xref: /openbmc/linux/arch/x86/kernel/process_64.c (revision 6fcd6fea)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  *
8  *  X86-64 port
9  *	Andi Kleen.
10  *
11  *	CPU hotplug support - ashok.raj@intel.com
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of process handling..
16  */
17 
18 #include <linux/cpu.h>
19 #include <linux/errno.h>
20 #include <linux/sched.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/fs.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/elfcore.h>
27 #include <linux/smp.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/export.h>
33 #include <linux/ptrace.h>
34 #include <linux/notifier.h>
35 #include <linux/kprobes.h>
36 #include <linux/kdebug.h>
37 #include <linux/prctl.h>
38 #include <linux/uaccess.h>
39 #include <linux/io.h>
40 #include <linux/ftrace.h>
41 #include <linux/syscalls.h>
42 #include <linux/iommu.h>
43 
44 #include <asm/processor.h>
45 #include <asm/pkru.h>
46 #include <asm/fpu/sched.h>
47 #include <asm/mmu_context.h>
48 #include <asm/prctl.h>
49 #include <asm/desc.h>
50 #include <asm/proto.h>
51 #include <asm/ia32.h>
52 #include <asm/debugreg.h>
53 #include <asm/switch_to.h>
54 #include <asm/xen/hypervisor.h>
55 #include <asm/vdso.h>
56 #include <asm/resctrl.h>
57 #include <asm/unistd.h>
58 #include <asm/fsgsbase.h>
59 #ifdef CONFIG_IA32_EMULATION
60 /* Not included via unistd.h */
61 #include <asm/unistd_32_ia32.h>
62 #endif
63 
64 #include "process.h"
65 
66 /* Prints also some state that isn't saved in the pt_regs */
67 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
68 		 const char *log_lvl)
69 {
70 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
71 	unsigned long d0, d1, d2, d3, d6, d7;
72 	unsigned int fsindex, gsindex;
73 	unsigned int ds, es;
74 
75 	show_iret_regs(regs, log_lvl);
76 
77 	if (regs->orig_ax != -1)
78 		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
79 	else
80 		pr_cont("\n");
81 
82 	printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
83 	       log_lvl, regs->ax, regs->bx, regs->cx);
84 	printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
85 	       log_lvl, regs->dx, regs->si, regs->di);
86 	printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
87 	       log_lvl, regs->bp, regs->r8, regs->r9);
88 	printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
89 	       log_lvl, regs->r10, regs->r11, regs->r12);
90 	printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
91 	       log_lvl, regs->r13, regs->r14, regs->r15);
92 
93 	if (mode == SHOW_REGS_SHORT)
94 		return;
95 
96 	if (mode == SHOW_REGS_USER) {
97 		rdmsrl(MSR_FS_BASE, fs);
98 		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
99 		printk("%sFS:  %016lx GS:  %016lx\n",
100 		       log_lvl, fs, shadowgs);
101 		return;
102 	}
103 
104 	asm("movl %%ds,%0" : "=r" (ds));
105 	asm("movl %%es,%0" : "=r" (es));
106 	asm("movl %%fs,%0" : "=r" (fsindex));
107 	asm("movl %%gs,%0" : "=r" (gsindex));
108 
109 	rdmsrl(MSR_FS_BASE, fs);
110 	rdmsrl(MSR_GS_BASE, gs);
111 	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
112 
113 	cr0 = read_cr0();
114 	cr2 = read_cr2();
115 	cr3 = __read_cr3();
116 	cr4 = __read_cr4();
117 
118 	printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
119 	       log_lvl, fs, fsindex, gs, gsindex, shadowgs);
120 	printk("%sCS:  %04lx DS: %04x ES: %04x CR0: %016lx\n",
121 		log_lvl, regs->cs, ds, es, cr0);
122 	printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
123 		log_lvl, cr2, cr3, cr4);
124 
125 	get_debugreg(d0, 0);
126 	get_debugreg(d1, 1);
127 	get_debugreg(d2, 2);
128 	get_debugreg(d3, 3);
129 	get_debugreg(d6, 6);
130 	get_debugreg(d7, 7);
131 
132 	/* Only print out debug registers if they are in their non-default state. */
133 	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
134 	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
135 		printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
136 		       log_lvl, d0, d1, d2);
137 		printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
138 		       log_lvl, d3, d6, d7);
139 	}
140 
141 	if (cr4 & X86_CR4_PKE)
142 		printk("%sPKRU: %08x\n", log_lvl, read_pkru());
143 }
144 
145 void release_thread(struct task_struct *dead_task)
146 {
147 	WARN_ON(dead_task->mm);
148 }
149 
150 enum which_selector {
151 	FS,
152 	GS
153 };
154 
155 /*
156  * Out of line to be protected from kprobes and tracing. If this would be
157  * traced or probed than any access to a per CPU variable happens with
158  * the wrong GS.
