1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Pentium III FXSR, SSE support 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 * 8 * X86-64 port 9 * Andi Kleen. 10 * 11 * CPU hotplug support - ashok.raj@intel.com 12 */ 13 14 /* 15 * This file handles the architecture-dependent parts of process handling.. 16 */ 17 18 #include <linux/cpu.h> 19 #include <linux/errno.h> 20 #include <linux/sched.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/task_stack.h> 23 #include <linux/fs.h> 24 #include <linux/kernel.h> 25 #include <linux/mm.h> 26 #include <linux/elfcore.h> 27 #include <linux/smp.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/interrupt.h> 31 #include <linux/delay.h> 32 #include <linux/export.h> 33 #include <linux/ptrace.h> 34 #include <linux/notifier.h> 35 #include <linux/kprobes.h> 36 #include <linux/kdebug.h> 37 #include <linux/prctl.h> 38 #include <linux/uaccess.h> 39 #include <linux/io.h> 40 #include <linux/ftrace.h> 41 #include <linux/syscalls.h> 42 43 #include <asm/processor.h> 44 #include <asm/fpu/internal.h> 45 #include <asm/mmu_context.h> 46 #include <asm/prctl.h> 47 #include <asm/desc.h> 48 #include <asm/proto.h> 49 #include <asm/ia32.h> 50 #include <asm/debugreg.h> 51 #include <asm/switch_to.h> 52 #include <asm/xen/hypervisor.h> 53 #include <asm/vdso.h> 54 #include <asm/resctrl.h> 55 #include <asm/unistd.h> 56 #include <asm/fsgsbase.h> 57 #ifdef CONFIG_IA32_EMULATION 58 /* Not included via unistd.h */ 59 #include <asm/unistd_32_ia32.h> 60 #endif 61 62 #include "process.h" 63 64 /* Prints also some state that isn't saved in the pt_regs */ 65 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode, 66 const char *log_lvl) 67 { 68 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs; 69 unsigned long d0, d1, d2, d3, d6, d7; 70 unsigned int fsindex, gsindex; 71 unsigned int ds, es; 72 73 show_iret_regs(regs, log_lvl); 74 75 if (regs->orig_ax != -1) 76 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax); 77 else 78 pr_cont("\n"); 79 80 printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n", 81 log_lvl, regs->ax, regs->bx, regs->cx); 82 printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n", 83 log_lvl, regs->dx, regs->si, regs->di); 84 printk("%sRBP: %016lx R08: %016lx R09: %016lx\n", 85 log_lvl, regs->bp, regs->r8, regs->r9); 86 printk("%sR10: %016lx R11: %016lx R12: %016lx\n", 87 log_lvl, regs->r10, regs->r11, regs->r12); 88 printk("%sR13: %016lx R14: %016lx R15: %016lx\n", 89 log_lvl, regs->r13, regs->r14, regs->r15); 90 91 if (mode == SHOW_REGS_SHORT) 92 return; 93 94 if (mode == SHOW_REGS_USER) { 95 rdmsrl(MSR_FS_BASE, fs); 96 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); 97 printk("%sFS: %016lx GS: %016lx\n", 98 log_lvl, fs, shadowgs); 99 return; 100 } 101 102 asm("movl %%ds,%0" : "=r" (ds)); 103 asm("movl %%es,%0" : "=r" (es)); 104 asm("movl %%fs,%0" : "=r" (fsindex)); 105 asm("movl %%gs,%0" : "=r" (gsindex)); 106 107 rdmsrl(MSR_FS_BASE, fs); 108 rdmsrl(MSR_GS_BASE, gs); 109 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); 110 111 cr0 = read_cr0(); 112 cr2 = read_cr2(); 113 cr3 = __read_cr3(); 114 cr4 = __read_cr4(); 115 116 printk("%sFS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n", 117 log_lvl, fs, fsindex, gs, gsindex, shadowgs); 118 printk("%sCS: %04lx DS: %04x ES: %04x CR0: %016lx\n", 119 log_lvl, regs->cs, ds, es, cr0); 120 printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n", 121 log_lvl, cr2, cr3, cr4); 122 123 get_debugreg(d0, 0); 124 get_debugreg(d1, 1); 125 get_debugreg(d2, 2); 126 get_debugreg(d3, 3); 127 get_debugreg(d6, 6); 128 get_debugreg(d7, 7); 129 130 /* Only print out debug registers if they are in their non-default state. */ 131 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) && 132 (d6 == DR6_RESERVED) && (d7 == 0x400))) { 133 printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n", 134 log_lvl, d0, d1, d2); 135 printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n", 