xref: /openbmc/linux/arch/x86/kernel/process_64.c (revision 0da85d1e)
1 /*
2  *  Copyright (C) 1995  Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *	Gareth Hughes <gareth@valinux.com>, May 2000
6  *
7  *  X86-64 port
8  *	Andi Kleen.
9  *
10  *	CPU hotplug support - ashok.raj@intel.com
11  */
12 
13 /*
14  * This file handles the architecture-dependent parts of process handling..
15  */
16 
17 #include <linux/cpu.h>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/fs.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/elfcore.h>
24 #include <linux/smp.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/module.h>
30 #include <linux/ptrace.h>
31 #include <linux/notifier.h>
32 #include <linux/kprobes.h>
33 #include <linux/kdebug.h>
34 #include <linux/prctl.h>
35 #include <linux/uaccess.h>
36 #include <linux/io.h>
37 #include <linux/ftrace.h>
38 
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/i387.h>
42 #include <asm/fpu-internal.h>
43 #include <asm/mmu_context.h>
44 #include <asm/prctl.h>
45 #include <asm/desc.h>
46 #include <asm/proto.h>
47 #include <asm/ia32.h>
48 #include <asm/idle.h>
49 #include <asm/syscalls.h>
50 #include <asm/debugreg.h>
51 #include <asm/switch_to.h>
52 
53 asmlinkage extern void ret_from_fork(void);
54 
55 __visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
56 
57 /* Prints also some state that isn't saved in the pt_regs */
58 void __show_regs(struct pt_regs *regs, int all)
59 {
60 	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
61 	unsigned long d0, d1, d2, d3, d6, d7;
62 	unsigned int fsindex, gsindex;
63 	unsigned int ds, cs, es;
64 
65 	printk(KERN_DEFAULT "RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip);
66 	printk_address(regs->ip);
67 	printk(KERN_DEFAULT "RSP: %04lx:%016lx  EFLAGS: %08lx\n", regs->ss,
68 			regs->sp, regs->flags);
69 	printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
70 	       regs->ax, regs->bx, regs->cx);
71 	printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
72 	       regs->dx, regs->si, regs->di);
73 	printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
74 	       regs->bp, regs->r8, regs->r9);
75 	printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
76 	       regs->r10, regs->r11, regs->r12);
77 	printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
78 	       regs->r13, regs->r14, regs->r15);
79 
80 	asm("movl %%ds,%0" : "=r" (ds));
81 	asm("movl %%cs,%0" : "=r" (cs));
82 	asm("movl %%es,%0" : "=r" (es));
83 	asm("movl %%fs,%0" : "=r" (fsindex));
84 	asm("movl %%gs,%0" : "=r" (gsindex));
85 
86 	rdmsrl(MSR_FS_BASE, fs);
87 	rdmsrl(MSR_GS_BASE, gs);
88 	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
89 
90 	if (!all)
91 		return;
92 
93 	cr0 = read_cr0();
94 	cr2 = read_cr2();
95 	cr3 = read_cr3();
96 	cr4 = __read_cr4();
97 
98 	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
99 	       fs, fsindex, gs, gsindex, shadowgs);
100 	printk(KERN_DEFAULT "CS:  %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
101 			es, cr0);
102 	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
103 			cr4);
104 
105 	get_debugreg(d0, 0);
106 	get_debugreg(d1, 1);
107 	get_debugreg(d2, 2);
108 	get_debugreg(d3, 3);
109 	get_debugreg(d6, 6);
110 	get_debugreg(d7, 7);
111 
112 	/* Only print out debug registers if they are in their non-default state. */
113 	if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
114 	    (d6 == DR6_RESERVED) && (d7 == 0x400))
115 		return;
116 
117 	printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2);
118 	printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7);
119 
120 }
121 
122 void release_thread(struct task_struct *dead_task)
123 {
124 	if (dead_task->mm) {
125 		if (dead_task->mm->context.size) {
126 			pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
127 				dead_task->comm,
128 				dead_task->mm->context.ldt,
129 				dead_task->mm->context.size);
130 			BUG();
131 		}
132 	}
