xref: /openbmc/linux/arch/x86/kernel/process_64.c (revision add48ba4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  *
8  *  X86-64 port
9  *	Andi Kleen.
10  *
11  *	CPU hotplug support - ashok.raj@intel.com
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of process handling..
16  */
17 
18 #include <linux/cpu.h>
19 #include <linux/errno.h>
20 #include <linux/sched.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/fs.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/elfcore.h>
27 #include <linux/smp.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/export.h>
33 #include <linux/ptrace.h>
34 #include <linux/notifier.h>
35 #include <linux/kprobes.h>
36 #include <linux/kdebug.h>
37 #include <linux/prctl.h>
38 #include <linux/uaccess.h>
39 #include <linux/io.h>
40 #include <linux/ftrace.h>
41 #include <linux/syscalls.h>
42 
43 #include <asm/processor.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/mmu_context.h>
46 #include <asm/prctl.h>
47 #include <asm/desc.h>
48 #include <asm/proto.h>
49 #include <asm/ia32.h>
50 #include <asm/debugreg.h>
51 #include <asm/switch_to.h>
52 #include <asm/xen/hypervisor.h>
53 #include <asm/vdso.h>
54 #include <asm/resctrl.h>
55 #include <asm/unistd.h>
56 #include <asm/fsgsbase.h>
57 #ifdef CONFIG_IA32_EMULATION
58 /* Not included via unistd.h */
59 #include <asm/unistd_32_ia32.h>
60 #endif
61 
62 #include "process.h"
63 
64 /* Prints also some state that isn't saved in the pt_regs */
65 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode)
66 {
67 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
68 	unsigned long d0, d1, d2, d3, d6, d7;
69 	unsigned int fsindex, gsindex;
70 	unsigned int ds, es;
71 
72 	show_iret_regs(regs);
73 
74 	if (regs->orig_ax != -1)
75 		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
76 	else
77 		pr_cont("\n");
78 
79 	printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
80 	       regs->ax, regs->bx, regs->cx);
81 	printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
82 	       regs->dx, regs->si, regs->di);
83 	printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
84 	       regs->bp, regs->r8, regs->r9);
85 	printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
86 	       regs->r10, regs->r11, regs->r12);
87 	printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
88 	       regs->r13, regs->r14, regs->r15);
89 
90 	if (mode == SHOW_REGS_SHORT)
91 		return;
92 
93 	if (mode == SHOW_REGS_USER) {
94 		rdmsrl(MSR_FS_BASE, fs);
95 		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
96 		printk(KERN_DEFAULT "FS:  %016lx GS:  %016lx\n",
97 		       fs, shadowgs);
98 		return;
99 	}
100 
101 	asm("movl %%ds,%0" : "=r" (ds));
102 	asm("movl %%es,%0" : "=r" (es));
103 	asm("movl %%fs,%0" : "=r" (fsindex));
104 	asm("movl %%gs,%0" : "=r" (gsindex));
105 
106 	rdmsrl(MSR_FS_BASE, fs);
107 	rdmsrl(MSR_GS_BASE, gs);
108 	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
109 
110 	cr0 = read_cr0();
111 	cr2 = read_cr2();
112 	cr3 = __read_cr3();
113 	cr4 = __read_cr4();
114 
115 	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
116 	       fs, fsindex, gs, gsindex, shadowgs);
117 	printk(KERN_DEFAULT "CS:  %04lx DS: %04x ES: %04x CR0: %016lx\n", regs->cs, ds,
118 			es, cr0);
119 	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
120 			cr4);
121 
122 	get_debugreg(d0, 0);
123 	get_debugreg(d1, 1);
124 	get_debugreg(d2, 2);
125 	get_debugreg(d3, 3);
126 	get_debugreg(d6, 6);
127 	get_debugreg(d7, 7);
128 
129 	/* Only print out debug registers if they are in their non-default state. */
130 	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
131 	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
132 		printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
133 		       d0, d1, d2);
134 		printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
135 		       d3, d6, d7);
136 	}
137 
138 	if (boot_cpu_has(X86_FEATURE_OSPKE))
139 		printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
140 }
141 
142 void release_thread(struct task_struct *dead_task)
143 {
144 	WARN_ON(dead_task->mm);
145 }
146 
147 enum which_selector {
148 	FS,
149 	GS
150 };
151 
152 /*
153  * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
154  * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
155  * It's forcibly inlined because it'll generate better code and this function
156  * is hot.
