xref: /openbmc/linux/arch/x86/kernel/process_64.c (revision 94a8cfce)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  *
7  *  X86-64 port
8  *	Andi Kleen.
9  *
10  *	CPU hotplug support - ashok.raj@intel.com
11  */
12 
13 /*
14  * This file handles the architecture-dependent parts of process handling..
15  */
16 
17 #include <linux/cpu.h>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/fs.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/elfcore.h>
24 #include <linux/smp.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/module.h>
30 #include <linux/ptrace.h>
31 #include <linux/notifier.h>
32 #include <linux/kprobes.h>
33 #include <linux/kdebug.h>
34 #include <linux/prctl.h>
35 #include <linux/uaccess.h>
36 #include <linux/io.h>
37 #include <linux/ftrace.h>
38 
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/fpu/internal.h>
42 #include <asm/mmu_context.h>
43 #include <asm/prctl.h>
44 #include <asm/desc.h>
45 #include <asm/proto.h>
46 #include <asm/ia32.h>
47 #include <asm/idle.h>
48 #include <asm/syscalls.h>
49 #include <asm/debugreg.h>
50 #include <asm/switch_to.h>
51 
52 asmlinkage extern void ret_from_fork(void);
53 
54 __visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
55 
56 /* Prints also some state that isn't saved in the pt_regs */
57 void __show_regs(struct pt_regs *regs, int all)
58 {
59 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
60 	unsigned long d0, d1, d2, d3, d6, d7;
61 	unsigned int fsindex, gsindex;
62 	unsigned int ds, cs, es;
63 
64 	printk(KERN_DEFAULT "RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip);
65 	printk_address(regs->ip);
66 	printk(KERN_DEFAULT "RSP: %04lx:%016lx  EFLAGS: %08lx\n", regs->ss,
67 			regs->sp, regs->flags);
68 	printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
69 	       regs->ax, regs->bx, regs->cx);
70 	printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
71 	       regs->dx, regs->si, regs->di);
72 	printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
73 	       regs->bp, regs->r8, regs->r9);
74 	printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
75 	       regs->r10, regs->r11, regs->r12);
76 	printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
77 	       regs->r13, regs->r14, regs->r15);
78 
79 	asm("movl %%ds,%0" : "=r" (ds));
80 	asm("movl %%cs,%0" : "=r" (cs));
81 	asm("movl %%es,%0" : "=r" (es));
82 	asm("movl %%fs,%0" : "=r" (fsindex));
83 	asm("movl %%gs,%0" : "=r" (gsindex));
84 
85 	rdmsrl(MSR_FS_BASE, fs);
86 	rdmsrl(MSR_GS_BASE, gs);
87 	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
88 
89 	if (!all)
90 		return;
91 
92 	cr0 = read_cr0();
93 	cr2 = read_cr2();
94 	cr3 = read_cr3();
95 	cr4 = __read_cr4();
96 
97 	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
98 	       fs, fsindex, gs, gsindex, shadowgs);
99 	printk(KERN_DEFAULT "CS:  %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
100 			es, cr0);
101 	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
102 			cr4);
103 
104 	get_debugreg(d0, 0);
105 	get_debugreg(d1, 1);
106 	get_debugreg(d2, 2);
107 	get_debugreg(d3, 3);
108 	get_debugreg(d6, 6);
109 	get_debugreg(d7, 7);
110 
111 	/* Only print out debug registers if they are in their non-default state. */
112 	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
113 	    (d6 == DR6_RESERVED) && (d7 == 0x400))
114 		return;
115 
116 	printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2);
117 	printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7);
118 
119 }
120 
121 void release_thread(struct task_struct *dead_task)
122 {
123 	if (dead_task->mm) {
124 		if (dead_task->mm->context.size) {
125 			pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
126 				dead_task->comm,
127 				dead_task->mm->context.ldt,
128 				dead_task->mm->context.size);
129 			BUG();
130 		}
131 	}
132 }
133 
134 static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr)
