xref: /openbmc/linux/arch/x86/kernel/process_64.c (revision 165f2d28)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  *
8  *  X86-64 port
9  *	Andi Kleen.
10  *
11  *	CPU hotplug support - ashok.raj@intel.com
12  */
13 
14 /*
15  * This file handles the architecture-dependent parts of process handling..
16  */
17 
18 #include <linux/cpu.h>
19 #include <linux/errno.h>
20 #include <linux/sched.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/fs.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/elfcore.h>
27 #include <linux/smp.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/export.h>
33 #include <linux/ptrace.h>
34 #include <linux/notifier.h>
35 #include <linux/kprobes.h>
36 #include <linux/kdebug.h>
37 #include <linux/prctl.h>
38 #include <linux/uaccess.h>
39 #include <linux/io.h>
40 #include <linux/ftrace.h>
41 #include <linux/syscalls.h>
42 
43 #include <asm/pgtable.h>
44 #include <asm/processor.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/mmu_context.h>
47 #include <asm/prctl.h>
48 #include <asm/desc.h>
49 #include <asm/proto.h>
50 #include <asm/ia32.h>
51 #include <asm/debugreg.h>
52 #include <asm/switch_to.h>
53 #include <asm/xen/hypervisor.h>
54 #include <asm/vdso.h>
55 #include <asm/resctrl_sched.h>
56 #include <asm/unistd.h>
57 #include <asm/fsgsbase.h>
58 #ifdef CONFIG_IA32_EMULATION
59 /* Not included via unistd.h */
60 #include <asm/unistd_32_ia32.h>
61 #endif
62 
63 #include "process.h"
64 
65 /* Prints also some state that isn't saved in the pt_regs */
66 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode)
67 {
68 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
69 	unsigned long d0, d1, d2, d3, d6, d7;
70 	unsigned int fsindex, gsindex;
71 	unsigned int ds, es;
72 
73 	show_iret_regs(regs);
74 
75 	if (regs->orig_ax != -1)
76 		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
77 	else
78 		pr_cont("\n");
79 
80 	printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
81 	       regs->ax, regs->bx, regs->cx);
82 	printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
83 	       regs->dx, regs->si, regs->di);
84 	printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
85 	       regs->bp, regs->r8, regs->r9);
86 	printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
87 	       regs->r10, regs->r11, regs->r12);
88 	printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
89 	       regs->r13, regs->r14, regs->r15);
90 
91 	if (mode == SHOW_REGS_SHORT)
92 		return;
93 
94 	if (mode == SHOW_REGS_USER) {
95 		rdmsrl(MSR_FS_BASE, fs);
96 		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
97 		printk(KERN_DEFAULT "FS:  %016lx GS:  %016lx\n",
98 		       fs, shadowgs);
99 		return;
100 	}
101 
102 	asm("movl %%ds,%0" : "=r" (ds));
103 	asm("movl %%es,%0" : "=r" (es));
104 	asm("movl %%fs,%0" : "=r" (fsindex));
105 	asm("movl %%gs,%0" : "=r" (gsindex));
106 
107 	rdmsrl(MSR_FS_BASE, fs);
108 	rdmsrl(MSR_GS_BASE, gs);
109 	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
110 
111 	cr0 = read_cr0();
112 	cr2 = read_cr2();
113 	cr3 = __read_cr3();
114 	cr4 = __read_cr4();
115 
116 	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
117 	       fs, fsindex, gs, gsindex, shadowgs);
118 	printk(KERN_DEFAULT "CS:  %04lx DS: %04x ES: %04x CR0: %016lx\n", regs->cs, ds,
119 			es, cr0);
120 	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
121 			cr4);
122 
123 	get_debugreg(d0, 0);
124 	get_debugreg(d1, 1);
125 	get_debugreg(d2, 2);
126 	get_debugreg(d3, 3);
127 	get_debugreg(d6, 6);
128 	get_debugreg(d7, 7);
129 
130 	/* Only print out debug registers if they are in their non-default state. */
131 	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
132 	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
133 		printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
134 		       d0, d1, d2);
135 		printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
136 		       d3, d6, d7);
137 	}
138 
139 	if (boot_cpu_has(X86_FEATURE_OSPKE))
140 		printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
141 }
142 
143 void release_thread(struct task_struct *dead_task)
144 {
145 	WARN_ON(dead_task->mm);
146 }
147 
148 enum which_selector {
149 	FS,
150 	GS
151 };
152 
153 /*
154  * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
155  * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
156  * It's forcibly inlined because it'll generate better code and this function
157  * is hot.
