xref: /openbmc/linux/arch/x86/kernel/process_64.c (revision 68198dca)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  *
7  *  X86-64 port
8  *	Andi Kleen.
9  *
10  *	CPU hotplug support - ashok.raj@intel.com
11  */
12 
13 /*
14  * This file handles the architecture-dependent parts of process handling..
15  */
16 
17 #include <linux/cpu.h>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/fs.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/elfcore.h>
26 #include <linux/smp.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/export.h>
32 #include <linux/ptrace.h>
33 #include <linux/notifier.h>
34 #include <linux/kprobes.h>
35 #include <linux/kdebug.h>
36 #include <linux/prctl.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/ftrace.h>
40 #include <linux/syscalls.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/processor.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/mmu_context.h>
46 #include <asm/prctl.h>
47 #include <asm/desc.h>
48 #include <asm/proto.h>
49 #include <asm/ia32.h>
50 #include <asm/syscalls.h>
51 #include <asm/debugreg.h>
52 #include <asm/switch_to.h>
53 #include <asm/xen/hypervisor.h>
54 #include <asm/vdso.h>
55 #include <asm/intel_rdt_sched.h>
56 #include <asm/unistd.h>
57 #ifdef CONFIG_IA32_EMULATION
58 /* Not included via unistd.h */
59 #include <asm/unistd_32_ia32.h>
60 #endif
61 
62 __visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
63 
64 /* Prints also some state that isn't saved in the pt_regs */
65 void __show_regs(struct pt_regs *regs, int all)
66 {
67 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
68 	unsigned long d0, d1, d2, d3, d6, d7;
69 	unsigned int fsindex, gsindex;
70 	unsigned int ds, cs, es;
71 
72 	printk(KERN_DEFAULT "RIP: %04lx:%pS\n", regs->cs, (void *)regs->ip);
73 	printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx", regs->ss,
74 		regs->sp, regs->flags);
75 	if (regs->orig_ax != -1)
76 		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
77 	else
78 		pr_cont("\n");
79 
80 	printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
81 	       regs->ax, regs->bx, regs->cx);
82 	printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
83 	       regs->dx, regs->si, regs->di);
84 	printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
85 	       regs->bp, regs->r8, regs->r9);
86 	printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
87 	       regs->r10, regs->r11, regs->r12);
88 	printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
89 	       regs->r13, regs->r14, regs->r15);
90 
91 	asm("movl %%ds,%0" : "=r" (ds));
92 	asm("movl %%cs,%0" : "=r" (cs));
93 	asm("movl %%es,%0" : "=r" (es));
94 	asm("movl %%fs,%0" : "=r" (fsindex));
95 	asm("movl %%gs,%0" : "=r" (gsindex));
96 
97 	rdmsrl(MSR_FS_BASE, fs);
98 	rdmsrl(MSR_GS_BASE, gs);
99 	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
100 
101 	if (!all)
102 		return;
103 
104 	cr0 = read_cr0();
105 	cr2 = read_cr2();
106 	cr3 = __read_cr3();
107 	cr4 = __read_cr4();
108 
109 	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
110 	       fs, fsindex, gs, gsindex, shadowgs);
111 	printk(KERN_DEFAULT "CS:  %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
112 			es, cr0);
113 	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
114 			cr4);
115 
116 	get_debugreg(d0, 0);
117 	get_debugreg(d1, 1);
118 	get_debugreg(d2, 2);
119 	get_debugreg(d3, 3);
120 	get_debugreg(d6, 6);
121 	get_debugreg(d7, 7);
122 
123 	/* Only print out debug registers if they are in their non-default state. */
124 	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
125 	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
126 		printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
127 		       d0, d1, d2);
128 		printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
129 		       d3, d6, d7);
130 	}
131 
132 	if (boot_cpu_has(X86_FEATURE_OSPKE))
133 		printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
134 }
135 
136 void release_thread(struct task_struct *dead_task)
137 {
138 	if (dead_task->mm) {
139 #ifdef CONFIG_MODIFY_LDT_SYSCALL
140 		if (dead_task->mm->context.ldt) {
141 			pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
142 				dead_task->comm,
143 				dead_task->mm->context.ldt->entries,
144 				dead_task->mm->context.ldt->nr_entries);
145 			BUG();
146 		}
147 #endif
148 	}
149 }
150 
151 enum which_selector {
152 	FS,
153 	GS
154 };
155 
156 /*
157  * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
158  * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
159  * It's forcibly inlined because it'll generate better code and this function
160  * is hot.