135 {
136 	struct user_desc ud = {
137 		.base_addr = addr,
138 		.limit = 0xfffff,
139 		.seg_32bit = 1,
140 		.limit_in_pages = 1,
141 		.useable = 1,
142 	};
143 	struct desc_struct *desc = t->thread.tls_array;
144 	desc += tls;
145 	fill_ldt(desc, &ud);
146 }
147 
148 static inline u32 read_32bit_tls(struct task_struct *t, int tls)
149 {
150 	return get_desc_base(&t->thread.tls_array[tls]);
151 }
152 
153 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
154 		unsigned long arg, struct task_struct *p, unsigned long tls)
155 {
156 	int err;
157 	struct pt_regs *childregs;
158 	struct task_struct *me = current;
159 
160 	p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE;
161 	childregs = task_pt_regs(p);
162 	p->thread.sp = (unsigned long) childregs;
163 	set_tsk_thread_flag(p, TIF_FORK);
164 	p->thread.io_bitmap_ptr = NULL;
165 
166 	savesegment(gs, p->thread.gsindex);
167 	p->thread.gs = p->thread.gsindex ? 0 : me->thread.gs;
168 	savesegment(fs, p->thread.fsindex);
169 	p->thread.fs = p->thread.fsindex ? 0 : me->thread.fs;
170 	savesegment(es, p->thread.es);
171 	savesegment(ds, p->thread.ds);
172 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
173 
174 	if (unlikely(p->flags & PF_KTHREAD)) {
175 		/* kernel thread */
176 		memset(childregs, 0, sizeof(struct pt_regs));
177 		childregs->sp = (unsigned long)childregs;
178 		childregs->ss = __KERNEL_DS;
179 		childregs->bx = sp; /* function */
180 		childregs->bp = arg;
181 		childregs->orig_ax = -1;
182 		childregs->cs = __KERNEL_CS | get_kernel_rpl();
183 		childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
184 		return 0;
185 	}
186 	*childregs = *current_pt_regs();
187 
188 	childregs->ax = 0;
189 	if (sp)
190 		childregs->sp = sp;
191 
192 	err = -ENOMEM;
193 	if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
194 		p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
195 						  IO_BITMAP_BYTES, GFP_KERNEL);
196 		if (!p->thread.io_bitmap_ptr) {
197 			p->thread.io_bitmap_max = 0;
198 			return -ENOMEM;
199 		}
200 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
201 	}
202 
203 	/*
204 	 * Set a new TLS for the child thread?
205 	 */
206 	if (clone_flags & CLONE_SETTLS) {
207 #ifdef CONFIG_IA32_EMULATION
208 		if (is_ia32_task())
209 			err = do_set_thread_area(p, -1,
210 				(struct user_desc __user *)tls, 0);
211 		else
212 #endif
213 			err = do_arch_prctl(p, ARCH_SET_FS, tls);
214 		if (err)
215 			goto out;
216 	}
217 	err = 0;
218 out:
219 	if (err && p->thread.io_bitmap_ptr) {
220 		kfree(p->thread.io_bitmap_ptr);
221 		p->thread.io_bitmap_max = 0;
222 	}
223 
224 	return err;
225 }
226 
227 static void
228 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
229 		    unsigned long new_sp,
230 		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
231 {
232 	loadsegment(fs, 0);
233 	loadsegment(es, _ds);
234 	loadsegment(ds, _ds);
235 	load_gs_index(0);
236 	regs->ip		= new_ip;
237 	regs->sp		= new_sp;
238 	regs->cs		= _cs;
239 	regs->ss		= _ss;
240 	regs->flags		= X86_EFLAGS_IF;
241 	force_iret();
242 }
243 
244 void
245 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
246 {
247 	start_thread_common(regs, new_ip, new_sp,
248 			    __USER_CS, __USER_DS, 0);
249 }
250 
251 #ifdef CONFIG_IA32_EMULATION
252 void start_thread_ia32(struct pt_regs *regs, u32 new_ip, u32 new_sp)
253 {
254 	start_thread_common(regs, new_ip, new_sp,
255 			    test_thread_flag(TIF_X32)
256 			    ? __USER_CS : __USER32_CS,
257 			    __USER_DS, __USER_DS);
258 }
259 #endif
260 
261 /*
262  *	switch_to(x,y) should switch tasks from x to y.
263  *
264  * This could still be optimized:
265  * - fold all the options into a flag word and test it with a single test.
266  * - could test fs/gs bitsliced
267  *
268  * Kprobes not supported here. Set the probe on schedule instead.
269  * Function graph tracer not supported too.