159  *
160  * It is not used on Xen paravirt. When paravirt support is needed, it
161  * needs to be renamed with native_ prefix.
162  */
163 static noinstr unsigned long __rdgsbase_inactive(void)
164 {
165 	unsigned long gsbase;
166 
167 	lockdep_assert_irqs_disabled();
168 
169 	if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
170 		native_swapgs();
171 		gsbase = rdgsbase();
172 		native_swapgs();
173 	} else {
174 		instrumentation_begin();
175 		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
176 		instrumentation_end();
177 	}
178 
179 	return gsbase;
180 }
181 
182 /*
183  * Out of line to be protected from kprobes and tracing. If this would be
184  * traced or probed than any access to a per CPU variable happens with
185  * the wrong GS.
186  *
187  * It is not used on Xen paravirt. When paravirt support is needed, it
188  * needs to be renamed with native_ prefix.
189  */
190 static noinstr void __wrgsbase_inactive(unsigned long gsbase)
191 {
192 	lockdep_assert_irqs_disabled();
193 
194 	if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
195 		native_swapgs();
196 		wrgsbase(gsbase);
197 		native_swapgs();
198 	} else {
199 		instrumentation_begin();
200 		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
201 		instrumentation_end();
202 	}
203 }
204 
205 /*
206  * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
207  * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
208  * It's forcibly inlined because it'll generate better code and this function
209  * is hot.
210  */
211 static __always_inline void save_base_legacy(struct task_struct *prev_p,
212 					     unsigned short selector,
213 					     enum which_selector which)
214 {
215 	if (likely(selector == 0)) {
216 		/*
217 		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
218 		 * be the pre-existing saved base or it could be zero.  On AMD
219 		 * (with X86_BUG_NULL_SEG), the segment base could be almost
220 		 * anything.
221 		 *
222 		 * This branch is very hot (it's hit twice on almost every
223 		 * context switch between 64-bit programs), and avoiding
224 		 * the RDMSR helps a lot, so we just assume that whatever
225 		 * value is already saved is correct.  This matches historical
226 		 * Linux behavior, so it won't break existing applications.
227 		 *
228 		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
229 		 * report that the base is zero, it needs to actually be zero:
230 		 * see the corresponding logic in load_seg_legacy.
231 		 */
232 	} else {
233 		/*
234 		 * If the selector is 1, 2, or 3, then the base is zero on
235 		 * !X86_BUG_NULL_SEG CPUs and could be anything on
236 		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
237 		 * has never attempted to preserve the base across context
238 		 * switches.
239 		 *
240 		 * If selector > 3, then it refers to a real segment, and
241 		 * saving the base isn't necessary.