161  */
162 static __always_inline void save_base_legacy(struct task_struct *prev_p,
163 					     unsigned short selector,
164 					     enum which_selector which)
165 {
166 	if (likely(selector == 0)) {
167 		/*
168 		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
169 		 * be the pre-existing saved base or it could be zero.  On AMD
170 		 * (with X86_BUG_NULL_SEG), the segment base could be almost
171 		 * anything.
172 		 *
173 		 * This branch is very hot (it's hit twice on almost every
174 		 * context switch between 64-bit programs), and avoiding
175 		 * the RDMSR helps a lot, so we just assume that whatever
176 		 * value is already saved is correct.  This matches historical
177 		 * Linux behavior, so it won't break existing applications.
178 		 *
179 		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
180 		 * report that the base is zero, it needs to actually be zero:
181 		 * see the corresponding logic in load_seg_legacy.
182 		 */
183 	} else {
184 		/*
185 		 * If the selector is 1, 2, or 3, then the base is zero on
186 		 * !X86_BUG_NULL_SEG CPUs and could be anything on
187 		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
188 		 * has never attempted to preserve the base across context
189 		 * switches.
190 		 *
191 		 * If selector > 3, then it refers to a real segment, and
192 		 * saving the base isn't necessary.
193 		 */
194 		if (which == FS)
195 			prev_p->thread.fsbase = 0;
196 		else
197 			prev_p->thread.gsbase = 0;
198 	}
199 }
200 
201 static __always_inline void save_fsgs(struct task_struct *task)
202 {
203 	savesegment(fs, task->thread.fsindex);
204 	savesegment(gs, task->thread.gsindex);
205 	save_base_legacy(task, task->thread.fsindex, FS);
206 	save_base_legacy(task, task->thread.gsindex, GS);
207 }
208 
209 static __always_inline void loadseg(enum which_selector which,
210 				    unsigned short sel)
211 {
212 	if (which == FS)
213 		loadsegment(fs, sel);
214 	else
215 		load_gs_index(sel);
216 }
217 
218 static __always_inline void load_seg_legacy(unsigned short prev_index,
219 					    unsigned long prev_base,
220 					    unsigned short next_index,
221 					    unsigned long next_base,
222 					    enum which_selector which)
223 {
224 	if (likely(next_index <= 3)) {
225 		/*
226 		 * The next task is using 64-bit TLS, is not using this
227 		 * segment at all, or is having fun with arcane CPU features.
228 		 */
229 		if (next_base == 0) {
230 			/*
231 			 * Nasty case: on AMD CPUs, we need to forcibly zero
232 			 * the base.
233 			 */
234 			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
235 				loadseg(which, __USER_DS);
236 				loadseg(which, next_index);
237 			} else {
238 				/*
239 				 * We could try to exhaustively detect cases
240 				 * under which we can skip the segment load,
241 				 * but there's really only one case that matters
242 				 * for performance: if both the previous and
243 				 * next states are fully zeroed, we can skip
244 				 * the load.
245 				 *
246 				 * (This assumes that prev_base == 0 has no
247 				 * false positives.  This is the case on
248 				 * Intel-style CPUs.)
249 				 */
250 				if (likely(prev_index | next_index | prev_base))
251 					loadseg(which, next_index);
252 			}
253 		} else {
254 			if (prev_index != next_index)
255 				loadseg(which, next_index);
256 			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
257 			       next_base);
258 		}
259 	} else {
260 		/*
261 		 * The next task is using a real segment.  Loading the selector
262 		 * is sufficient.
263 		 */
264 		loadseg(which, next_index);
265 	}
266 }
267 
268 int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
269 		unsigned long arg, struct task_struct *p, unsigned long tls)
270 {
271 	int err;
272 	struct pt_regs *childregs;
273 	struct fork_frame *fork_frame;
274 	struct inactive_task_frame *frame;
275 	struct task_struct *me = current;
276 
277 	childregs = task_pt_regs(p);
278 	fork_frame = container_of(childregs, struct fork_frame, regs);
279 	frame = &fork_frame->frame;
280 	frame->bp = 0;
281 	frame->ret_addr = (unsigned long) ret_from_fork;
282 	p->thread.sp = (unsigned long) fork_frame;
283 	p->thread.io_bitmap_ptr = NULL;
284 
285 	savesegment(gs, p->thread.gsindex);
286 	p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
287 	savesegment(fs, p->thread.fsindex);
288 	p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
289 	savesegment(es, p->thread.es);
290 	savesegment(ds, p->thread.ds);
291 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
292 
293 	if (unlikely(p->flags & PF_KTHREAD)) {
294 		/* kernel thread */
295 		memset(childregs, 0, sizeof(struct pt_regs));
296 		frame->bx = sp;		/* function */
297 		frame->r12 = arg;
298 		return 0;
299 	}
300 	frame->bx = 0;
301 	*childregs = *current_pt_regs();
302 
303 	childregs->ax = 0;
304 	if (sp)
305 		childregs->sp = sp;
306 
307 	err = -ENOMEM;
308 	if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
309 		p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
310 						  IO_BITMAP_BYTES, GFP_KERNEL);
311 		if (!p->thread.io_bitmap_ptr) {
312 			p->thread.io_bitmap_max = 0;
313 			return -ENOMEM;
314 		}
315 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
316 	}
317 
318 	/*
319 	 * Set a new TLS for the child thread?