270  */
271 __visible __notrace_funcgraph struct task_struct *
272 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
273 {
274 	struct thread_struct *prev = &prev_p->thread;
275 	struct thread_struct *next = &next_p->thread;
276 	struct fpu *prev_fpu = &prev->fpu;
277 	struct fpu *next_fpu = &next->fpu;
278 	int cpu = smp_processor_id();
279 	struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
280 	unsigned fsindex, gsindex;
281 	fpu_switch_t fpu_switch;
282 
283 	fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu);
284 
285 	/* We must save %fs and %gs before load_TLS() because
286 	 * %fs and %gs may be cleared by load_TLS().
287 	 *
288 	 * (e.g. xen_load_tls())
289 	 */
290 	savesegment(fs, fsindex);
291 	savesegment(gs, gsindex);
292 
293 	/*
294 	 * Load TLS before restoring any segments so that segment loads
295 	 * reference the correct GDT entries.
296 	 */
297 	load_TLS(next, cpu);
298 
299 	/*
300 	 * Leave lazy mode, flushing any hypercalls made here.  This
301 	 * must be done after loading TLS entries in the GDT but before
302 	 * loading segments that might reference them, and and it must
303 	 * be done before fpu__restore(), so the TS bit is up to
304 	 * date.
305 	 */
306 	arch_end_context_switch(next_p);
307 
308 	/* Switch DS and ES.
309 	 *
310 	 * Reading them only returns the selectors, but writing them (if
311 	 * nonzero) loads the full descriptor from the GDT or LDT.  The
312 	 * LDT for next is loaded in switch_mm, and the GDT is loaded
313 	 * above.
314 	 *
315 	 * We therefore need to write new values to the segment
316 	 * registers on every context switch unless both the new and old
317 	 * values are zero.
318 	 *
319 	 * Note that we don't need to do anything for CS and SS, as
320 	 * those are saved and restored as part of pt_regs.
321 	 */
322 	savesegment(es, prev->es);
323 	if (unlikely(next->es | prev->es))
324 		loadsegment(es, next->es);
325 
326 	savesegment(ds, prev->ds);
327 	if (unlikely(next->ds | prev->ds))
328 		loadsegment(ds, next->ds);
329 
330 	/*
331 	 * Switch FS and GS.
332 	 *
333 	 * These are even more complicated than FS and GS: they have
334 	 * 64-bit bases are that controlled by arch_prctl.  Those bases
335 	 * only differ from the values in the GDT or LDT if the selector
336 	 * is 0.
337 	 *
338 	 * Loading the segment register resets the hidden base part of
339 	 * the register to 0 or the value from the GDT / LDT.  If the
340 	 * next base address zero, writing 0 to the segment register is
341 	 * much faster than using wrmsr to explicitly zero the base.
342 	 *
343 	 * The thread_struct.fs and thread_struct.gs values are 0
344 	 * if the fs and gs bases respectively are not overridden
345 	 * from the values implied by fsindex and gsindex.  They
346 	 * are nonzero, and store the nonzero base addresses, if
347 	 * the bases are overridden.
348 	 *
349 	 * (fs != 0 && fsindex != 0) || (gs != 0 && gsindex != 0) should
350 	 * be impossible.
351 	 *
352 	 * Therefore we need to reload the segment registers if either
353 	 * the old or new selector is nonzero, and we need to override
354 	 * the base address if next thread expects it to be overridden.
355 	 *
356 	 * This code is unnecessarily slow in the case where the old and
357 	 * new indexes are zero and the new base is nonzero -- it will
358 	 * unnecessarily write 0 to the selector before writing the new
359 	 * base address.
360 	 *
361 	 * Note: This all depends on arch_prctl being the only way that
362 	 * user code can override the segment base.  Once wrfsbase and
363 	 * wrgsbase are enabled, most of this code will need to change.
364 	 */
365 	if (unlikely(fsindex | next->fsindex | prev->fs)) {
366 		loadsegment(fs, next->fsindex);
367 
368 		/*
369 		 * If user code wrote a nonzero value to FS, then it also
370 		 * cleared the overridden base address.
371 		 *
372 		 * XXX: if user code wrote 0 to FS and cleared the base
373 		 * address itself, we won't notice and we'll incorrectly
374 		 * restore the prior base address next time we reschdule
375 		 * the process.