133 }
134 
135 static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr)
136 {
137 	struct user_desc ud = {
138 		.base_addr = addr,
139 		.limit = 0xfffff,
140 		.seg_32bit = 1,
141 		.limit_in_pages = 1,
142 		.useable = 1,
143 	};
144 	struct desc_struct *desc = t->thread.tls_array;
145 	desc += tls;
146 	fill_ldt(desc, &ud);
147 }
148 
149 static inline u32 read_32bit_tls(struct task_struct *t, int tls)
150 {
151 	return get_desc_base(&t->thread.tls_array[tls]);
152 }
153 
154 int copy_thread(unsigned long clone_flags, unsigned long sp,
155 		unsigned long arg, struct task_struct *p)
156 {
157 	int err;
158 	struct pt_regs *childregs;
159 	struct task_struct *me = current;
160 
161 	p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE;
162 	childregs = task_pt_regs(p);
163 	p->thread.sp = (unsigned long) childregs;
164 	set_tsk_thread_flag(p, TIF_FORK);
165 	p->thread.io_bitmap_ptr = NULL;
166 
167 	savesegment(gs, p->thread.gsindex);
168 	p->thread.gs = p->thread.gsindex ? 0 : me->thread.gs;
169 	savesegment(fs, p->thread.fsindex);
170 	p->thread.fs = p->thread.fsindex ? 0 : me->thread.fs;
171 	savesegment(es, p->thread.es);
172 	savesegment(ds, p->thread.ds);
173 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
174 
175 	if (unlikely(p->flags & PF_KTHREAD)) {
176 		/* kernel thread */
177 		memset(childregs, 0, sizeof(struct pt_regs));
178 		childregs->sp = (unsigned long)childregs;
179 		childregs->ss = __KERNEL_DS;
180 		childregs->bx = sp; /* function */
181 		childregs->bp = arg;
182 		childregs->orig_ax = -1;
183 		childregs->cs = __KERNEL_CS | get_kernel_rpl();
184 		childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
185 		return 0;
186 	}
187 	*childregs = *current_pt_regs();
188 
189 	childregs->ax = 0;
190 	if (sp)
191 		childregs->sp = sp;
192 
193 	err = -ENOMEM;
194 	if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
195 		p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
196 						  IO_BITMAP_BYTES, GFP_KERNEL);
197 		if (!p->thread.io_bitmap_ptr) {
198 			p->thread.io_bitmap_max = 0;
199 			return -ENOMEM;
200 		}
201 		set_tsk_thread_flag(p, TIF_IO_BITMAP);
202 	}
203 
204 	/*
205 	 * Set a new TLS for the child thread?
206 	 */
207 	if (clone_flags & CLONE_SETTLS) {
208 #ifdef CONFIG_IA32_EMULATION
209 		if (is_ia32_task())
210 			err = do_set_thread_area(p, -1,
211 				(struct user_desc __user *)childregs->si, 0);
212 		else
213 #endif
214 			err = do_arch_prctl(p, ARCH_SET_FS, childregs->r8);
215 		if (err)
216 			goto out;
217 	}
218 	err = 0;
219 out:
220 	if (err && p->thread.io_bitmap_ptr) {
221 		kfree(p->thread.io_bitmap_ptr);
222 		p->thread.io_bitmap_max = 0;
223 	}
224 
225 	return err;
226 }
227 
228 static void
229 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
230 		    unsigned long new_sp,
231 		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
232 {
233 	loadsegment(fs, 0);
234 	loadsegment(es, _ds);
235 	loadsegment(ds, _ds);
236 	load_gs_index(0);
237 	regs->ip		= new_ip;
238 	regs->sp		= new_sp;
239 	regs->cs		= _cs;
240 	regs->ss		= _ss;
241 	regs->flags		= X86_EFLAGS_IF;
242 	force_iret();
243 }
244 
245 void
246 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
247 {
248 	start_thread_common(regs, new_ip, new_sp,
249 			    __USER_CS, __USER_DS, 0);
250 }
251 
252 #ifdef CONFIG_IA32_EMULATION
253 void start_thread_ia32(struct pt_regs *regs, u32 new_ip, u32 new_sp)
254 {
255 	start_thread_common(regs, new_ip, new_sp,
256 			    test_thread_flag(TIF_X32)
257 			    ? __USER_CS : __USER32_CS,
258 			    __USER_DS, __USER_DS);
259 }
260 #endif
261 
262 /*
263  *	switch_to(x,y) should switch tasks from x to y.
264  *
265  * This could still be optimized:
266  * - fold all the options into a flag word and test it with a single test.
267  * - could test fs/gs bitsliced
268  *
269  * Kprobes not supported here. Set the probe on schedule instead.
270  * Function graph tracer not supported too.