242 		 */
243 		if (which == FS)
244 			prev_p->thread.fsbase = 0;
245 		else
246 			prev_p->thread.gsbase = 0;
247 	}
248 }
249 
250 static __always_inline void save_fsgs(struct task_struct *task)
251 {
252 	savesegment(fs, task->thread.fsindex);
253 	savesegment(gs, task->thread.gsindex);
254 	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
255 		/*
256 		 * If FSGSBASE is enabled, we can't make any useful guesses
257 		 * about the base, and user code expects us to save the current
258 		 * value.  Fortunately, reading the base directly is efficient.
259 		 */
260 		task->thread.fsbase = rdfsbase();
261 		task->thread.gsbase = __rdgsbase_inactive();
262 	} else {
263 		save_base_legacy(task, task->thread.fsindex, FS);
264 		save_base_legacy(task, task->thread.gsindex, GS);
265 	}
266 }
267 
268 /*
269  * While a process is running,current->thread.fsbase and current->thread.gsbase
270  * may not match the corresponding CPU registers (see save_base_legacy()).
271  */
272 void current_save_fsgs(void)
273 {
274 	unsigned long flags;
275 
276 	/* Interrupts need to be off for FSGSBASE */
277 	local_irq_save(flags);
278 	save_fsgs(current);
279 	local_irq_restore(flags);
280 }
281 #if IS_ENABLED(CONFIG_KVM)
282 EXPORT_SYMBOL_GPL(current_save_fsgs);
283 #endif
284 
285 static __always_inline void loadseg(enum which_selector which,
286 				    unsigned short sel)
287 {
288 	if (which == FS)
289 		loadsegment(fs, sel);
290 	else
291 		load_gs_index(sel);
292 }
293 
294 static __always_inline void load_seg_legacy(unsigned short prev_index,
295 					    unsigned long prev_base,
296 					    unsigned short next_index,
297 					    unsigned long next_base,
298 					    enum which_selector which)
299 {
300 	if (likely(next_index <= 3)) {
301 		/*
302 		 * The next task is using 64-bit TLS, is not using this
303 		 * segment at all, or is having fun with arcane CPU features.
304 		 */
305 		if (next_base == 0) {
306 			/*
307 			 * Nasty case: on AMD CPUs, we need to forcibly zero
308 			 * the base.
309 			 */
310 			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
311 				loadseg(which, __USER_DS);
312 				loadseg(which, next_index);
313 			} else {
314 				/*
315 				 * We could try to exhaustively detect cases
316 				 * under which we can skip the segment load,
317 				 * but there's really only one case that matters
318 				 * for performance: if both the previous and
319 				 * next states are fully zeroed, we can skip
320 				 * the load.
321 				 *
322 				 * (This assumes that prev_base == 0 has no
323 				 * false positives.  This is the case on
324 				 * Intel-style CPUs.)
325 				 */
326 				if (likely(prev_index | next_index | prev_base))
327 					loadseg(which, next_index);
328 			}
329 		} else {
330 			if (prev_index != next_index)
331 				loadseg(which, next_index);
332 			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
333 			       next_base);
334 		}
335 	} else {
336 		/*
337 		 * The next task is using a real segment.  Loading the selector
338 		 * is sufficient.
339 		 */
340 		loadseg(which, next_index);
341 	}
342 }
343 
344 /*
345  * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
346  * is not XSTATE managed on context switch because that would require a
347  * lookup in the task's FPU xsave buffer and require to keep that updated
348  * in various places.