320 	 */
321 	if (clone_flags & CLONE_SETTLS) {
322 #ifdef CONFIG_IA32_EMULATION
323 		if (in_ia32_syscall())
324 			err = do_set_thread_area(p, -1,
325 				(struct user_desc __user *)tls, 0);
326 		else
327 #endif
328 			err = do_arch_prctl_64(p, ARCH_SET_FS, tls);
329 		if (err)
330 			goto out;
331 	}
332 	err = 0;
333 out:
334 	if (err && p->thread.io_bitmap_ptr) {
335 		kfree(p->thread.io_bitmap_ptr);
336 		p->thread.io_bitmap_max = 0;
337 	}
338 
339 	return err;
340 }
341 
342 static void
343 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
344 		    unsigned long new_sp,
345 		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
346 {
347 	WARN_ON_ONCE(regs != current_pt_regs());
348 
349 	if (static_cpu_has(X86_BUG_NULL_SEG)) {
350 		/* Loading zero below won't clear the base. */
351 		loadsegment(fs, __USER_DS);
352 		load_gs_index(__USER_DS);
353 	}
354 
355 	loadsegment(fs, 0);
356 	loadsegment(es, _ds);
357 	loadsegment(ds, _ds);
358 	load_gs_index(0);
359 
360 	regs->ip		= new_ip;
361 	regs->sp		= new_sp;
362 	regs->cs		= _cs;
363 	regs->ss		= _ss;
364 	regs->flags		= X86_EFLAGS_IF;
365 	force_iret();
366 }
367 
368 void
369 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
370 {
371 	start_thread_common(regs, new_ip, new_sp,
372 			    __USER_CS, __USER_DS, 0);
373 }
374 
375 #ifdef CONFIG_COMPAT
376 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
377 {
378 	start_thread_common(regs, new_ip, new_sp,
379 			    test_thread_flag(TIF_X32)
380 			    ? __USER_CS : __USER32_CS,
381 			    __USER_DS, __USER_DS);
382 }
383 #endif
384 
385 /*
386  *	switch_to(x,y) should switch tasks from x to y.
387  *
388  * This could still be optimized:
389  * - fold all the options into a flag word and test it with a single test.
390  * - could test fs/gs bitsliced
391  *
392  * Kprobes not supported here. Set the probe on schedule instead.
393  * Function graph tracer not supported too.
394  */
395 __visible __notrace_funcgraph struct task_struct *
396 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
397 {
398 	struct thread_struct *prev = &prev_p->thread;
399 	struct thread_struct *next = &next_p->thread;
400 	struct fpu *prev_fpu = &prev->fpu;
401 	struct fpu *next_fpu = &next->fpu;
402 	int cpu = smp_processor_id();
403 	struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
404 
405 	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
406 		     this_cpu_read(irq_count) != -1);
407 
408 	switch_fpu_prepare(prev_fpu, cpu);
409 
410 	/* We must save %fs and %gs before load_TLS() because
411 	 * %fs and %gs may be cleared by load_TLS().
412 	 *
413 	 * (e.g. xen_load_tls())
414 	 */
415 	save_fsgs(prev_p);
416 
417 	/*
418 	 * Load TLS before restoring any segments so that segment loads
419 	 * reference the correct GDT entries.
420 	 */
421 	load_TLS(next, cpu);
422 
423 	/*
424 	 * Leave lazy mode, flushing any hypercalls made here.  This
425 	 * must be done after loading TLS entries in the GDT but before
426 	 * loading segments that might reference them, and and it must
427 	 * be done before fpu__restore(), so the TS bit is up to
428 	 * date.
429 	 */
430 	arch_end_context_switch(next_p);
431 
432 	/* Switch DS and ES.