136 log_lvl, d3, d6, d7); 137 } 138 139 if (boot_cpu_has(X86_FEATURE_OSPKE)) 140 printk("%sPKRU: %08x\n", log_lvl, read_pkru()); 141 } 142 143 void release_thread(struct task_struct *dead_task) 144 { 145 WARN_ON(dead_task->mm); 146 } 147 148 enum which_selector { 149 FS, 150 GS 151 }; 152 153 /* 154 * Out of line to be protected from kprobes and tracing. If this would be 155 * traced or probed than any access to a per CPU variable happens with 156 * the wrong GS. 157 * 158 * It is not used on Xen paravirt. When paravirt support is needed, it 159 * needs to be renamed with native_ prefix. 160 */ 161 static noinstr unsigned long __rdgsbase_inactive(void) 162 { 163 unsigned long gsbase; 164 165 lockdep_assert_irqs_disabled(); 166 167 if (!static_cpu_has(X86_FEATURE_XENPV)) { 168 native_swapgs(); 169 gsbase = rdgsbase(); 170 native_swapgs(); 171 } else { 172 instrumentation_begin(); 173 rdmsrl(MSR_KERNEL_GS_BASE, gsbase); 174 instrumentation_end(); 175 } 176 177 return gsbase; 178 } 179 180 /* 181 * Out of line to be protected from kprobes and tracing. If this would be 182 * traced or probed than any access to a per CPU variable happens with 183 * the wrong GS. 184 * 185 * It is not used on Xen paravirt. When paravirt support is needed, it 186 * needs to be renamed with native_ prefix. 187 */ 188 static noinstr void __wrgsbase_inactive(unsigned long gsbase) 189 { 190 lockdep_assert_irqs_disabled(); 191 192 if (!static_cpu_has(X86_FEATURE_XENPV)) { 193 native_swapgs(); 194 wrgsbase(gsbase); 195 native_swapgs(); 196 } else { 197 instrumentation_begin(); 198 wrmsrl(MSR_KERNEL_GS_BASE, gsbase); 199 instrumentation_end(); 200 } 201 } 202 203 /* 204 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are 205 * not available. The goal is to be reasonably fast on non-FSGSBASE systems. 206 * It's forcibly inlined because it'll generate better code and this function 207 * is hot. 208 */ 209 static __always_inline void save_base_legacy(struct task_struct *prev_p, 210 unsigned short selector, 211 enum which_selector which) 212 { 213 if (likely(selector == 0)) { 214 /* 215 * On Intel (without X86_BUG_NULL_SEG), the segment base could 216 * be the pre-existing saved base or it could be zero. On AMD 217 * (with X86_BUG_NULL_SEG), the segment base could be almost 218 * anything. 219 * 220 * This branch is very hot (it's hit twice on almost every 221 * context switch between 64-bit programs), and avoiding 222 * the RDMSR helps a lot, so we just assume that whatever 223 * value is already saved is correct. This matches historical 224 * Linux behavior, so it won't break existing applications. 225 * 226 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we 227 * report that the base is zero, it needs to actually be zero: 228 * see the corresponding logic in load_seg_legacy. 229 */ 230 } else { 231 /* 232 * If the selector is 1, 2, or 3, then the base is zero on 233 * !X86_BUG_NULL_SEG CPUs and could be anything on 234 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux 235 * has never attempted to preserve the base across context 236 * switches. 237 * 238 * If selector > 3, then it refers to a real segment, and 239 * saving the base isn't necessary. 240 */ 241 if (which == FS) 242 prev_p->thread.fsbase = 0; 243 else 244 prev_p->thread.gsbase = 0; 245 } 246 } 247 248 static __always_inline void save_fsgs(struct task_struct *task) 249 { 250 savesegment(fs, task->thread.fsindex); 251 savesegment(gs, task->thread.gsindex); 252 if (static_cpu_has(X86_FEATURE_FSGSBASE)) { 253 /* 254 * If FSGSBASE is enabled, we can't make any useful guesses 255 * about the base, and user code expects us to save the current 256 * value. Fortunately, reading the base directly is efficient. 257 */ 258 task->thread.fsbase = rdfsbase(); 259 task->thread.gsbase = __rdgsbase_inactive(); 260 } else { 261 save_base_legacy(task, task->thread.fsindex, FS); 262 save_base_legacy(task, task->thread.gsindex, GS); 263 } 264 } 265 266 /* 267 * While a process is running,current->thread.fsbase and current->thread.gsbase 268 * may not match the corresponding CPU registers (see save_base_legacy()). 