349  */
350 static __always_inline void x86_pkru_load(struct thread_struct *prev,
351 					  struct thread_struct *next)
352 {
353 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
354 		return;
355 
356 	/* Stash the prev task's value: */
357 	prev->pkru = rdpkru();
358 
359 	/*
360 	 * PKRU writes are slightly expensive.  Avoid them when not
361 	 * strictly necessary:
362 	 */
363 	if (prev->pkru != next->pkru)
364 		wrpkru(next->pkru);
365 }
366 
367 static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
368 					      struct thread_struct *next)
369 {
370 	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
371 		/* Update the FS and GS selectors if they could have changed. */
372 		if (unlikely(prev->fsindex || next->fsindex))
373 			loadseg(FS, next->fsindex);
374 		if (unlikely(prev->gsindex || next->gsindex))
375 			loadseg(GS, next->gsindex);
376 
377 		/* Update the bases. */
378 		wrfsbase(next->fsbase);
379 		__wrgsbase_inactive(next->gsbase);
380 	} else {
381 		load_seg_legacy(prev->fsindex, prev->fsbase,
382 				next->fsindex, next->fsbase, FS);
383 		load_seg_legacy(prev->gsindex, prev->gsbase,
384 				next->gsindex, next->gsbase, GS);
385 	}
386 }
387 
388 unsigned long x86_fsgsbase_read_task(struct task_struct *task,
389 				     unsigned short selector)
390 {
391 	unsigned short idx = selector >> 3;
392 	unsigned long base;
393 
394 	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
395 		if (unlikely(idx >= GDT_ENTRIES))
396 			return 0;
397 
398 		/*
399 		 * There are no user segments in the GDT with nonzero bases
400 		 * other than the TLS segments.
401 		 */
402 		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
403 			return 0;
404 
405 		idx -= GDT_ENTRY_TLS_MIN;
406 		base = get_desc_base(&task->thread.tls_array[idx]);
407 	} else {
408 #ifdef CONFIG_MODIFY_LDT_SYSCALL
409 		struct ldt_struct *ldt;
410 
411 		/*
412 		 * If performance here mattered, we could protect the LDT
413 		 * with RCU.  This is a slow path, though, so we can just
414 		 * take the mutex.
415 		 */
416 		mutex_lock(&task->mm->context.lock);
417 		ldt = task->mm->context.ldt;
418 		if (unlikely(!ldt || idx >= ldt->nr_entries))
419 			base = 0;
420 		else
421 			base = get_desc_base(ldt->entries + idx);
422 		mutex_unlock(&task->mm->context.lock);
423 #else
424 		base = 0;
425 #endif
426 	}
427 
428 	return base;
429 }
430 
431 unsigned long x86_gsbase_read_cpu_inactive(void)
432 {
433 	unsigned long gsbase;
434 
435 	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
436 		unsigned long flags;
437 
438 		local_irq_save(flags);
439 		gsbase = __rdgsbase_inactive();
440 		local_irq_restore(flags);
441 	} else {
442 		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
443 	}
444 
445 	return gsbase;
446 }
447 
448 void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
449 {
450 	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
451 		unsigned long flags;
452 
453 		local_irq_save(flags);
454 		__wrgsbase_inactive(gsbase);
455 		local_irq_restore(flags);
456 	} else {
457 		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
458 	}
459 }
460 
461 unsigned long x86_fsbase_read_task(struct task_struct *task)
462 {
463 	unsigned long fsbase;
464 
465 	if (task == current)
466 		fsbase = x86_fsbase_read_cpu();
467 	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
468 		 (task->thread.fsindex == 0))
469 		fsbase = task->thread.fsbase;
470 	else
471 		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
472 
473 	return fsbase;
474 }
475 
476 unsigned long x86_gsbase_read_task(struct task_struct *task)
477 {
478 	unsigned long gsbase;
479 
480 	if (task == current)
481 		gsbase = x86_gsbase_read_cpu_inactive();
482 	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
483 		 (task->thread.gsindex == 0))
484 		gsbase = task->thread.gsbase;
485 	else
486 		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