157  */
158 static __always_inline void save_base_legacy(struct task_struct *prev_p,
159 					     unsigned short selector,
160 					     enum which_selector which)
161 {
162 	if (likely(selector == 0)) {
163 		/*
164 		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
165 		 * be the pre-existing saved base or it could be zero.  On AMD
166 		 * (with X86_BUG_NULL_SEG), the segment base could be almost
167 		 * anything.
168 		 *
169 		 * This branch is very hot (it's hit twice on almost every
170 		 * context switch between 64-bit programs), and avoiding
171 		 * the RDMSR helps a lot, so we just assume that whatever
172 		 * value is already saved is correct.  This matches historical
173 		 * Linux behavior, so it won't break existing applications.
174 		 *
175 		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
176 		 * report that the base is zero, it needs to actually be zero:
177 		 * see the corresponding logic in load_seg_legacy.
178 		 */
179 	} else {
180 		/*
181 		 * If the selector is 1, 2, or 3, then the base is zero on
182 		 * !X86_BUG_NULL_SEG CPUs and could be anything on
183 		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
184 		 * has never attempted to preserve the base across context
185 		 * switches.
186 		 *
187 		 * If selector > 3, then it refers to a real segment, and
188 		 * saving the base isn't necessary.
189 		 */
190 		if (which == FS)
191 			prev_p->thread.fsbase = 0;
192 		else
193 			prev_p->thread.gsbase = 0;
194 	}
195 }
196 
197 static __always_inline void save_fsgs(struct task_struct *task)
198 {
199 	savesegment(fs, task->thread.fsindex);
200 	savesegment(gs, task->thread.gsindex);
201 	save_base_legacy(task, task->thread.fsindex, FS);
202 	save_base_legacy(task, task->thread.gsindex, GS);
203 }
204 
205 #if IS_ENABLED(CONFIG_KVM)
206 /*
207  * While a process is running,current->thread.fsbase and current->thread.gsbase
208  * may not match the corresponding CPU registers (see save_base_legacy()). KVM
209  * wants an efficient way to save and restore FSBASE and GSBASE.
210  * When FSGSBASE extensions are enabled, this will have to use RD{FS,GS}BASE.
211  */
212 void save_fsgs_for_kvm(void)
213 {
214 	save_fsgs(current);
215 }
216 EXPORT_SYMBOL_GPL(save_fsgs_for_kvm);
217 #endif
218 
219 static __always_inline void loadseg(enum which_selector which,
220 				    unsigned short sel)
221 {
222 	if (which == FS)
223 		loadsegment(fs, sel);
224 	else
225 		load_gs_index(sel);
226 }
227 
228 static __always_inline void load_seg_legacy(unsigned short prev_index,
229 					    unsigned long prev_base,
230 					    unsigned short next_index,
231 					    unsigned long next_base,
232 					    enum which_selector which)
233 {
234 	if (likely(next_index <= 3)) {
235 		/*
236 		 * The next task is using 64-bit TLS, is not using this
237 		 * segment at all, or is having fun with arcane CPU features.
238 		 */
239 		if (next_base == 0) {
240 			/*
241 			 * Nasty case: on AMD CPUs, we need to forcibly zero
242 			 * the base.
243 			 */
244 			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
245 				loadseg(which, __USER_DS);
246 				loadseg(which, next_index);
247 			} else {
248 				/*
249 				 * We could try to exhaustively detect cases
250 				 * under which we can skip the segment load,
251 				 * but there's really only one case that matters
252 				 * for performance: if both the previous and
253 				 * next states are fully zeroed, we can skip
254 				 * the load.