433 	 *
434 	 * Reading them only returns the selectors, but writing them (if
435 	 * nonzero) loads the full descriptor from the GDT or LDT.  The
436 	 * LDT for next is loaded in switch_mm, and the GDT is loaded
437 	 * above.
438 	 *
439 	 * We therefore need to write new values to the segment
440 	 * registers on every context switch unless both the new and old
441 	 * values are zero.
442 	 *
443 	 * Note that we don't need to do anything for CS and SS, as
444 	 * those are saved and restored as part of pt_regs.
445 	 */
446 	savesegment(es, prev->es);
447 	if (unlikely(next->es | prev->es))
448 		loadsegment(es, next->es);
449 
450 	savesegment(ds, prev->ds);
451 	if (unlikely(next->ds | prev->ds))
452 		loadsegment(ds, next->ds);
453 
454 	load_seg_legacy(prev->fsindex, prev->fsbase,
455 			next->fsindex, next->fsbase, FS);
456 	load_seg_legacy(prev->gsindex, prev->gsbase,
457 			next->gsindex, next->gsbase, GS);
458 
459 	switch_fpu_finish(next_fpu, cpu);
460 
461 	/*
462 	 * Switch the PDA and FPU contexts.
463 	 */
464 	this_cpu_write(current_task, next_p);
465 
466 	/* Reload sp0. */
467 	update_sp0(next_p);
468 
469 	/*
470 	 * Now maybe reload the debug registers and handle I/O bitmaps
471 	 */
472 	if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
473 		     task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
474 		__switch_to_xtra(prev_p, next_p, tss);
475 
476 #ifdef CONFIG_XEN_PV
477 	/*
478 	 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
479 	 * current_pt_regs()->flags may not match the current task's
480 	 * intended IOPL.  We need to switch it manually.
481 	 */
482 	if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
483 		     prev->iopl != next->iopl))
484 		xen_set_iopl_mask(next->iopl);
485 #endif
486 
487 	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
488 		/*
489 		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
490 		 * does not update the cached descriptor.  As a result, if we
491 		 * do SYSRET while SS is NULL, we'll end up in user mode with
492 		 * SS apparently equal to __USER_DS but actually unusable.
493 		 *
494 		 * The straightforward workaround would be to fix it up just
495 		 * before SYSRET, but that would slow down the system call
496 		 * fast paths.  Instead, we ensure that SS is never NULL in
497 		 * system call context.  We do this by replacing NULL SS
498 		 * selectors at every context switch.  SYSCALL sets up a valid
499 		 * SS, so the only way to get NULL is to re-enter the kernel
500 		 * from CPL 3 through an interrupt.  Since that can't happen
501 		 * in the same task as a running syscall, we are guaranteed to
502 		 * context switch between every interrupt vector entry and a
503 		 * subsequent SYSRET.
504 		 *
505 		 * We read SS first because SS reads are much faster than
506 		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
507 		 * it previously had a different non-NULL value.
508 		 */
509 		unsigned short ss_sel;
510 		savesegment(ss, ss_sel);
511 		if (ss_sel != __KERNEL_DS)
512 			loadsegment(ss, __KERNEL_DS);
513 	}
514 
515 	/* Load the Intel cache allocation PQR MSR. */
516 	intel_rdt_sched_in();
517 
518 	return prev_p;
519 }
520 
521 void set_personality_64bit(void)
522 {
523 	/* inherit personality from parent */
524 
525 	/* Make sure to be in 64bit mode */
526 	clear_thread_flag(TIF_IA32);
527 	clear_thread_flag(TIF_ADDR32);
528 	clear_thread_flag(TIF_X32);
529 	/* Pretend that this comes from a 64bit execve */
530 	task_pt_regs(current)->orig_ax = __NR_execve;
531 
532 	/* Ensure the corresponding mm is not marked. */
533 	if (current->mm)
534 		current->mm->context.ia32_compat = 0;
535 
536 	/* TBD: overwrites user setup. Should have two bits.
537 	   But 64bit processes have always behaved this way,
538 	   so it's not too bad. The main problem is just that
539 	   32bit childs are affected again. */
540 	current->personality &= ~READ_IMPLIES_EXEC;
541 }
542 
543 static void __set_personality_x32(void)
544 {
545 #ifdef CONFIG_X86_X32
546 	clear_thread_flag(TIF_IA32);
547 	set_thread_flag(TIF_X32);
548 	if (current->mm)
549 		current->mm->context.ia32_compat = TIF_X32;
550 	current->personality &= ~READ_IMPLIES_EXEC;
551 	/*
552 	 * in_compat_syscall() uses the presence of the x32 syscall bit
553 	 * flag to determine compat status.  The x86 mmap() code relies on
554 	 * the syscall bitness so set x32 syscall bit right here to make
555 	 * in_compat_syscall() work during exec().