487 
488 	return gsbase;
489 }
490 
491 void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
492 {
493 	WARN_ON_ONCE(task == current);
494 
495 	task->thread.fsbase = fsbase;
496 }
497 
498 void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
499 {
500 	WARN_ON_ONCE(task == current);
501 
502 	task->thread.gsbase = gsbase;
503 }
504 
505 static void
506 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
507 		    unsigned long new_sp,
508 		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
509 {
510 	WARN_ON_ONCE(regs != current_pt_regs());
511 
512 	if (static_cpu_has(X86_BUG_NULL_SEG)) {
513 		/* Loading zero below won't clear the base. */
514 		loadsegment(fs, __USER_DS);
515 		load_gs_index(__USER_DS);
516 	}
517 
518 	reset_thread_features();
519 
520 	loadsegment(fs, 0);
521 	loadsegment(es, _ds);
522 	loadsegment(ds, _ds);
523 	load_gs_index(0);
524 
525 	regs->ip		= new_ip;
526 	regs->sp		= new_sp;
527 	regs->cs		= _cs;
528 	regs->ss		= _ss;
529 	regs->flags		= X86_EFLAGS_IF;
530 }
531 
532 void
533 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
534 {
535 	start_thread_common(regs, new_ip, new_sp,
536 			    __USER_CS, __USER_DS, 0);
537 }
538 EXPORT_SYMBOL_GPL(start_thread);
539 
540 #ifdef CONFIG_COMPAT
541 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
542 {
543 	start_thread_common(regs, new_ip, new_sp,
544 			    x32 ? __USER_CS : __USER32_CS,
545 			    __USER_DS, __USER_DS);
546 }
547 #endif
548 
549 /*
550  *	switch_to(x,y) should switch tasks from x to y.
551  *
552  * This could still be optimized:
553  * - fold all the options into a flag word and test it with a single test.
554  * - could test fs/gs bitsliced
555  *
556  * Kprobes not supported here. Set the probe on schedule instead.
557  * Function graph tracer not supported too.
558  */
559 __no_kmsan_checks
560 __visible __notrace_funcgraph struct task_struct *
561 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
562 {
563 	struct thread_struct *prev = &prev_p->thread;
564 	struct thread_struct *next = &next_p->thread;
565 	struct fpu *prev_fpu = &prev->fpu;
566 	int cpu = smp_processor_id();
567 
568 	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
569 		     this_cpu_read(pcpu_hot.hardirq_stack_inuse));
570 
571 	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
572 		switch_fpu_prepare(prev_fpu, cpu);
573 
574 	/* We must save %fs and %gs before load_TLS() because
575 	 * %fs and %gs may be cleared by load_TLS().
576 	 *
577 	 * (e.g. xen_load_tls())
578 	 */
579 	save_fsgs(prev_p);
580 
581 	/*
582 	 * Load TLS before restoring any segments so that segment loads
583 	 * reference the correct GDT entries.
584 	 */
585 	load_TLS(next, cpu);
586 
587 	/*
588 	 * Leave lazy mode, flushing any hypercalls made here.  This
589 	 * must be done after loading TLS entries in the GDT but before
590 	 * loading segments that might reference them.
591 	 */
592 	arch_end_context_switch(next_p);
593 
594 	/* Switch DS and ES.
595 	 *
596 	 * Reading them only returns the selectors, but writing them (if
597 	 * nonzero) loads the full descriptor from the GDT or LDT.  The
598 	 * LDT for next is loaded in switch_mm, and the GDT is loaded
599 	 * above.
600 	 *
601 	 * We therefore need to write new values to the segment
602 	 * registers on every context switch unless both the new and old
603 	 * values are zero.
604 	 *
605 	 * Note that we don't need to do anything for CS and SS, as
606 	 * those are saved and restored as part of pt_regs.
607 	 */
608 	savesegment(es, prev->es);
609 	if (unlikely(next->es | prev->es))
610 		loadsegment(es, next->es);
611 
612 	savesegment(ds, prev->ds);
613 	if (unlikely(next->ds | prev->ds))
614 		loadsegment(ds, next->ds);
615 
616 	x86_fsgsbase_load(prev, next);
617 
618 	x86_pkru_load(prev, next);
619 
620 	/*
621 	 * Switch the PDA and FPU contexts.