255 				 *
256 				 * (This assumes that prev_base == 0 has no
257 				 * false positives.  This is the case on
258 				 * Intel-style CPUs.)
259 				 */
260 				if (likely(prev_index | next_index | prev_base))
261 					loadseg(which, next_index);
262 			}
263 		} else {
264 			if (prev_index != next_index)
265 				loadseg(which, next_index);
266 			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
267 			       next_base);
268 		}
269 	} else {
270 		/*
271 		 * The next task is using a real segment.  Loading the selector
272 		 * is sufficient.
273 		 */
274 		loadseg(which, next_index);
275 	}
276 }
277 
278 static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
279 					      struct thread_struct *next)
280 {
281 	load_seg_legacy(prev->fsindex, prev->fsbase,
282 			next->fsindex, next->fsbase, FS);
283 	load_seg_legacy(prev->gsindex, prev->gsbase,
284 			next->gsindex, next->gsbase, GS);
285 }
286 
287 static unsigned long x86_fsgsbase_read_task(struct task_struct *task,
288 					    unsigned short selector)
289 {
290 	unsigned short idx = selector >> 3;
291 	unsigned long base;
292 
293 	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
294 		if (unlikely(idx >= GDT_ENTRIES))
295 			return 0;
296 
297 		/*
298 		 * There are no user segments in the GDT with nonzero bases
299 		 * other than the TLS segments.
300 		 */
301 		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
302 			return 0;
303 
304 		idx -= GDT_ENTRY_TLS_MIN;
305 		base = get_desc_base(&task->thread.tls_array[idx]);
306 	} else {
307 #ifdef CONFIG_MODIFY_LDT_SYSCALL
308 		struct ldt_struct *ldt;
309 
310 		/*
311 		 * If performance here mattered, we could protect the LDT
312 		 * with RCU.  This is a slow path, though, so we can just
313 		 * take the mutex.
314 		 */
315 		mutex_lock(&task->mm->context.lock);
316 		ldt = task->mm->context.ldt;
317 		if (unlikely(idx >= ldt->nr_entries))
318 			base = 0;
319 		else
320 			base = get_desc_base(ldt->entries + idx);
321 		mutex_unlock(&task->mm->context.lock);
322 #else
323 		base = 0;
324 #endif
325 	}
326 
327 	return base;
328 }
329 
330 unsigned long x86_fsbase_read_task(struct task_struct *task)
331 {
332 	unsigned long fsbase;
333 
334 	if (task == current)
335 		fsbase = x86_fsbase_read_cpu();
336 	else if (task->thread.fsindex == 0)
337 		fsbase = task->thread.fsbase;
338 	else
339 		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
340 
341 	return fsbase;
342 }
343 
344 unsigned long x86_gsbase_read_task(struct task_struct *task)
345 {
346 	unsigned long gsbase;
347 
348 	if (task == current)
349 		gsbase = x86_gsbase_read_cpu_inactive();
350 	else if (task->thread.gsindex == 0)
351 		gsbase = task->thread.gsbase;
352 	else
353 		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
354 
355 	return gsbase;
356 }
357 
358 void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
359 {
360 	WARN_ON_ONCE(task == current);
361 
362 	task->thread.fsbase = fsbase;
363 }
364 
365 void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
366 {
367 	WARN_ON_ONCE(task == current);
368 
369 	task->thread.gsbase = gsbase;
370 }
371 
372 static void
373 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
374 		    unsigned long new_sp,
375 		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
376 {
377 	WARN_ON_ONCE(regs != current_pt_regs());
378 
379 	if (static_cpu_has(X86_BUG_NULL_SEG)) {
380 		/* Loading zero below won't clear the base. */
381 		loadsegment(fs, __USER_DS);
382 		load_gs_index(__USER_DS);
383 	}
384 
385 	loadsegment(fs, 0);
386 	loadsegment(es, _ds);
387 	loadsegment(ds, _ds);
388 	load_gs_index(0);
389 
390 	regs->ip		= new_ip;
391 	regs->sp		= new_sp;
392 	regs->cs		= _cs;
393 	regs->ss		= _ss;
394 	regs->flags		= X86_EFLAGS_IF;
395 }
396 
397 void
398 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
399 {
400 	start_thread_common(regs, new_ip, new_sp,
401 			    __USER_CS, __USER_DS, 0);
402 }
403 EXPORT_SYMBOL_GPL(start_thread);
404 
405 #ifdef CONFIG_COMPAT
406 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
407 {
408 	start_thread_common(regs, new_ip, new_sp,
409 			    test_thread_flag(TIF_X32)
410 			    ? __USER_CS : __USER32_CS,
411 			    __USER_DS, __USER_DS);
412 }
413 #endif
414 
415 /*
416  *	switch_to(x,y) should switch tasks from x to y.