271  */
272 __visible __notrace_funcgraph struct task_struct *
273 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
274 {
275 	struct thread_struct *prev = &prev_p->thread;
276 	struct thread_struct *next = &next_p->thread;
277 	int cpu = smp_processor_id();
278 	struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
279 	unsigned fsindex, gsindex;
280 	fpu_switch_t fpu;
281 
282 	fpu = switch_fpu_prepare(prev_p, next_p, cpu);
283 
284 	/* We must save %fs and %gs before load_TLS() because
285 	 * %fs and %gs may be cleared by load_TLS().
286 	 *
287 	 * (e.g. xen_load_tls())
288 	 */
289 	savesegment(fs, fsindex);
290 	savesegment(gs, gsindex);
291 
292 	/*
293 	 * Load TLS before restoring any segments so that segment loads
294 	 * reference the correct GDT entries.
295 	 */
296 	load_TLS(next, cpu);
297 
298 	/*
299 	 * Leave lazy mode, flushing any hypercalls made here.  This
300 	 * must be done after loading TLS entries in the GDT but before
301 	 * loading segments that might reference them, and and it must
302 	 * be done before math_state_restore, so the TS bit is up to
303 	 * date.
304 	 */
305 	arch_end_context_switch(next_p);
306 
307 	/* Switch DS and ES.
308 	 *
309 	 * Reading them only returns the selectors, but writing them (if
310 	 * nonzero) loads the full descriptor from the GDT or LDT.  The
311 	 * LDT for next is loaded in switch_mm, and the GDT is loaded
312 	 * above.
313 	 *
314 	 * We therefore need to write new values to the segment
315 	 * registers on every context switch unless both the new and old
316 	 * values are zero.
317 	 *
318 	 * Note that we don't need to do anything for CS and SS, as
319 	 * those are saved and restored as part of pt_regs.
320 	 */
321 	savesegment(es, prev->es);
322 	if (unlikely(next->es | prev->es))
323 		loadsegment(es, next->es);
324 
325 	savesegment(ds, prev->ds);
326 	if (unlikely(next->ds | prev->ds))
327 		loadsegment(ds, next->ds);
328 
329 	/*
330 	 * Switch FS and GS.
331 	 *
332 	 * These are even more complicated than FS and GS: they have
333 	 * 64-bit bases are that controlled by arch_prctl.  Those bases
334 	 * only differ from the values in the GDT or LDT if the selector
335 	 * is 0.
336 	 *
337 	 * Loading the segment register resets the hidden base part of
338 	 * the register to 0 or the value from the GDT / LDT.  If the
339 	 * next base address zero, writing 0 to the segment register is
340 	 * much faster than using wrmsr to explicitly zero the base.
341 	 *
342 	 * The thread_struct.fs and thread_struct.gs values are 0
343 	 * if the fs and gs bases respectively are not overridden
344 	 * from the values implied by fsindex and gsindex.  They
345 	 * are nonzero, and store the nonzero base addresses, if
346 	 * the bases are overridden.
347 	 *
348 	 * (fs != 0 && fsindex != 0) || (gs != 0 && gsindex != 0) should
349 	 * be impossible.
350 	 *
351 	 * Therefore we need to reload the segment registers if either
352 	 * the old or new selector is nonzero, and we need to override
353 	 * the base address if next thread expects it to be overridden.
354 	 *
355 	 * This code is unnecessarily slow in the case where the old and
356 	 * new indexes are zero and the new base is nonzero -- it will
357 	 * unnecessarily write 0 to the selector before writing the new
358 	 * base address.
359 	 *
360 	 * Note: This all depends on arch_prctl being the only way that
361 	 * user code can override the segment base.  Once wrfsbase and
362 	 * wrgsbase are enabled, most of this code will need to change.
363 	 */
364 	if (unlikely(fsindex | next->fsindex | prev->fs)) {
365 		loadsegment(fs, next->fsindex);
366 
367 		/*
368 		 * If user code wrote a nonzero value to FS, then it also
369 		 * cleared the overridden base address.
370 		 *
371 		 * XXX: if user code wrote 0 to FS and cleared the base
372 		 * address itself, we won't notice and we'll incorrectly
373 		 * restore the prior base address next time we reschdule
374 		 * the process.