622 	 */
623 	raw_cpu_write(pcpu_hot.current_task, next_p);
624 	raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p));
625 
626 	switch_fpu_finish();
627 
628 	/* Reload sp0. */
629 	update_task_stack(next_p);
630 
631 	switch_to_extra(prev_p, next_p);
632 
633 	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
634 		/*
635 		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
636 		 * does not update the cached descriptor.  As a result, if we
637 		 * do SYSRET while SS is NULL, we'll end up in user mode with
638 		 * SS apparently equal to __USER_DS but actually unusable.
639 		 *
640 		 * The straightforward workaround would be to fix it up just
641 		 * before SYSRET, but that would slow down the system call
642 		 * fast paths.  Instead, we ensure that SS is never NULL in
643 		 * system call context.  We do this by replacing NULL SS
644 		 * selectors at every context switch.  SYSCALL sets up a valid
645 		 * SS, so the only way to get NULL is to re-enter the kernel
646 		 * from CPL 3 through an interrupt.  Since that can't happen
647 		 * in the same task as a running syscall, we are guaranteed to
648 		 * context switch between every interrupt vector entry and a
649 		 * subsequent SYSRET.
650 		 *
651 		 * We read SS first because SS reads are much faster than
652 		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
653 		 * it previously had a different non-NULL value.
654 		 */
655 		unsigned short ss_sel;
656 		savesegment(ss, ss_sel);
657 		if (ss_sel != __KERNEL_DS)
658 			loadsegment(ss, __KERNEL_DS);
659 	}
660 
661 	/* Load the Intel cache allocation PQR MSR. */
662 	resctrl_sched_in(next_p);
663 
664 	return prev_p;
665 }
666 
667 void set_personality_64bit(void)
668 {
669 	/* inherit personality from parent */
670 
671 	/* Make sure to be in 64bit mode */
672 	clear_thread_flag(TIF_ADDR32);
673 	/* Pretend that this comes from a 64bit execve */
674 	task_pt_regs(current)->orig_ax = __NR_execve;
675 	current_thread_info()->status &= ~TS_COMPAT;
676 	if (current->mm)
677 		__set_bit(MM_CONTEXT_HAS_VSYSCALL, &current->mm->context.flags);
678 
679 	/* TBD: overwrites user setup. Should have two bits.
680 	   But 64bit processes have always behaved this way,
681 	   so it's not too bad. The main problem is just that
682 	   32bit children are affected again. */
683 	current->personality &= ~READ_IMPLIES_EXEC;
684 }
685 
686 static void __set_personality_x32(void)
687 {
688 #ifdef CONFIG_X86_X32_ABI
689 	if (current->mm)
690 		current->mm->context.flags = 0;
691 
692 	current->personality &= ~READ_IMPLIES_EXEC;
693 	/*
694 	 * in_32bit_syscall() uses the presence of the x32 syscall bit
695 	 * flag to determine compat status.  The x86 mmap() code relies on
696 	 * the syscall bitness so set x32 syscall bit right here to make
697 	 * in_32bit_syscall() work during exec().
698 	 *
699 	 * Pretend to come from a x32 execve.
700 	 */
701 	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
702 	current_thread_info()->status &= ~TS_COMPAT;
703 #endif
704 }
705 
706 static void __set_personality_ia32(void)
707 {
708 #ifdef CONFIG_IA32_EMULATION
709 	if (current->mm) {
710 		/*
711 		 * uprobes applied to this MM need to know this and
712 		 * cannot use user_64bit_mode() at that time.
