 440 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) 441 switch_fpu_prepare(prev_fpu, cpu); 442 443 /* We must save %fs and %gs before load_TLS() because 444 * %fs and %gs may be cleared by load_TLS(). 445 * 446 * (e.g. xen_load_tls()) 447 */ 448 save_fsgs(prev_p); 449 450 /* 451 * Load TLS before restoring any segments so that segment loads 452 * reference the correct GDT entries. 453 */ 454 load_TLS(next, cpu); 455 456 /* 457 * Leave lazy mode, flushing any hypercalls made here. This 458 * must be done after loading TLS entries in the GDT but before 459 * loading segments that might reference them. 460 */ 461 arch_end_context_switch(next_p); 462 463 /* Switch DS and ES. 464 * 465 * Reading them only returns the selectors, but writing them (if 466 * nonzero) loads the full descriptor from the GDT or LDT. The 467 * LDT for next is loaded in switch_mm, and the GDT is loaded 468 * above. 469 * 470 * We therefore need to write new values to the segment 471 * registers on every context switch unless both the new and old 472 * values are zero. 473 * 474 * Note that we don't need to do anything for CS and SS, as 475 * those are saved and restored as part of pt_regs. 476 */ 477 savesegment(es, prev->es); 478 if (unlikely(next->es | prev->es)) 479 loadsegment(es, next->es); 480 481 savesegment(ds, prev->ds); 482 if (unlikely(next->ds | prev->ds)) 483 loadsegment(ds, next->ds); 484 485 x86_fsgsbase_load(prev, next); 486 487 /* 488 * Switch the PDA and FPU contexts. 489 */ 490 this_cpu_write(current_task, next_p); 491 this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p)); 492 493 switch_fpu_finish(next_fpu); 494 495 /* Reload sp0. */ 496 update_task_stack(next_p); 497 498 switch_to_extra(prev_p, next_p); 499 500 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) { 501 /* 502 * AMD CPUs have a misfeature: SYSRET sets the SS selector but 503 * does not update the cached descriptor. As a result, if we 504 * do SYSRET while SS is NULL, we'll end up in user mode with 505 * SS apparently equal to __USER_DS but actually unusable. 506 * 507 * The straightforward workaround would be to fix it up just 508 * before SYSRET, but that would slow down the system call 509 * fast paths. Instead, we ensure that SS is never NULL in 510 * system call context. We do this by replacing NULL SS 511 * selectors at every context switch. SYSCALL sets up a valid 512 * SS, so the only way to get NULL is to re-enter the kernel 513 * from CPL 3 through an interrupt. Since that can't happen 514 * in the same task as a running syscall, we are guaranteed to 515 * context switch between every interrupt vector entry and a 516 * subsequent SYSRET. 517 * 518 * We read SS first because SS reads are much faster than 519 * writes. Out of caution, we force SS to __KERNEL_DS even if 520 * it previously had a different non-NULL value. 521 */ 522 unsigned short ss_sel; 523 savesegment(ss, ss_sel); 524 if (ss_sel != __KERNEL_DS) 525 loadsegment(ss, __KERNEL_DS); 526 } 527 528 /* Load the Intel cache allocation PQR MSR. */ 529 resctrl_sched_in(); 530 531 return prev_p; 532 } 533 534 void set_personality_64bit(void) 535 { 536 /* inherit personality from parent */ 537 538 /* Make sure to be in 64bit mode */ 539 clear_thread_flag(TIF_IA32); 540 clear_thread_flag(TIF_ADDR32); 541 clear_thread_flag(TIF_X32); 542 /* Pretend that this comes from a 64bit execve */ 543 task_pt_regs(current)->orig_ax = __NR_execve; 544 current_thread_info()->status &= ~TS_COMPAT; 545 546 /* Ensure the corresponding mm is not marked. */ 547 if (current->mm) 548 current->mm->context.ia32_compat = 0; 549 550 /* TBD: overwrites user setup. Should have two bits. 551 But 64bit processes have always behaved this way, 552 so it's not too bad. The main problem is just that 553 32bit children are affected again. */ 554 current->personality &= ~READ_IMPLIES_EXEC; 555 } 556 557 static void __set_personality_x32(void) 558 { 559 #ifdef CONFIG_X86_X32 560 clear_thread_flag(TIF_IA32); 561 set_thread_flag(TIF_X32); 562 if (current->mm) 563 current->mm->context.ia32_compat = TIF_X32; 564 current->personality &= ~READ_IMPLIES_EXEC; 565 /* 566 * in_32bit_syscall() uses the presence of the x32 syscall bit 567 * flag to determine compat status. The x86 mmap() code relies on 568 * the syscall bitness so set x32 syscall bit right here to make 569 * in_32bit_syscall() work during exec(). 