158  */
159 static __always_inline void save_base_legacy(struct task_struct *prev_p,
160 					     unsigned short selector,
161 					     enum which_selector which)
162 {
163 	if (likely(selector == 0)) {
164 		/*
165 		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
166 		 * be the pre-existing saved base or it could be zero.  On AMD
167 		 * (with X86_BUG_NULL_SEG), the segment base could be almost
168 		 * anything.
169 		 *
170 		 * This branch is very hot (it's hit twice on almost every
171 		 * context switch between 64-bit programs), and avoiding
172 		 * the RDMSR helps a lot, so we just assume that whatever
173 		 * value is already saved is correct.  This matches historical
174 		 * Linux behavior, so it won't break existing applications.
175 		 *
176 		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
177 		 * report that the base is zero, it needs to actually be zero:
178 		 * see the corresponding logic in load_seg_legacy.
179 		 */
180 	} else {
181 		/*
182 		 * If the selector is 1, 2, or 3, then the base is zero on
183 		 * !X86_BUG_NULL_SEG CPUs and could be anything on
184 		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
185 		 * has never attempted to preserve the base across context
186 		 * switches.
187 		 *
188 		 * If selector > 3, then it refers to a real segment, and
189 		 * saving the base isn't necessary.
190 		 */
191 		if (which == FS)
192 			prev_p->thread.fsbase = 0;
193 		else
194 			prev_p->thread.gsbase = 0;
195 	}
196 }
197 
198 static __always_inline void save_fsgs(struct task_struct *task)
199 {
200 	savesegment(fs, task->thread.fsindex);
201 	savesegment(gs, task->thread.gsindex);
202 	save_base_legacy(task, task->thread.fsindex, FS);
203 	save_base_legacy(task, task->thread.gsindex, GS);
204 }
205 
206 #if IS_ENABLED(CONFIG_KVM)
207 /*
208  * While a process is running,current->thread.fsbase and current->thread.gsbase
209  * may not match the corresponding CPU registers (see save_base_legacy()). KVM
210  * wants an efficient way to save and restore FSBASE and GSBASE.
211  * When FSGSBASE extensions are enabled, this will have to use RD{FS,GS}BASE.
212  */
213 void save_fsgs_for_kvm(void)
214 {
215 	save_fsgs(current);
216 }
217 EXPORT_SYMBOL_GPL(save_fsgs_for_kvm);
218 #endif
219 
220 static __always_inline void loadseg(enum which_selector which,
221 				    unsigned short sel)
222 {
223 	if (which == FS)
224 		loadsegment(fs, sel);
225 	else
226 		load_gs_index(sel);
227 }
228 
229 static __always_inline void load_seg_legacy(unsigned short prev_index,
230 					    unsigned long prev_base,
231 					    unsigned short next_index,
232 					    unsigned long next_base,
233 					    enum which_selector which)
234 {
235 	if (likely(next_index <= 3)) {
236 		/*
237 		 * The next task is using 64-bit TLS, is not using this
238 		 * segment at all, or is having fun with arcane CPU features.
239 		 */
240 		if (next_base == 0) {
241 			/*
242 			 * Nasty case: on AMD CPUs, we need to forcibly zero
243 			 * the base.