269 */ 270 void current_save_fsgs(void) 271 { 272 unsigned long flags; 273 274 /* Interrupts need to be off for FSGSBASE */ 275 local_irq_save(flags); 276 save_fsgs(current); 277 local_irq_restore(flags); 278 } 279 #if IS_ENABLED(CONFIG_KVM) 280 EXPORT_SYMBOL_GPL(current_save_fsgs); 281 #endif 282 283 static __always_inline void loadseg(enum which_selector which, 284 unsigned short sel) 285 { 286 if (which == FS) 287 loadsegment(fs, sel); 288 else 289 load_gs_index(sel); 290 } 291 292 static __always_inline void load_seg_legacy(unsigned short prev_index, 293 unsigned long prev_base, 294 unsigned short next_index, 295 unsigned long next_base, 296 enum which_selector which) 297 { 298 if (likely(next_index <= 3)) { 299 /* 300 * The next task is using 64-bit TLS, is not using this 301 * segment at all, or is having fun with arcane CPU features. 302 */ 303 if (next_base == 0) { 304 /* 305 * Nasty case: on AMD CPUs, we need to forcibly zero 306 * the base. 307 */ 308 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) { 309 loadseg(which, __USER_DS); 310 loadseg(which, next_index); 311 } else { 312 /* 313 * We could try to exhaustively detect cases 314 * under which we can skip the segment load, 315 * but there's really only one case that matters 316 * for performance: if both the previous and 317 * next states are fully zeroed, we can skip 318 * the load. 319 * 320 * (This assumes that prev_base == 0 has no 321 * false positives. This is the case on 322 * Intel-style CPUs.) 323 */ 324 if (likely(prev_index | next_index | prev_base)) 325 loadseg(which, next_index); 326 } 327 } else { 328 if (prev_index != next_index) 329 loadseg(which, next_index); 330 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE, 331 next_base); 332 } 333 } else { 334 /* 335 * The next task is using a real segment. Loading the selector 336 * is sufficient. 337 */ 338 loadseg(which, next_index); 339 } 340 } 341 342 static __always_inline void x86_fsgsbase_load(struct thread_struct *prev, 343 struct thread_struct *next) 344 { 345 if (static_cpu_has(X86_FEATURE_FSGSBASE)) { 346 /* Update the FS and GS selectors if they could have changed. */ 347 if (unlikely(prev->fsindex || next->fsindex)) 348 loadseg(FS, next->fsindex); 349 if (unlikely(prev->gsindex || next->gsindex)) 350 loadseg(GS, next->gsindex); 351 352 /* Update the bases. */ 353 wrfsbase(next->fsbase); 354 __wrgsbase_inactive(next->gsbase); 355 } else { 356 load_seg_legacy(prev->fsindex, prev->fsbase, 357 next->fsindex, next->fsbase, FS); 358 load_seg_legacy(prev->gsindex, prev->gsbase, 359 next->gsindex, next->gsbase, GS); 360 } 361 } 362 363 unsigned long x86_fsgsbase_read_task(struct task_struct *task, 364 unsigned short selector) 365 { 366 unsigned short idx = selector >> 3; 367 unsigned long base; 368 369 if (likely((selector & SEGMENT_TI_MASK) == 0)) { 370 if (unlikely(idx >= GDT_ENTRIES)) 371 return 0; 372 373 /* 374 * There are no user segments in the GDT with nonzero bases 375 * other than the TLS segments. 376 */ 377 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) 378 return 0; 379 380 idx -= GDT_ENTRY_TLS_MIN; 381 base = get_desc_base(&task->thread.tls_array[idx]); 382 } else { 383 #ifdef CONFIG_MODIFY_LDT_SYSCALL 384 struct ldt_struct *ldt; 385 386 /* 387 * If performance here mattered, we could protect the LDT 388 * with RCU. This is a slow path, though, so we can just 389 * take the mutex. 