417  *
418  * This could still be optimized:
419  * - fold all the options into a flag word and test it with a single test.
420  * - could test fs/gs bitsliced
421  *
422  * Kprobes not supported here. Set the probe on schedule instead.
423  * Function graph tracer not supported too.
424  */
425 __visible __notrace_funcgraph struct task_struct *
426 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
427 {
428 	struct thread_struct *prev = &prev_p->thread;
429 	struct thread_struct *next = &next_p->thread;
430 	struct fpu *prev_fpu = &prev->fpu;
431 	struct fpu *next_fpu = &next->fpu;
432 	int cpu = smp_processor_id();
433 
434 	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
435 		     this_cpu_read(irq_count) != -1);
436 
437 	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
438 		switch_fpu_prepare(prev_fpu, cpu);
439 
440 	/* We must save %fs and %gs before load_TLS() because
441 	 * %fs and %gs may be cleared by load_TLS().
442 	 *
443 	 * (e.g. xen_load_tls())
444 	 */
445 	save_fsgs(prev_p);
446 
447 	/*
448 	 * Load TLS before restoring any segments so that segment loads
449 	 * reference the correct GDT entries.
450 	 */
451 	load_TLS(next, cpu);
452 
453 	/*
454 	 * Leave lazy mode, flushing any hypercalls made here.  This
455 	 * must be done after loading TLS entries in the GDT but before
456 	 * loading segments that might reference them.
457 	 */
458 	arch_end_context_switch(next_p);
459 
460 	/* Switch DS and ES.
461 	 *
462 	 * Reading them only returns the selectors, but writing them (if
463 	 * nonzero) loads the full descriptor from the GDT or LDT.  The
464 	 * LDT for next is loaded in switch_mm, and the GDT is loaded
465 	 * above.
466 	 *
467 	 * We therefore need to write new values to the segment
468 	 * registers on every context switch unless both the new and old
469 	 * values are zero.
470 	 *
471 	 * Note that we don't need to do anything for CS and SS, as
472 	 * those are saved and restored as part of pt_regs.
473 	 */
474 	savesegment(es, prev->es);
475 	if (unlikely(next->es | prev->es))
476 		loadsegment(es, next->es);
477 
478 	savesegment(ds, prev->ds);
479 	if (unlikely(next->ds | prev->ds))
480 		loadsegment(ds, next->ds);
481 
482 	x86_fsgsbase_load(prev, next);
483 
484 	/*
485 	 * Switch the PDA and FPU contexts.
486 	 */
487 	this_cpu_write(current_task, next_p);
488 	this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
489 
490 	switch_fpu_finish(next_fpu);
491 
492 	/* Reload sp0. */
493 	update_task_stack(next_p);
494 
495 	switch_to_extra(prev_p, next_p);
496 
497 	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
498 		/*
499 		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
500 		 * does not update the cached descriptor.  As a result, if we
501 		 * do SYSRET while SS is NULL, we'll end up in user mode with
502 		 * SS apparently equal to __USER_DS but actually unusable.