244 			 */
245 			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
246 				loadseg(which, __USER_DS);
247 				loadseg(which, next_index);
248 			} else {
249 				/*
250 				 * We could try to exhaustively detect cases
251 				 * under which we can skip the segment load,
252 				 * but there's really only one case that matters
253 				 * for performance: if both the previous and
254 				 * next states are fully zeroed, we can skip
255 				 * the load.
256 				 *
257 				 * (This assumes that prev_base == 0 has no
258 				 * false positives.  This is the case on
259 				 * Intel-style CPUs.)
260 				 */
261 				if (likely(prev_index | next_index | prev_base))
262 					loadseg(which, next_index);
263 			}
264 		} else {
265 			if (prev_index != next_index)
266 				loadseg(which, next_index);
267 			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
268 			       next_base);
269 		}
270 	} else {
271 		/*
272 		 * The next task is using a real segment.  Loading the selector
273 		 * is sufficient.
274 		 */
275 		loadseg(which, next_index);
276 	}
277 }
278 
279 static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
280 					      struct thread_struct *next)
281 {
282 	load_seg_legacy(prev->fsindex, prev->fsbase,
283 			next->fsindex, next->fsbase, FS);
284 	load_seg_legacy(prev->gsindex, prev->gsbase,
285 			next->gsindex, next->gsbase, GS);
286 }
287 
288 static unsigned long x86_fsgsbase_read_task(struct task_struct *task,
289 					    unsigned short selector)
290 {
291 	unsigned short idx = selector >> 3;
292 	unsigned long base;
293 
294 	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
295 		if (unlikely(idx >= GDT_ENTRIES))
296 			return 0;
297 
298 		/*
299 		 * There are no user segments in the GDT with nonzero bases
300 		 * other than the TLS segments.
301 		 */
302 		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
303 			return 0;
304 
305 		idx -= GDT_ENTRY_TLS_MIN;
306 		base = get_desc_base(&task->thread.tls_array[idx]);
307 	} else {
308 #ifdef CONFIG_MODIFY_LDT_SYSCALL
309 		struct ldt_struct *ldt;
310 
311 		/*
312 		 * If performance here mattered, we could protect the LDT
313 		 * with RCU.  This is a slow path, though, so we can just
314 		 * take the mutex.
315 		 */
316 		mutex_lock(&task->mm->context.lock);
317 		ldt = task->mm->context.ldt;
318 		if (unlikely(idx >= ldt->nr_entries))
319 			base = 0;
320 		else
321 			base = get_desc_base(ldt->entries + idx);
322 		mutex_unlock(&task->mm->context.lock);
323 #else
324 		base = 0;
325 #endif
326 	}
327 
328 	return base;
329 }
330 
331 unsigned long x86_fsbase_read_task(struct task_struct *task)
332 {
333 	unsigned long fsbase;
334 
335 	if (task == current)
336 		fsbase = x86_fsbase_read_cpu();
337 	else if (task->thread.fsindex == 0)
338 		fsbase = task->thread.fsbase;
339 	else
340 		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
341 
342 	return fsbase;
343 }
344 
345 unsigned long x86_gsbase_read_task(struct task_struct *task)
346 {
347 	unsigned long gsbase;
348 
349 	if (task == current)
350 		gsbase = x86_gsbase_read_cpu_inactive();
351 	else if (task->thread.gsindex == 0)
352 		gsbase = task->thread.gsbase;
353 	else
354 		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
355 
356 	return gsbase;
357 }
358 
359 void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
360 {
361 	WARN_ON_ONCE(task == current);
362 
363 	task->thread.fsbase = fsbase;
364 }
365 
366 void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
367 {
368 	WARN_ON_ONCE(task == current);
369 
370 	task->thread.gsbase = gsbase;
371 }
372 
373 static void
374 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
375 		    unsigned long new_sp,
376 		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
377 {
378 	WARN_ON_ONCE(regs != current_pt_regs());
379 
380 	if (static_cpu_has(X86_BUG_NULL_SEG)) {
381 		/* Loading zero below won't clear the base. */
382 		loadsegment(fs, __USER_DS);
383 		load_gs_index(__USER_DS);
384 	}
385 
386 	loadsegment(fs, 0);
387 	loadsegment(es, _ds);
388 	loadsegment(ds, _ds);
389 	load_gs_index(0);
390 
391 	regs->ip		= new_ip;
392 	regs->sp		= new_sp;
393 	regs->cs		= _cs;
394 	regs->ss		= _ss;
395 	regs->flags		= X86_EFLAGS_IF;
396 }
397 
398 void
399 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
400 {
401 	start_thread_common(regs, new_ip, new_sp,
402 			    __USER_CS, __USER_DS, 0);
403 }
404 EXPORT_SYMBOL_GPL(start_thread);
405 
406 #ifdef CONFIG_COMPAT
407 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
408 {
409 	start_thread_common(regs, new_ip, new_sp,
410 			    test_thread_flag(TIF_X32)
411 			    ? __USER_CS : __USER32_CS,
412 			    __USER_DS, __USER_DS);
413 }
414 #endif
415 
416 /*
417  *	switch_to(x,y) should switch tasks from x to y.