570 * 571 * Pretend to come from a x32 execve. 572 */ 573 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT; 574 current_thread_info()->status &= ~TS_COMPAT; 575 #endif 576 } 577 578 static void __set_personality_ia32(void) 579 { 580 #ifdef CONFIG_IA32_EMULATION 581 set_thread_flag(TIF_IA32); 582 clear_thread_flag(TIF_X32); 583 if (current->mm) 584 current->mm->context.ia32_compat = TIF_IA32; 585 current->personality |= force_personality32; 586 /* Prepare the first "return" to user space */ 587 task_pt_regs(current)->orig_ax = __NR_ia32_execve; 588 current_thread_info()->status |= TS_COMPAT; 589 #endif 590 } 591 592 void set_personality_ia32(bool x32) 593 { 594 /* Make sure to be in 32bit mode */ 595 set_thread_flag(TIF_ADDR32); 596 597 if (x32) 598 __set_personality_x32(); 599 else 600 __set_personality_ia32(); 601 } 602 EXPORT_SYMBOL_GPL(set_personality_ia32); 603 604 #ifdef CONFIG_CHECKPOINT_RESTORE 605 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr) 606 { 607 int ret; 608 609 ret = map_vdso_once(image, addr); 610 if (ret) 611 return ret; 612 613 return (long)image->size; 614 } 615 #endif 616 617 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2) 618 { 619 int ret = 0; 620 621 switch (option) { 622 case ARCH_SET_GS: { 623 if (unlikely(arg2 >= TASK_SIZE_MAX)) 624 return -EPERM; 625 626 preempt_disable(); 627 /* 628 * ARCH_SET_GS has always overwritten the index 629 * and the base. Zero is the most sensible value 630 * to put in the index, and is the only value that 631 * makes any sense if FSGSBASE is unavailable. 632 */ 633 if (task == current) { 634 loadseg(GS, 0); 635 x86_gsbase_write_cpu_inactive(arg2); 636 637 /* 638 * On non-FSGSBASE systems, save_base_legacy() expects 639 * that we also fill in thread.gsbase. 640 */ 641 task->thread.gsbase = arg2; 642 643 } else { 644 task->thread.gsindex = 0; 645 x86_gsbase_write_task(task, arg2); 646 } 647 preempt_enable(); 648 break; 649 } 650 case ARCH_SET_FS: { 651 /* 652 * Not strictly needed for %fs, but do it for symmetry 653 * with %gs 654 */ 655 if (unlikely(arg2 >= TASK_SIZE_MAX)) 656 return -EPERM; 657 658 preempt_disable(); 659 /* 660 * Set the selector to 0 for the same reason 661 * as %gs above. 662 */ 663 if (task == current) { 664 loadseg(FS, 0); 665 x86_fsbase_write_cpu(arg2); 666 667 /* 668 * On non-FSGSBASE systems, save_base_legacy() expects 669 * that we also fill in thread.fsbase. 670 */ 671 task->thread.fsbase = arg2; 672 } else { 673 task->thread.fsindex = 0; 674 x86_fsbase_write_task(task, arg2); 675 } 676 preempt_enable(); 677 break; 678 } 679 case ARCH_GET_FS: { 680 unsigned long base = x86_fsbase_read_task(task); 681 682 ret = put_user(base, (unsigned long __user *)arg2); 683 break; 684 } 685 case ARCH_GET_GS: { 686 unsigned long base = x86_gsbase_read_task(task); 687 688 ret = put_user(base, (unsigned long __user *)arg2); 689 break; 690 } 691 692 #ifdef CONFIG_CHECKPOINT_RESTORE 693 # ifdef CONFIG_X86_X32_ABI 694 case ARCH_MAP_VDSO_X32: 695 return prctl_map_vdso(&vdso_image_x32, arg2); 696 # endif 697 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION 698 case ARCH_MAP_VDSO_32: 699 return prctl_map_vdso(&vdso_image_32, arg2); 700 # endif 701 case ARCH_MAP_VDSO_64: 702 return prctl_map_vdso(&vdso_image_64, arg2); 703 #endif 704 705 default: 706 ret = -EINVAL; 707 break; 708 } 709 710 return ret; 711 } 712 713 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) 714 { 715 long ret; 716 717 ret = do_arch_prctl_64(current, option, arg2); 718 if (ret == -EINVAL) 719 ret = do_arch_prctl_common(current, option, arg2); 720 721 return ret; 722 } 723 724 #ifdef CONFIG_IA32_EMULATION 725 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) 726 { 727 return do_arch_prctl_common(current, option, arg2); 728 } 729 #endif 730 731 unsigned long KSTK_ESP(struct task_struct *task) 732 { 733 return task_pt_regs(task)->sp; 734 } 735