503 		 *
504 		 * The straightforward workaround would be to fix it up just
505 		 * before SYSRET, but that would slow down the system call
506 		 * fast paths.  Instead, we ensure that SS is never NULL in
507 		 * system call context.  We do this by replacing NULL SS
508 		 * selectors at every context switch.  SYSCALL sets up a valid
509 		 * SS, so the only way to get NULL is to re-enter the kernel
510 		 * from CPL 3 through an interrupt.  Since that can't happen
511 		 * in the same task as a running syscall, we are guaranteed to
512 		 * context switch between every interrupt vector entry and a
513 		 * subsequent SYSRET.
514 		 *
515 		 * We read SS first because SS reads are much faster than
516 		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
517 		 * it previously had a different non-NULL value.
518 		 */
519 		unsigned short ss_sel;
520 		savesegment(ss, ss_sel);
521 		if (ss_sel != __KERNEL_DS)
522 			loadsegment(ss, __KERNEL_DS);
523 	}
524 
525 	/* Load the Intel cache allocation PQR MSR. */
526 	resctrl_sched_in();
527 
528 	return prev_p;
529 }
530 
531 void set_personality_64bit(void)
532 {
533 	/* inherit personality from parent */
534 
535 	/* Make sure to be in 64bit mode */
536 	clear_thread_flag(TIF_IA32);
537 	clear_thread_flag(TIF_ADDR32);
538 	clear_thread_flag(TIF_X32);
539 	/* Pretend that this comes from a 64bit execve */
540 	task_pt_regs(current)->orig_ax = __NR_execve;
541 	current_thread_info()->status &= ~TS_COMPAT;
542 
543 	/* Ensure the corresponding mm is not marked. */
544 	if (current->mm)
545 		current->mm->context.ia32_compat = 0;
546 
547 	/* TBD: overwrites user setup. Should have two bits.
548 	   But 64bit processes have always behaved this way,
549 	   so it's not too bad. The main problem is just that
550 	   32bit children are affected again. */
551 	current->personality &= ~READ_IMPLIES_EXEC;
552 }
553 
554 static void __set_personality_x32(void)
555 {
556 #ifdef CONFIG_X86_X32
557 	clear_thread_flag(TIF_IA32);
558 	set_thread_flag(TIF_X32);
559 	if (current->mm)
560 		current->mm->context.ia32_compat = TIF_X32;
561 	current->personality &= ~READ_IMPLIES_EXEC;
562 	/*
563 	 * in_32bit_syscall() uses the presence of the x32 syscall bit
564 	 * flag to determine compat status.  The x86 mmap() code relies on
565 	 * the syscall bitness so set x32 syscall bit right here to make
566 	 * in_32bit_syscall() work during exec().
567 	 *
568 	 * Pretend to come from a x32 execve.
569 	 */
570 	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
571 	current_thread_info()->status &= ~TS_COMPAT;
572 #endif
573 }
574 
575 static void __set_personality_ia32(void)
576 {
577 #ifdef CONFIG_IA32_EMULATION
578 	set_thread_flag(TIF_IA32);
579 	clear_thread_flag(TIF_X32);
580 	if (current->mm)
581 		current->mm->context.ia32_compat = TIF_IA32;
582 	current->personality |= force_personality32;
583 	/* Prepare the first "return" to user space */
584 	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
585 	current_thread_info()->status |= TS_COMPAT;
586 #endif
587 }
588 
589 void set_personality_ia32(bool x32)
590 {
591 	/* Make sure to be in 32bit mode */
592 	set_thread_flag(TIF_ADDR32);
593 
594 	if (x32)
595 		__set_personality_x32();
596 	else
597 		__set_personality_ia32();
598 }
599 EXPORT_SYMBOL_GPL(set_personality_ia32);
600 
601 #ifdef CONFIG_CHECKPOINT_RESTORE
602 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
603 {
604 	int ret;
605 
606 	ret = map_vdso_once(image, addr);
607 	if (ret)
608 		return ret;
609 
610 	return (long)image->size;
611 }
612 #endif
613 
614 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
615 {
616 	int ret = 0;
617 
618 	switch (option) {
619 	case ARCH_SET_GS: {
620 		if (unlikely(arg2 >= TASK_SIZE_MAX))
621 			return -EPERM;
622 
623 		preempt_disable();
624 		/*
625 		 * ARCH_SET_GS has always overwritten the index
626 		 * and the base. Zero is the most sensible value
627 		 * to put in the index, and is the only value that
628 		 * makes any sense if FSGSBASE is unavailable.