418  *
419  * This could still be optimized:
420  * - fold all the options into a flag word and test it with a single test.
421  * - could test fs/gs bitsliced
422  *
423  * Kprobes not supported here. Set the probe on schedule instead.
424  * Function graph tracer not supported too.
425  */
426 __visible __notrace_funcgraph struct task_struct *
427 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
428 {
429 	struct thread_struct *prev = &prev_p->thread;
430 	struct thread_struct *next = &next_p->thread;
431 	struct fpu *prev_fpu = &prev->fpu;
432 	struct fpu *next_fpu = &next->fpu;
433 	int cpu = smp_processor_id();
434 
435 	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
436 		     this_cpu_read(irq_count) != -1);
437 
438 	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
439 		switch_fpu_prepare(prev_fpu, cpu);
440 
441 	/* We must save %fs and %gs before load_TLS() because
442 	 * %fs and %gs may be cleared by load_TLS().
443 	 *
444 	 * (e.g. xen_load_tls())
445 	 */
446 	save_fsgs(prev_p);
447 
448 	/*
449 	 * Load TLS before restoring any segments so that segment loads
450 	 * reference the correct GDT entries.
451 	 */
452 	load_TLS(next, cpu);
453 
454 	/*
455 	 * Leave lazy mode, flushing any hypercalls made here.  This
456 	 * must be done after loading TLS entries in the GDT but before
457 	 * loading segments that might reference them.
458 	 */
459 	arch_end_context_switch(next_p);
460 
461 	/* Switch DS and ES.
462 	 *
463 	 * Reading them only returns the selectors, but writing them (if
464 	 * nonzero) loads the full descriptor from the GDT or LDT.  The
465 	 * LDT for next is loaded in switch_mm, and the GDT is loaded
466 	 * above.
467 	 *
468 	 * We therefore need to write new values to the segment
469 	 * registers on every context switch unless both the new and old
470 	 * values are zero.
471 	 *
472 	 * Note that we don't need to do anything for CS and SS, as
473 	 * those are saved and restored as part of pt_regs.
474 	 */
475 	savesegment(es, prev->es);
476 	if (unlikely(next->es | prev->es))
477 		loadsegment(es, next->es);
478 
479 	savesegment(ds, prev->ds);
480 	if (unlikely(next->ds | prev->ds))
481 		loadsegment(ds, next->ds);
482 
483 	x86_fsgsbase_load(prev, next);
484 
485 	/*
486 	 * Switch the PDA and FPU contexts.
487 	 */
488 	this_cpu_write(current_task, next_p);
489 	this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
490 
491 	switch_fpu_finish(next_fpu);
492 
493 	/* Reload sp0. */
494 	update_task_stack(next_p);
495 
496 	switch_to_extra(prev_p, next_p);
497 
498 	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
499 		/*
500 		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
501 		 * does not update the cached descriptor.  As a result, if we
502 		 * do SYSRET while SS is NULL, we'll end up in user mode with
503 		 * SS apparently equal to __USER_DS but actually unusable.