376 		 */
377 		if (fsindex)
378 			prev->fs = 0;
379 	}
380 	if (next->fs)
381 		wrmsrl(MSR_FS_BASE, next->fs);
382 	prev->fsindex = fsindex;
383 
384 	if (unlikely(gsindex | next->gsindex | prev->gs)) {
385 		load_gs_index(next->gsindex);
386 
387 		/* This works (and fails) the same way as fsindex above. */
388 		if (gsindex)
389 			prev->gs = 0;
390 	}
391 	if (next->gs)
392 		wrmsrl(MSR_KERNEL_GS_BASE, next->gs);
393 	prev->gsindex = gsindex;
394 
395 	switch_fpu_finish(next_fpu, fpu_switch);
396 
397 	/*
398 	 * Switch the PDA and FPU contexts.
399 	 */
400 	this_cpu_write(current_task, next_p);
401 
402 	/*
403 	 * If it were not for PREEMPT_ACTIVE we could guarantee that the
404 	 * preempt_count of all tasks was equal here and this would not be
405 	 * needed.
406 	 */
407 	task_thread_info(prev_p)->saved_preempt_count = this_cpu_read(__preempt_count);
408 	this_cpu_write(__preempt_count, task_thread_info(next_p)->saved_preempt_count);
409 
410 	/* Reload esp0 and ss1.  This changes current_thread_info(). */
411 	load_sp0(tss, next);
412 
413 	/*
414 	 * Now maybe reload the debug registers and handle I/O bitmaps
415 	 */
416 	if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
417 		     task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
418 		__switch_to_xtra(prev_p, next_p, tss);
419 
420 	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
421 		/*
422 		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
423 		 * does not update the cached descriptor.  As a result, if we
424 		 * do SYSRET while SS is NULL, we'll end up in user mode with
425 		 * SS apparently equal to __USER_DS but actually unusable.
426 		 *
427 		 * The straightforward workaround would be to fix it up just
428 		 * before SYSRET, but that would slow down the system call
429 		 * fast paths.  Instead, we ensure that SS is never NULL in
430 		 * system call context.  We do this by replacing NULL SS
431 		 * selectors at every context switch.  SYSCALL sets up a valid
432 		 * SS, so the only way to get NULL is to re-enter the kernel
433 		 * from CPL 3 through an interrupt.  Since that can't happen
434 		 * in the same task as a running syscall, we are guaranteed to
435 		 * context switch between every interrupt vector entry and a
436 		 * subsequent SYSRET.
437 		 *
438 		 * We read SS first because SS reads are much faster than
439 		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
440 		 * it previously had a different non-NULL value.
441 		 */
442 		unsigned short ss_sel;
443 		savesegment(ss, ss_sel);
444 		if (ss_sel != __KERNEL_DS)
445 			loadsegment(ss, __KERNEL_DS);
446 	}
447 
448 	return prev_p;
449 }
450 
451 void set_personality_64bit(void)
452 {
453 	/* inherit personality from parent */
454 
455 	/* Make sure to be in 64bit mode */
456 	clear_thread_flag(TIF_IA32);
457 	clear_thread_flag(TIF_ADDR32);
458 	clear_thread_flag(TIF_X32);
459 
460 	/* Ensure the corresponding mm is not marked. */
461 	if (current->mm)
462 		current->mm->context.ia32_compat = 0;
463 
464 	/* TBD: overwrites user setup. Should have two bits.
465 	   But 64bit processes have always behaved this way,
466 	   so it's not too bad. The main problem is just that
467 	   32bit childs are affected again. */
468 	current->personality &= ~READ_IMPLIES_EXEC;
469 }
470 
471 void set_personality_ia32(bool x32)
472 {
473 	/* inherit personality from parent */
474 
475 	/* Make sure to be in 32bit mode */
476 	set_thread_flag(TIF_ADDR32);
477 
478 	/* Mark the associated mm as containing 32-bit tasks. */
479 	if (x32) {
480 		clear_thread_flag(TIF_IA32);
481 		set_thread_flag(TIF_X32);
482 		if (current->mm)
483 			current->mm->context.ia32_compat = TIF_X32;
484 		current->personality &= ~READ_IMPLIES_EXEC;
485 		/* is_compat_task() uses the presence of the x32