390 */ 391 mutex_lock(&task->mm->context.lock); 392 ldt = task->mm->context.ldt; 393 if (unlikely(!ldt || idx >= ldt->nr_entries)) 394 base = 0; 395 else 396 base = get_desc_base(ldt->entries + idx); 397 mutex_unlock(&task->mm->context.lock); 398 #else 399 base = 0; 400 #endif 401 } 402 403 return base; 404 } 405 406 unsigned long x86_gsbase_read_cpu_inactive(void) 407 { 408 unsigned long gsbase; 409 410 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) { 411 unsigned long flags; 412 413 local_irq_save(flags); 414 gsbase = __rdgsbase_inactive(); 415 local_irq_restore(flags); 416 } else { 417 rdmsrl(MSR_KERNEL_GS_BASE, gsbase); 418 } 419 420 return gsbase; 421 } 422 423 void x86_gsbase_write_cpu_inactive(unsigned long gsbase) 424 { 425 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) { 426 unsigned long flags; 427 428 local_irq_save(flags); 429 __wrgsbase_inactive(gsbase); 430 local_irq_restore(flags); 431 } else { 432 wrmsrl(MSR_KERNEL_GS_BASE, gsbase); 433 } 434 } 435 436 unsigned long x86_fsbase_read_task(struct task_struct *task) 437 { 438 unsigned long fsbase; 439 440 if (task == current) 441 fsbase = x86_fsbase_read_cpu(); 442 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) || 443 (task->thread.fsindex == 0)) 444 fsbase = task->thread.fsbase; 445 else 446 fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex); 447 448 return fsbase; 449 } 450 451 unsigned long x86_gsbase_read_task(struct task_struct *task) 452 { 453 unsigned long gsbase; 454 455 if (task == current) 456 gsbase = x86_gsbase_read_cpu_inactive(); 457 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) || 458 (task->thread.gsindex == 0)) 459 gsbase = task->thread.gsbase; 460 else 461 gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex); 462 463 return gsbase; 464 } 465 466 void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase) 467 { 468 WARN_ON_ONCE(task == current); 469 470 task->thread.fsbase = fsbase; 471 } 472 473 void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase) 474 { 475 WARN_ON_ONCE(task == current); 476 477 task->thread.gsbase = gsbase; 478 } 479 480 static void 481 start_thread_common(struct pt_regs *regs, unsigned long new_ip, 482 unsigned long new_sp, 483 unsigned int _cs, unsigned int _ss, unsigned int _ds) 484 { 485 WARN_ON_ONCE(regs != current_pt_regs()); 486 487 if (static_cpu_has(X86_BUG_NULL_SEG)) { 488 /* Loading zero below won't clear the base. */ 489 loadsegment(fs, __USER_DS); 490 load_gs_index(__USER_DS); 491 } 492 493 loadsegment(fs, 0); 494 loadsegment(es, _ds); 495 loadsegment(ds, _ds); 496 load_gs_index(0); 497 498 regs->ip = new_ip; 499 regs->sp = new_sp; 500 regs->cs = _cs; 501 regs->ss = _ss; 502 regs->flags = X86_EFLAGS_IF; 503 } 504 505 void 506 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) 507 { 508 start_thread_common(regs, new_ip, new_sp, 509 __USER_CS, __USER_DS, 0); 510 } 511 EXPORT_SYMBOL_GPL(start_thread); 512 513 #ifdef CONFIG_COMPAT 514 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp) 515 { 516 start_thread_common(regs, new_ip, new_sp, 517 test_thread_flag(TIF_X32) 518 ? __USER_CS : __USER32_CS, 519 __USER_DS, __USER_DS); 520 } 521 #endif 522 523 /* 524 * switch_to(x,y) should switch tasks from x to y. 525 * 526 * This could still be optimized: 527 * - fold all the options into a flag word and test it with a single test. 528 * - could test fs/gs bitsliced 529 * 530 * Kprobes not supported here. Set the probe on schedule instead. 531 * Function graph tracer not supported too. 532 */ 533 __visible __notrace_funcgraph struct task_struct * 534 __switch_to(struct task_struct *prev_p, struct task_struct *next_p) 535 { 536 struct thread_struct *prev = &prev_p->thread; 537 struct thread_struct *next = &next_p->thread; 538 struct fpu *prev_fpu = &prev->fpu; 539 struct fpu *next_fpu = &next->fpu; 540 int cpu = smp_processor_id(); 541 542 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) && 543 this_cpu_read(irq_count) != -1); 544 545 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) 546 switch_fpu_prepare(prev_fpu, cpu); 547 548 /* We must save %fs and %gs before load_TLS() because 549 * %fs and %gs may be cleared by load_TLS(). 550 * 551 * (e.g. xen_load_tls()) 552 */ 553 save_fsgs(prev_p); 554 555 /* 556 * Load TLS before restoring any segments so that segment loads 557 * reference the correct GDT entries. 