556 	 *
557 	 * Pretend to come from a x32 execve.
558 	 */
559 	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
560 	current->thread.status &= ~TS_COMPAT;
561 #endif
562 }
563 
564 static void __set_personality_ia32(void)
565 {
566 #ifdef CONFIG_IA32_EMULATION
567 	set_thread_flag(TIF_IA32);
568 	clear_thread_flag(TIF_X32);
569 	if (current->mm)
570 		current->mm->context.ia32_compat = TIF_IA32;
571 	current->personality |= force_personality32;
572 	/* Prepare the first "return" to user space */
573 	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
574 	current->thread.status |= TS_COMPAT;
575 #endif
576 }
577 
578 void set_personality_ia32(bool x32)
579 {
580 	/* Make sure to be in 32bit mode */
581 	set_thread_flag(TIF_ADDR32);
582 
583 	if (x32)
584 		__set_personality_x32();
585 	else
586 		__set_personality_ia32();
587 }
588 EXPORT_SYMBOL_GPL(set_personality_ia32);
589 
590 #ifdef CONFIG_CHECKPOINT_RESTORE
591 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
592 {
593 	int ret;
594 
595 	ret = map_vdso_once(image, addr);
596 	if (ret)
597 		return ret;
598 
599 	return (long)image->size;
600 }
601 #endif
602 
603 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
604 {
605 	int ret = 0;
606 	int doit = task == current;
607 	int cpu;
608 
609 	switch (option) {
610 	case ARCH_SET_GS:
611 		if (arg2 >= TASK_SIZE_MAX)
612 			return -EPERM;
613 		cpu = get_cpu();
614 		task->thread.gsindex = 0;
615 		task->thread.gsbase = arg2;
616 		if (doit) {
617 			load_gs_index(0);
618 			ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, arg2);
619 		}
620 		put_cpu();
621 		break;
622 	case ARCH_SET_FS:
623 		/* Not strictly needed for fs, but do it for symmetry
624 		   with gs */
625 		if (arg2 >= TASK_SIZE_MAX)
626 			return -EPERM;
627 		cpu = get_cpu();
628 		task->thread.fsindex = 0;
629 		task->thread.fsbase = arg2;
630 		if (doit) {
631 			/* set the selector to 0 to not confuse __switch_to */
632 			loadsegment(fs, 0);
633 			ret = wrmsrl_safe(MSR_FS_BASE, arg2);
634 		}
635 		put_cpu();
636 		break;
637 	case ARCH_GET_FS: {
638 		unsigned long base;
639 
640 		if (doit)
641 			rdmsrl(MSR_FS_BASE, base);
642 		else
643 			base = task->thread.fsbase;
644 		ret = put_user(base, (unsigned long __user *)arg2);
645 		break;
646 	}
647 	case ARCH_GET_GS: {
648 		unsigned long base;
649 
650 		if (doit)
651 			rdmsrl(MSR_KERNEL_GS_BASE, base);
652 		else
653 			base = task->thread.gsbase;
654 		ret = put_user(base, (unsigned long __user *)arg2);
655 		break;
656 	}
657 
658 #ifdef CONFIG_CHECKPOINT_RESTORE
659 # ifdef CONFIG_X86_X32_ABI
660 	case ARCH_MAP_VDSO_X32:
661 		return prctl_map_vdso(&vdso_image_x32, arg2);
662 # endif
663 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
664 	case ARCH_MAP_VDSO_32:
665 		return prctl_map_vdso(&vdso_image_32, arg2);
666 # endif
667 	case ARCH_MAP_VDSO_64:
668 		return prctl_map_vdso(&vdso_image_64, arg2);
669 #endif
670 
671 	default:
672 		ret = -EINVAL;
673 		break;
674 	}
675 
676 	return ret;
677 }
678 
679 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
680 {
681 	long ret;
682 
683 	ret = do_arch_prctl_64(current, option, arg2);
684 	if (ret == -EINVAL)
685 		ret = do_arch_prctl_common(current, option, arg2);
686 
687 	return ret;
688 }
689 
690 #ifdef CONFIG_IA32_EMULATION
691 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
692 {
693 	return do_arch_prctl_common(current, option, arg2);
694 }
695 #endif
696 
697 unsigned long KSTK_ESP(struct task_struct *task)
698 {
699 	return task_pt_regs(task)->sp;
700 }
701