504 		 *
505 		 * The straightforward workaround would be to fix it up just
506 		 * before SYSRET, but that would slow down the system call
507 		 * fast paths.  Instead, we ensure that SS is never NULL in
508 		 * system call context.  We do this by replacing NULL SS
509 		 * selectors at every context switch.  SYSCALL sets up a valid
510 		 * SS, so the only way to get NULL is to re-enter the kernel
511 		 * from CPL 3 through an interrupt.  Since that can't happen
512 		 * in the same task as a running syscall, we are guaranteed to
513 		 * context switch between every interrupt vector entry and a
514 		 * subsequent SYSRET.
515 		 *
516 		 * We read SS first because SS reads are much faster than
517 		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
518 		 * it previously had a different non-NULL value.
519 		 */
520 		unsigned short ss_sel;
521 		savesegment(ss, ss_sel);
522 		if (ss_sel != __KERNEL_DS)
523 			loadsegment(ss, __KERNEL_DS);
524 	}
525 
526 	/* Load the Intel cache allocation PQR MSR. */
527 	resctrl_sched_in();
528 
529 	return prev_p;
530 }
531 
532 void set_personality_64bit(void)
533 {
534 	/* inherit personality from parent */
535 
536 	/* Make sure to be in 64bit mode */
537 	clear_thread_flag(TIF_IA32);
538 	clear_thread_flag(TIF_ADDR32);
539 	clear_thread_flag(TIF_X32);
540 	/* Pretend that this comes from a 64bit execve */
541 	task_pt_regs(current)->orig_ax = __NR_execve;
542 	current_thread_info()->status &= ~TS_COMPAT;
543 
544 	/* Ensure the corresponding mm is not marked. */
545 	if (current->mm)
546 		current->mm->context.ia32_compat = 0;
547 
548 	/* TBD: overwrites user setup. Should have two bits.
549 	   But 64bit processes have always behaved this way,
550 	   so it's not too bad. The main problem is just that
551 	   32bit children are affected again. */
552 	current->personality &= ~READ_IMPLIES_EXEC;
553 }
554 
555 static void __set_personality_x32(void)
556 {
557 #ifdef CONFIG_X86_X32
558 	clear_thread_flag(TIF_IA32);
559 	set_thread_flag(TIF_X32);
560 	if (current->mm)
561 		current->mm->context.ia32_compat = TIF_X32;
562 	current->personality &= ~READ_IMPLIES_EXEC;
563 	/*
564 	 * in_32bit_syscall() uses the presence of the x32 syscall bit
565 	 * flag to determine compat status.  The x86 mmap() code relies on
566 	 * the syscall bitness so set x32 syscall bit right here to make
567 	 * in_32bit_syscall() work during exec().
568 	 *
569 	 * Pretend to come from a x32 execve.
570 	 */
571 	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
572 	current_thread_info()->status &= ~TS_COMPAT;
573 #endif
574 }
575 
576 static void __set_personality_ia32(void)
577 {
578 #ifdef CONFIG_IA32_EMULATION
579 	set_thread_flag(TIF_IA32);
580 	clear_thread_flag(TIF_X32);
581 	if (current->mm)
582 		current->mm->context.ia32_compat = TIF_IA32;
583 	current->personality |= force_personality32;
584 	/* Prepare the first "return" to user space */
585 	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
586 	current_thread_info()->status |= TS_COMPAT;
587 #endif
588 }
589 
590 void set_personality_ia32(bool x32)
591 {
592 	/* Make sure to be in 32bit mode */
593 	set_thread_flag(TIF_ADDR32);
594 
595 	if (x32)
596 		__set_personality_x32();
597 	else
598 		__set_personality_ia32();
599 }
600 EXPORT_SYMBOL_GPL(set_personality_ia32);
601 
602 #ifdef CONFIG_CHECKPOINT_RESTORE
603 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
604 {
605 	int ret;
606 
607 	ret = map_vdso_once(image, addr);
608 	if (ret)
609 		return ret;
610 
611 	return (long)image->size;
612 }
613 #endif
614 
615 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
616 {
617 	int ret = 0;
618 
619 	switch (option) {
620 	case ARCH_SET_GS: {
621 		if (unlikely(arg2 >= TASK_SIZE_MAX))
622 			return -EPERM;
623 
624 		preempt_disable();
625 		/*
626 		 * ARCH_SET_GS has always overwritten the index
627 		 * and the base. Zero is the most sensible value
628 		 * to put in the index, and is the only value that
629 		 * makes any sense if FSGSBASE is unavailable.