558 */ 559 load_TLS(next, cpu); 560 561 /* 562 * Leave lazy mode, flushing any hypercalls made here. This 563 * must be done after loading TLS entries in the GDT but before 564 * loading segments that might reference them. 565 */ 566 arch_end_context_switch(next_p); 567 568 /* Switch DS and ES. 569 * 570 * Reading them only returns the selectors, but writing them (if 571 * nonzero) loads the full descriptor from the GDT or LDT. The 572 * LDT for next is loaded in switch_mm, and the GDT is loaded 573 * above. 574 * 575 * We therefore need to write new values to the segment 576 * registers on every context switch unless both the new and old 577 * values are zero. 578 * 579 * Note that we don't need to do anything for CS and SS, as 580 * those are saved and restored as part of pt_regs. 581 */ 582 savesegment(es, prev->es); 583 if (unlikely(next->es | prev->es)) 584 loadsegment(es, next->es); 585 586 savesegment(ds, prev->ds); 587 if (unlikely(next->ds | prev->ds)) 588 loadsegment(ds, next->ds); 589 590 x86_fsgsbase_load(prev, next); 591 592 /* 593 * Switch the PDA and FPU contexts. 594 */ 595 this_cpu_write(current_task, next_p); 596 this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p)); 597 598 switch_fpu_finish(next_fpu); 599 600 /* Reload sp0. */ 601 update_task_stack(next_p); 602 603 switch_to_extra(prev_p, next_p); 604 605 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) { 606 /* 607 * AMD CPUs have a misfeature: SYSRET sets the SS selector but 608 * does not update the cached descriptor. As a result, if we 609 * do SYSRET while SS is NULL, we'll end up in user mode with 610 * SS apparently equal to __USER_DS but actually unusable. 611 * 612 * The straightforward workaround would be to fix it up just 613 * before SYSRET, but that would slow down the system call 614 * fast paths. Instead, we ensure that SS is never NULL in 615 * system call context. We do this by replacing NULL SS 616 * selectors at every context switch. SYSCALL sets up a valid 617 * SS, so the only way to get NULL is to re-enter the kernel 618 * from CPL 3 through an interrupt. Since that can't happen 619 * in the same task as a running syscall, we are guaranteed to 620 * context switch between every interrupt vector entry and a 621 * subsequent SYSRET. 622 * 623 * We read SS first because SS reads are much faster than 624 * writes. Out of caution, we force SS to __KERNEL_DS even if 625 * it previously had a different non-NULL value. 626 */ 627 unsigned short ss_sel; 628 savesegment(ss, ss_sel); 629 if (ss_sel != __KERNEL_DS) 630 loadsegment(ss, __KERNEL_DS); 631 } 632 633 /* Load the Intel cache allocation PQR MSR. */ 634 resctrl_sched_in(); 635 636 return prev_p; 637 } 638 639 void set_personality_64bit(void) 640 { 641 /* inherit personality from parent */ 642 643 /* Make sure to be in 64bit mode */ 644 clear_thread_flag(TIF_IA32); 645 clear_thread_flag(TIF_ADDR32); 646 clear_thread_flag(TIF_X32); 647 /* Pretend that this comes from a 64bit execve */ 648 task_pt_regs(current)->orig_ax = __NR_execve; 649 current_thread_info()->status &= ~TS_COMPAT; 650 651 /* Ensure the corresponding mm is not marked. */ 652 if (current->mm) 653 current->mm->context.ia32_compat = 0; 654 655 /* TBD: overwrites user setup. Should have two bits. 656 But 64bit processes have always behaved this way, 657 so it's not too bad. The main problem is just that 658 32bit children are affected again. */ 659 current->personality &= ~READ_IMPLIES_EXEC; 660 } 661 662 static void __set_personality_x32(void) 663 { 664 #ifdef CONFIG_X86_X32 665 clear_thread_flag(TIF_IA32); 666 set_thread_flag(TIF_X32); 667 if (current->mm) 668 current->mm->context.ia32_compat = TIF_X32; 669 current->personality &= ~READ_IMPLIES_EXEC; 670 /* 671 * in_32bit_syscall() uses the presence of the x32 syscall bit 672 * flag to determine compat status. The x86 mmap() code relies on 673 * the syscall bitness so set x32 syscall bit right here to make 674 * in_32bit_syscall() work during exec(). 