713 		 */
714 		__set_bit(MM_CONTEXT_UPROBE_IA32, &current->mm->context.flags);
715 	}
716 
717 	current->personality |= force_personality32;
718 	/* Prepare the first "return" to user space */
719 	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
720 	current_thread_info()->status |= TS_COMPAT;
721 #endif
722 }
723 
724 void set_personality_ia32(bool x32)
725 {
726 	/* Make sure to be in 32bit mode */
727 	set_thread_flag(TIF_ADDR32);
728 
729 	if (x32)
730 		__set_personality_x32();
731 	else
732 		__set_personality_ia32();
733 }
734 EXPORT_SYMBOL_GPL(set_personality_ia32);
735 
736 #ifdef CONFIG_CHECKPOINT_RESTORE
737 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
738 {
739 	int ret;
740 
741 	ret = map_vdso_once(image, addr);
742 	if (ret)
743 		return ret;
744 
745 	return (long)image->size;
746 }
747 #endif
748 
749 #ifdef CONFIG_ADDRESS_MASKING
750 
751 #define LAM_U57_BITS 6
752 
753 static void enable_lam_func(void *__mm)
754 {
755 	struct mm_struct *mm = __mm;
756 
757 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) {
758 		write_cr3(__read_cr3() | mm->context.lam_cr3_mask);
759 		set_tlbstate_lam_mode(mm);
760 	}
761 }
762 
763 static void mm_enable_lam(struct mm_struct *mm)
764 {
765 	/*
766 	 * Even though the process must still be single-threaded at this
767 	 * point, kernel threads may be using the mm.  IPI those kernel
768 	 * threads if they exist.
769 	 */
770 	on_each_cpu_mask(mm_cpumask(mm), enable_lam_func, mm, true);
771 	set_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags);
772 }
773 
774 static int prctl_enable_tagged_addr(struct mm_struct *mm, unsigned long nr_bits)
775 {
776 	if (!cpu_feature_enabled(X86_FEATURE_LAM))
777 		return -ENODEV;
778 
779 	/* PTRACE_ARCH_PRCTL */
780 	if (current->mm != mm)
781 		return -EINVAL;
782 
783 	if (mm_valid_pasid(mm) &&
784 	    !test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags))
785 		return -EINVAL;
786 
787 	if (mmap_write_lock_killable(mm))
788 		return -EINTR;
789 
790 	/*
791 	 * MM_CONTEXT_LOCK_LAM is set on clone.  Prevent LAM from
792 	 * being enabled unless the process is single threaded:
793 	 */
794 	if (test_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags)) {
795 		mmap_write_unlock(mm);
796 		return -EBUSY;
797 	}
798 
799 	if (!nr_bits) {
800 		mmap_write_unlock(mm);
801 		return -EINVAL;
802 	} else if (nr_bits <= LAM_U57_BITS) {
803 		mm->context.lam_cr3_mask = X86_CR3_LAM_U57;
804 		mm->context.untag_mask =  ~GENMASK(62, 57);
805 	} else {
806 		mmap_write_unlock(mm);
807 		return -EINVAL;
808 	}
809 
810 	mm_enable_lam(mm);
811 
812 	mmap_write_unlock(mm);
813 
814 	return 0;
815 }
816 #endif
817 
818 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
819 {
820 	int ret = 0;
821 
822 	switch (option) {
823 	case ARCH_SET_GS: {
824 		if (unlikely(arg2 >= TASK_SIZE_MAX))
825 			return -EPERM;
826 
827 		preempt_disable();
828 		/*
829 		 * ARCH_SET_GS has always overwritten the index
830 		 * and the base. Zero is the most sensible value
831 		 * to put in the index, and is the only value that
832 		 * makes any sense if FSGSBASE is unavailable.
833 		 */
834 		if (task == current) {
835 			loadseg(GS, 0);
836 			x86_gsbase_write_cpu_inactive(arg2);
837 
838 			/*
839 			 * On non-FSGSBASE systems, save_base_legacy() expects
840 			 * that we also fill in thread.gsbase.