486 		   syscall bit flag to determine compat status */
487 		current_thread_info()->status &= ~TS_COMPAT;
488 	} else {
489 		set_thread_flag(TIF_IA32);
490 		clear_thread_flag(TIF_X32);
491 		if (current->mm)
492 			current->mm->context.ia32_compat = TIF_IA32;
493 		current->personality |= force_personality32;
494 		/* Prepare the first "return" to user space */
495 		current_thread_info()->status |= TS_COMPAT;
496 	}
497 }
498 EXPORT_SYMBOL_GPL(set_personality_ia32);
499 
500 unsigned long get_wchan(struct task_struct *p)
501 {
502 	unsigned long stack;
503 	u64 fp, ip;
504 	int count = 0;
505 
506 	if (!p || p == current || p->state == TASK_RUNNING)
507 		return 0;
508 	stack = (unsigned long)task_stack_page(p);
509 	if (p->thread.sp < stack || p->thread.sp >= stack+THREAD_SIZE)
510 		return 0;
511 	fp = *(u64 *)(p->thread.sp);
512 	do {
513 		if (fp < (unsigned long)stack ||
514 		    fp >= (unsigned long)stack+THREAD_SIZE)
515 			return 0;
516 		ip = *(u64 *)(fp+8);
517 		if (!in_sched_functions(ip))
518 			return ip;
519 		fp = *(u64 *)fp;
520 	} while (count++ < 16);
521 	return 0;
522 }
523 
524 long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
525 {
526 	int ret = 0;
527 	int doit = task == current;
528 	int cpu;
529 
530 	switch (code) {
531 	case ARCH_SET_GS:
532 		if (addr >= TASK_SIZE_OF(task))
533 			return -EPERM;
534 		cpu = get_cpu();
535 		/* handle small bases via the GDT because that's faster to
536 		   switch. */
537 		if (addr <= 0xffffffff) {
538 			set_32bit_tls(task, GS_TLS, addr);
539 			if (doit) {
540 				load_TLS(&task->thread, cpu);
541 				load_gs_index(GS_TLS_SEL);
542 			}
543 			task->thread.gsindex = GS_TLS_SEL;
544 			task->thread.gs = 0;
545 		} else {
546 			task->thread.gsindex = 0;
547 			task->thread.gs = addr;
548 			if (doit) {
549 				load_gs_index(0);
550 				ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr);
551 			}
552 		}
553 		put_cpu();
554 		break;
555 	case ARCH_SET_FS:
556 		/* Not strictly needed for fs, but do it for symmetry
557 		   with gs */
558 		if (addr >= TASK_SIZE_OF(task))
559 			return -EPERM;
560 		cpu = get_cpu();
561 		/* handle small bases via the GDT because that's faster to
562 		   switch. */
563 		if (addr <= 0xffffffff) {
564 			set_32bit_tls(task, FS_TLS, addr);
565 			if (doit) {
566 				load_TLS(&task->thread, cpu);
567 				loadsegment(fs, FS_TLS_SEL);
568 			}
569 			task->thread.fsindex = FS_TLS_SEL;
570 			task->thread.fs = 0;
571 		} else {
572 			task->thread.fsindex = 0;
573 			task->thread.fs = addr;
574 			if (doit) {
575 				/* set the selector to 0 to not confuse
576 				   __switch_to */
577 				loadsegment(fs, 0);
578 				ret = wrmsrl_safe(MSR_FS_BASE, addr);
579 			}
580 		}
581 		put_cpu();
582 		break;
583 	case ARCH_GET_FS: {
584 		unsigned long base;
585 		if (task->thread.fsindex == FS_TLS_SEL)
586 			base = read_32bit_tls(task, FS_TLS);
587 		else if (doit)
588 			rdmsrl(MSR_FS_BASE, base);
589 		else
590 			base = task->thread.fs;
591 		ret = put_user(base, (unsigned long __user *)addr);
592 		break;
593 	}
594 	case ARCH_GET_GS: {
595 		unsigned long base;
596 		unsigned gsindex;
597 		if (task->thread.gsindex == GS_TLS_SEL)
598 			base = read_32bit_tls(task, GS_TLS);
599 		else if (doit) {
600 			savesegment(gs, gsindex);
601 			if (gsindex)
602 				rdmsrl(MSR_KERNEL_GS_BASE, base);
603 			else
604 				base = task->thread.gs;
605 		} else
606 			base = task->thread.gs;
607 		ret = put_user(base, (unsigned long __user *)addr);
608 		break;
609 	}
610 
611 	default:
612 		ret = -EINVAL;
613 		break;
614 	}
615 
616 	return ret;
617 }
618 
619 long sys_arch_prctl(int code, unsigned long addr)
620 {
621 	return do_arch_prctl(current, code, addr);
622 }
623 
624 unsigned long KSTK_ESP(struct task_struct *task)
625 {
626 	return task_pt_regs(task)->sp;
627 }
628