675 * 676 * Pretend to come from a x32 execve. 677 */ 678 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT; 679 current_thread_info()->status &= ~TS_COMPAT; 680 #endif 681 } 682 683 static void __set_personality_ia32(void) 684 { 685 #ifdef CONFIG_IA32_EMULATION 686 set_thread_flag(TIF_IA32); 687 clear_thread_flag(TIF_X32); 688 if (current->mm) 689 current->mm->context.ia32_compat = TIF_IA32; 690 current->personality |= force_personality32; 691 /* Prepare the first "return" to user space */ 692 task_pt_regs(current)->orig_ax = __NR_ia32_execve; 693 current_thread_info()->status |= TS_COMPAT; 694 #endif 695 } 696 697 void set_personality_ia32(bool x32) 698 { 699 /* Make sure to be in 32bit mode */ 700 set_thread_flag(TIF_ADDR32); 701 702 if (x32) 703 __set_personality_x32(); 704 else 705 __set_personality_ia32(); 706 } 707 EXPORT_SYMBOL_GPL(set_personality_ia32); 708 709 #ifdef CONFIG_CHECKPOINT_RESTORE 710 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr) 711 { 712 int ret; 713 714 ret = map_vdso_once(image, addr); 715 if (ret) 716 return ret; 717 718 return (long)image->size; 719 } 720 #endif 721 722 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2) 723 { 724 int ret = 0; 725 726 switch (option) { 727 case ARCH_SET_GS: { 728 if (unlikely(arg2 >= TASK_SIZE_MAX)) 729 return -EPERM; 730 731 preempt_disable(); 732 /* 733 * ARCH_SET_GS has always overwritten the index 734 * and the base. Zero is the most sensible value 735 * to put in the index, and is the only value that 736 * makes any sense if FSGSBASE is unavailable. 737 */ 738 if (task == current) { 739 loadseg(GS, 0); 740 x86_gsbase_write_cpu_inactive(arg2); 741 742 /* 743 * On non-FSGSBASE systems, save_base_legacy() expects 744 * that we also fill in thread.gsbase. 745 */ 746 task->thread.gsbase = arg2; 747 748 } else { 749 task->thread.gsindex = 0; 750 x86_gsbase_write_task(task, arg2); 751 } 752 preempt_enable(); 753 break; 754 } 755 case ARCH_SET_FS: { 756 /* 757 * Not strictly needed for %fs, but do it for symmetry 758 * with %gs 759 */ 760 if (unlikely(arg2 >= TASK_SIZE_MAX)) 761 return -EPERM; 762 763 preempt_disable(); 764 /* 765 * Set the selector to 0 for the same reason 766 * as %gs above. 767 */ 768 if (task == current) { 769 loadseg(FS, 0); 770 x86_fsbase_write_cpu(arg2); 771 772 /* 773 * On non-FSGSBASE systems, save_base_legacy() expects 774 * that we also fill in thread.fsbase. 775 */ 776 task->thread.fsbase = arg2; 777 } else { 778 task->thread.fsindex = 0; 779 x86_fsbase_write_task(task, arg2); 780 } 781 preempt_enable(); 782 break; 783 } 784 case ARCH_GET_FS: { 785 unsigned long base = x86_fsbase_read_task(task); 786 787 ret = put_user(base, (unsigned long __user *)arg2); 788 break; 789 } 790 case ARCH_GET_GS: { 791 unsigned long base = x86_gsbase_read_task(task); 792 793 ret = put_user(base, (unsigned long __user *)arg2); 794 break; 795 } 796 797 #ifdef CONFIG_CHECKPOINT_RESTORE 798 # ifdef CONFIG_X86_X32_ABI 799 case ARCH_MAP_VDSO_X32: 800 return prctl_map_vdso(&vdso_image_x32, arg2); 801 # endif 802 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION 803 case ARCH_MAP_VDSO_32: 804 return prctl_map_vdso(&vdso_image_32, arg2); 805 # endif 806 case ARCH_MAP_VDSO_64: 807 return prctl_map_vdso(&vdso_image_64, arg2); 808 #endif 809 810 default: 811 ret = -EINVAL; 812 break; 813 } 814 815 return ret; 816 } 817 818 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) 819 { 820 long ret; 821 822 ret = do_arch_prctl_64(current, option, arg2); 823 if (ret == -EINVAL) 824 ret = do_arch_prctl_common(current, option, arg2); 825 826 return ret; 827 } 828 829 #ifdef CONFIG_IA32_EMULATION 830 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) 831 { 832 return do_arch_prctl_common(current, option, arg2); 833 } 834 #endif 835 836 unsigned long KSTK_ESP(struct task_struct *task) 837 { 838 return task_pt_regs(task)->sp; 839 } 840