841 			 */
842 			task->thread.gsbase = arg2;
843 
844 		} else {
845 			task->thread.gsindex = 0;
846 			x86_gsbase_write_task(task, arg2);
847 		}
848 		preempt_enable();
849 		break;
850 	}
851 	case ARCH_SET_FS: {
852 		/*
853 		 * Not strictly needed for %fs, but do it for symmetry
854 		 * with %gs
855 		 */
856 		if (unlikely(arg2 >= TASK_SIZE_MAX))
857 			return -EPERM;
858 
859 		preempt_disable();
860 		/*
861 		 * Set the selector to 0 for the same reason
862 		 * as %gs above.
863 		 */
864 		if (task == current) {
865 			loadseg(FS, 0);
866 			x86_fsbase_write_cpu(arg2);
867 
868 			/*
869 			 * On non-FSGSBASE systems, save_base_legacy() expects
870 			 * that we also fill in thread.fsbase.
871 			 */
872 			task->thread.fsbase = arg2;
873 		} else {
874 			task->thread.fsindex = 0;
875 			x86_fsbase_write_task(task, arg2);
876 		}
877 		preempt_enable();
878 		break;
879 	}
880 	case ARCH_GET_FS: {
881 		unsigned long base = x86_fsbase_read_task(task);
882 
883 		ret = put_user(base, (unsigned long __user *)arg2);
884 		break;
885 	}
886 	case ARCH_GET_GS: {
887 		unsigned long base = x86_gsbase_read_task(task);
888 
889 		ret = put_user(base, (unsigned long __user *)arg2);
890 		break;
891 	}
892 
893 #ifdef CONFIG_CHECKPOINT_RESTORE
894 # ifdef CONFIG_X86_X32_ABI
895 	case ARCH_MAP_VDSO_X32:
896 		return prctl_map_vdso(&vdso_image_x32, arg2);
897 # endif
898 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
899 	case ARCH_MAP_VDSO_32:
900 		return prctl_map_vdso(&vdso_image_32, arg2);
901 # endif
902 	case ARCH_MAP_VDSO_64:
903 		return prctl_map_vdso(&vdso_image_64, arg2);
904 #endif
905 #ifdef CONFIG_ADDRESS_MASKING
906 	case ARCH_GET_UNTAG_MASK:
907 		return put_user(task->mm->context.untag_mask,
908 				(unsigned long __user *)arg2);
909 	case ARCH_ENABLE_TAGGED_ADDR:
910 		return prctl_enable_tagged_addr(task->mm, arg2);
911 	case ARCH_FORCE_TAGGED_SVA:
912 		if (current != task)
913 			return -EINVAL;
914 		set_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &task->mm->context.flags);
915 		return 0;
916 	case ARCH_GET_MAX_TAG_BITS:
917 		if (!cpu_feature_enabled(X86_FEATURE_LAM))
918 			return put_user(0, (unsigned long __user *)arg2);
919 		else
920 			return put_user(LAM_U57_BITS, (unsigned long __user *)arg2);
921 #endif
922 	case ARCH_SHSTK_ENABLE:
923 	case ARCH_SHSTK_DISABLE:
924 	case ARCH_SHSTK_LOCK:
925 	case ARCH_SHSTK_UNLOCK:
926 	case ARCH_SHSTK_STATUS:
927 		return shstk_prctl(task, option, arg2);
928 	default:
929 		ret = -EINVAL;
930 		break;
931 	}
932 
933 	return ret;
934 }
935 
936 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
937 {
938 	long ret;
939 
940 	ret = do_arch_prctl_64(current, option, arg2);
941 	if (ret == -EINVAL)
942 		ret = do_arch_prctl_common(option, arg2);
943 
944 	return ret;
945 }
946 
947 #ifdef CONFIG_IA32_EMULATION
948 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
949 {
950 	return do_arch_prctl_common(option, arg2);
951 }
952 #endif
953 
954 unsigned long KSTK_ESP(struct task_struct *task)
955 {
956 	return task_pt_regs(task)->sp;
957 }
958