375 		 */
376 		if (fsindex)
377 			prev->fs = 0;
378 	}
379 	if (next->fs)
380 		wrmsrl(MSR_FS_BASE, next->fs);
381 	prev->fsindex = fsindex;
382 
383 	if (unlikely(gsindex | next->gsindex | prev->gs)) {
384 		load_gs_index(next->gsindex);
385 
386 		/* This works (and fails) the same way as fsindex above. */
387 		if (gsindex)
388 			prev->gs = 0;
389 	}
390 	if (next->gs)
391 		wrmsrl(MSR_KERNEL_GS_BASE, next->gs);
392 	prev->gsindex = gsindex;
393 
394 	switch_fpu_finish(next_p, fpu);
395 
396 	/*
397 	 * Switch the PDA and FPU contexts.
398 	 */
399 	this_cpu_write(current_task, next_p);
400 
401 	/*
402 	 * If it were not for PREEMPT_ACTIVE we could guarantee that the
403 	 * preempt_count of all tasks was equal here and this would not be
404 	 * needed.
405 	 */
406 	task_thread_info(prev_p)->saved_preempt_count = this_cpu_read(__preempt_count);
407 	this_cpu_write(__preempt_count, task_thread_info(next_p)->saved_preempt_count);
408 
409 	/* Reload esp0 and ss1.  This changes current_thread_info(). */
410 	load_sp0(tss, next);
411 
412 	this_cpu_write(kernel_stack,
413 		(unsigned long)task_stack_page(next_p) + THREAD_SIZE);
414 
415 	/*
416 	 * Now maybe reload the debug registers and handle I/O bitmaps
417 	 */
418 	if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
419 		     task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
420 		__switch_to_xtra(prev_p, next_p, tss);
421 
422 	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
423 		/*
424 		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
425 		 * does not update the cached descriptor.  As a result, if we
426 		 * do SYSRET while SS is NULL, we'll end up in user mode with
427 		 * SS apparently equal to __USER_DS but actually unusable.
428 		 *
429 		 * The straightforward workaround would be to fix it up just
430 		 * before SYSRET, but that would slow down the system call
431 		 * fast paths.  Instead, we ensure that SS is never NULL in
432 		 * system call context.  We do this by replacing NULL SS
433 		 * selectors at every context switch.  SYSCALL sets up a valid
434 		 * SS, so the only way to get NULL is to re-enter the kernel
435 		 * from CPL 3 through an interrupt.  Since that can't happen
436 		 * in the same task as a running syscall, we are guaranteed to
437 		 * context switch between every interrupt vector entry and a
438 		 * subsequent SYSRET.
439 		 *
440 		 * We read SS first because SS reads are much faster than
441 		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
442 		 * it previously had a different non-NULL value.
443 		 */
444 		unsigned short ss_sel;
445 		savesegment(ss, ss_sel);
446 		if (ss_sel != __KERNEL_DS)
447 			loadsegment(ss, __KERNEL_DS);
448 	}
449 
450 	return prev_p;
451 }
452 
453 void set_personality_64bit(void)
454 {
455 	/* inherit personality from parent */
456 
457 	/* Make sure to be in 64bit mode */
458 	clear_thread_flag(TIF_IA32);
459 	clear_thread_flag(TIF_ADDR32);
460 	clear_thread_flag(TIF_X32);
461 
462 	/* Ensure the corresponding mm is not marked. */
463 	if (current->mm)
464 		current->mm->context.ia32_compat = 0;
465 
466 	/* TBD: overwrites user setup. Should have two bits.