630 		 */
631 		if (task == current) {
632 			loadseg(GS, 0);
633 			x86_gsbase_write_cpu_inactive(arg2);
634 
635 			/*
636 			 * On non-FSGSBASE systems, save_base_legacy() expects
637 			 * that we also fill in thread.gsbase.
638 			 */
639 			task->thread.gsbase = arg2;
640 
641 		} else {
642 			task->thread.gsindex = 0;
643 			x86_gsbase_write_task(task, arg2);
644 		}
645 		preempt_enable();
646 		break;
647 	}
648 	case ARCH_SET_FS: {
649 		/*
650 		 * Not strictly needed for %fs, but do it for symmetry
651 		 * with %gs
652 		 */
653 		if (unlikely(arg2 >= TASK_SIZE_MAX))
654 			return -EPERM;
655 
656 		preempt_disable();
657 		/*
658 		 * Set the selector to 0 for the same reason
659 		 * as %gs above.
660 		 */
661 		if (task == current) {
662 			loadseg(FS, 0);
663 			x86_fsbase_write_cpu(arg2);
664 
665 			/*
666 			 * On non-FSGSBASE systems, save_base_legacy() expects
667 			 * that we also fill in thread.fsbase.
668 			 */
669 			task->thread.fsbase = arg2;
670 		} else {
671 			task->thread.fsindex = 0;
672 			x86_fsbase_write_task(task, arg2);
673 		}
674 		preempt_enable();
675 		break;
676 	}
677 	case ARCH_GET_FS: {
678 		unsigned long base = x86_fsbase_read_task(task);
679 
680 		ret = put_user(base, (unsigned long __user *)arg2);
681 		break;
682 	}
683 	case ARCH_GET_GS: {
684 		unsigned long base = x86_gsbase_read_task(task);
685 
686 		ret = put_user(base, (unsigned long __user *)arg2);
687 		break;
688 	}
689 
690 #ifdef CONFIG_CHECKPOINT_RESTORE
691 # ifdef CONFIG_X86_X32_ABI
692 	case ARCH_MAP_VDSO_X32:
693 		return prctl_map_vdso(&vdso_image_x32, arg2);
694 # endif
695 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
696 	case ARCH_MAP_VDSO_32:
697 		return prctl_map_vdso(&vdso_image_32, arg2);
698 # endif
699 	case ARCH_MAP_VDSO_64:
700 		return prctl_map_vdso(&vdso_image_64, arg2);
701 #endif
702 
703 	default:
704 		ret = -EINVAL;
705 		break;
706 	}
707 
708 	return ret;
709 }
710 
711 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
712 {
713 	long ret;
714 
715 	ret = do_arch_prctl_64(current, option, arg2);
716 	if (ret == -EINVAL)
717 		ret = do_arch_prctl_common(current, option, arg2);
718 
719 	return ret;
720 }
721 
722 #ifdef CONFIG_IA32_EMULATION
723 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
724 {
725 	return do_arch_prctl_common(current, option, arg2);
726 }
727 #endif
728 
729 unsigned long KSTK_ESP(struct task_struct *task)
730 {
731 	return task_pt_regs(task)->sp;
732 }
733