629 		 */
630 		if (task == current) {
631 			loadseg(GS, 0);
632 			x86_gsbase_write_cpu_inactive(arg2);
633 
634 			/*
635 			 * On non-FSGSBASE systems, save_base_legacy() expects
636 			 * that we also fill in thread.gsbase.
637 			 */
638 			task->thread.gsbase = arg2;
639 
640 		} else {
641 			task->thread.gsindex = 0;
642 			x86_gsbase_write_task(task, arg2);
643 		}
644 		preempt_enable();
645 		break;
646 	}
647 	case ARCH_SET_FS: {
648 		/*
649 		 * Not strictly needed for %fs, but do it for symmetry
650 		 * with %gs
651 		 */
652 		if (unlikely(arg2 >= TASK_SIZE_MAX))
653 			return -EPERM;
654 
655 		preempt_disable();
656 		/*
657 		 * Set the selector to 0 for the same reason
658 		 * as %gs above.
659 		 */
660 		if (task == current) {
661 			loadseg(FS, 0);
662 			x86_fsbase_write_cpu(arg2);
663 
664 			/*
665 			 * On non-FSGSBASE systems, save_base_legacy() expects
666 			 * that we also fill in thread.fsbase.
667 			 */
668 			task->thread.fsbase = arg2;
669 		} else {
670 			task->thread.fsindex = 0;
671 			x86_fsbase_write_task(task, arg2);
672 		}
673 		preempt_enable();
674 		break;
675 	}
676 	case ARCH_GET_FS: {
677 		unsigned long base = x86_fsbase_read_task(task);
678 
679 		ret = put_user(base, (unsigned long __user *)arg2);
680 		break;
681 	}
682 	case ARCH_GET_GS: {
683 		unsigned long base = x86_gsbase_read_task(task);
684 
685 		ret = put_user(base, (unsigned long __user *)arg2);
686 		break;
687 	}
688 
689 #ifdef CONFIG_CHECKPOINT_RESTORE
690 # ifdef CONFIG_X86_X32_ABI
691 	case ARCH_MAP_VDSO_X32:
692 		return prctl_map_vdso(&vdso_image_x32, arg2);
693 # endif
694 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
695 	case ARCH_MAP_VDSO_32:
696 		return prctl_map_vdso(&vdso_image_32, arg2);
697 # endif
698 	case ARCH_MAP_VDSO_64:
699 		return prctl_map_vdso(&vdso_image_64, arg2);
700 #endif
701 
702 	default:
703 		ret = -EINVAL;
704 		break;
705 	}
706 
707 	return ret;
708 }
709 
710 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
711 {
712 	long ret;
713 
714 	ret = do_arch_prctl_64(current, option, arg2);
715 	if (ret == -EINVAL)
716 		ret = do_arch_prctl_common(current, option, arg2);
717 
718 	return ret;
719 }
720 
721 #ifdef CONFIG_IA32_EMULATION
722 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
723 {
724 	return do_arch_prctl_common(current, option, arg2);
725 }
726 #endif
727 
728 unsigned long KSTK_ESP(struct task_struct *task)
729 {
730 	return task_pt_regs(task)->sp;
731 }
732