467 	   But 64bit processes have always behaved this way,
468 	   so it's not too bad. The main problem is just that
469 	   32bit childs are affected again. */
470 	current->personality &= ~READ_IMPLIES_EXEC;
471 }
472 
473 void set_personality_ia32(bool x32)
474 {
475 	/* inherit personality from parent */
476 
477 	/* Make sure to be in 32bit mode */
478 	set_thread_flag(TIF_ADDR32);
479 
480 	/* Mark the associated mm as containing 32-bit tasks. */
481 	if (x32) {
482 		clear_thread_flag(TIF_IA32);
483 		set_thread_flag(TIF_X32);
484 		if (current->mm)
485 			current->mm->context.ia32_compat = TIF_X32;
486 		current->personality &= ~READ_IMPLIES_EXEC;
487 		/* is_compat_task() uses the presence of the x32
488 		   syscall bit flag to determine compat status */
489 		current_thread_info()->status &= ~TS_COMPAT;
490 	} else {
491 		set_thread_flag(TIF_IA32);
492 		clear_thread_flag(TIF_X32);
493 		if (current->mm)
494 			current->mm->context.ia32_compat = TIF_IA32;
495 		current->personality |= force_personality32;
496 		/* Prepare the first "return" to user space */
497 		current_thread_info()->status |= TS_COMPAT;
498 	}
499 }
500 EXPORT_SYMBOL_GPL(set_personality_ia32);
501 
502 unsigned long get_wchan(struct task_struct *p)
503 {
504 	unsigned long stack;
505 	u64 fp, ip;
506 	int count = 0;
507 
508 	if (!p || p == current || p->state == TASK_RUNNING)
509 		return 0;
510 	stack = (unsigned long)task_stack_page(p);
511 	if (p->thread.sp < stack || p->thread.sp >= stack+THREAD_SIZE)
512 		return 0;
513 	fp = *(u64 *)(p->thread.sp);
514 	do {
515 		if (fp < (unsigned long)stack ||
516 		    fp >= (unsigned long)stack+THREAD_SIZE)
517 			return 0;
518 		ip = *(u64 *)(fp+8);
519 		if (!in_sched_functions(ip))
520 			return ip;
521 		fp = *(u64 *)fp;
522 	} while (count++ < 16);
523 	return 0;
524 }
525 
526 long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
527 {
528 	int ret = 0;
529 	int doit = task == current;
530 	int cpu;
531 
532 	switch (code) {
533 	case ARCH_SET_GS:
534 		if (addr >= TASK_SIZE_OF(task))
535 			return -EPERM;
536 		cpu = get_cpu();
537 		/* handle small bases via the GDT because that's faster to
538 		   switch. */
539 		if (addr <= 0xffffffff) {
540 			set_32bit_tls(task, GS_TLS, addr);
541 			if (doit) {
542 				load_TLS(&task->thread, cpu);
543 				load_gs_index(GS_TLS_SEL);
544 			}
545 			task->thread.gsindex = GS_TLS_SEL;
546 			task->thread.gs = 0;
547 		} else {
548 			task->thread.gsindex = 0;
549 			task->thread.gs = addr;
550 			if (doit) {
551 				load_gs_index(0);
552 				ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr);
553 			}
554 		}
555 		put_cpu();
556 		break;
557 	case ARCH_SET_FS:
558 		/* Not strictly needed for fs, but do it for symmetry
559 		   with gs */
560 		if (addr >= TASK_SIZE_OF(task))
561 			return -EPERM;
562 		cpu = get_cpu();
563 		/* handle small bases via the GDT because that's faster to
564 		   switch. */
565 		if (addr <= 0xffffffff) {
566 			set_32bit_tls(task, FS_TLS, addr);
567 			if (doit) {
568 				load_TLS(&task->thread, cpu);
569 				loadsegment(fs, FS_TLS_SEL);
570 			}
571 			task->thread.fsindex = FS_TLS_SEL;
572 			task->thread.fs = 0;
573 		} else {
574 			task->thread.fsindex = 0;
575 			task->thread.fs = addr;
576 			if (doit) {
577 				/* set the selector to 0 to not confuse
578 				   __switch_to */
579 				loadsegment(fs, 0);
580 				ret = wrmsrl_safe(MSR_FS_BASE, addr);
581 			}
582 		}
583 		put_cpu();
584 		break;
585 	case ARCH_GET_FS: {
586 		unsigned long base;
587 		if (task->thread.fsindex == FS_TLS_SEL)
588 			base = read_32bit_tls(task, FS_TLS);
589 		else if (doit)
590 			rdmsrl(MSR_FS_BASE, base);
591 		else
592 			base = task->thread.fs;
593 		ret = put_user(base, (unsigned long __user *)addr);
594 		break;
595 	}
596 	case ARCH_GET_GS: {
597 		unsigned long base;
598 		unsigned gsindex;
599 		if (task->thread.gsindex == GS_TLS_SEL)
600 			base = read_32bit_tls(task, GS_TLS);
601 		else if (doit) {
602 			savesegment(gs, gsindex);
603 			if (gsindex)
604 				rdmsrl(MSR_KERNEL_GS_BASE, base);
605 			else
606 				base = task->thread.gs;
607 		} else
608 			base = task->thread.gs;
609 		ret = put_user(base, (unsigned long __user *)addr);
610 		break;
611 	}
612 
613 	default:
614 		ret = -EINVAL;
615 		break;
616 	}
617 
618 	return ret;
619 }
620 
621 long sys_arch_prctl(int code, unsigned long addr)
622 {
623 	return do_arch_prctl(current, code, addr);
624 }
625 
626 unsigned long KSTK_ESP(struct task_struct *task)
627 {
628 	return task_pt_regs(task)->sp;
629 }
630